Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (87)

Search Parameters:
Keywords = magnetoimpedance

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 4473 KiB  
Article
Highly Sensitive Pressure Transducer for Measuring Arterial Pulse Wave Velocity Based on Giant Magneto-Impedance Sensors
by Lizeth Stefanía Benavides Cabrera, Eduardo Costa da Silva and Elisabeth Costa Monteiro
Sensors 2025, 25(10), 3188; https://doi.org/10.3390/s25103188 - 19 May 2025
Viewed by 514
Abstract
Pulse wave velocity (PWV) has been recognised as the gold standard for assessing arterial stiffness and a relevant indicator in diagnosing cardiovascular disease. Conventional approaches can be affected by factors such as the size of the probe, its positioning on the skin with [...] Read more.
Pulse wave velocity (PWV) has been recognised as the gold standard for assessing arterial stiffness and a relevant indicator in diagnosing cardiovascular disease. Conventional approaches can be affected by factors such as the size of the probe, its positioning on the skin with the appropriate angle and magnitude of the incident force, or influenced by optical properties. Aiming at improving the assessment of PWV parameter, an important cardiovascular risk marker, the present study introduces a new arterial pulse wave measurement technique based on measurements of the impedance phase characteristics of giant magneto-impedance (GMI) sensors submitted to slight magnetic field variations caused by the displacement of a small magnetic marker placed on the patient’s skin, whose movement is coordinated by the local pressure wave. The proposed method eliminates the necessity of using probes with mechanical amplification, enhancing spatial resolution and usability in hard-to-reach anatomical regions through a contactless device unaffected by optical parameters. The obtained experimental results indicate the potential of the developed measurement system in measuring arterial pulse waveform and PWV. Full article
(This article belongs to the Special Issue Sensing Signals for Biomedical Monitoring)
Show Figures

Figure 1

12 pages, 19666 KiB  
Article
Modulation of Giant Magnetoimpedance Effect in Co-Based Amorphous Wires by Carbon-Based Nanocoatings
by Zhen Yang, Jiabao Huang, Jingyuan Chen and Chong Lei
C 2025, 11(2), 26; https://doi.org/10.3390/c11020026 - 1 Apr 2025
Viewed by 1126
Abstract
Co-based amorphous wires (Co-AWs) are functional materials renowned for their high impedance change rate in magnetic fields and a pronounced giant magnetoimpedance (GMI) effect. In this study, magnetron sputtering (MS) and dip-coating (DC) techniques were employed to fabricate carbon-based nanocoatings aimed at modulating [...] Read more.
Co-based amorphous wires (Co-AWs) are functional materials renowned for their high impedance change rate in magnetic fields and a pronounced giant magnetoimpedance (GMI) effect. In this study, magnetron sputtering (MS) and dip-coating (DC) techniques were employed to fabricate carbon-based nanocoatings aimed at modulating the GMI properties of Co-AWs. The magnetic properties and GMI responses of the composite Co-AWs with carbon-based coatings were comparatively analyzed. The results demonstrate that both methods effectively enhanced the GMI properties of the coated Co-AWs. The DC method emerged as a rapid and efficient approach for forming the coated film, achieving a modest enhancement in GMI performance (10% enhancement). In contrast, the MS technique proved more effective in improving the GMI effect, yielding superior results. Co-AWs coated via Ms exhibited smoother surfaces and reduced coercivity. Notably, the GMI effect increased with the thickness of the sputtered carbon coatings, reaching a maximum GMI effect of 522% (a remarkable 357% enhancement) and a sensitivity of 33.8%/Oe at a coating thickness of 334 nm. The observed trend in the GMI effect with carbon layer thickness corresponded closely to variations in transverse permeability, as determined by vibrating sample magnetometry (VSM). Furthermore, the carbon coating induced changes in the initial quenching stress on the surface of the Co-AWs, leading to alterations in impedance and a significant reduction in the characteristic frequency of the Co-AWs. Our findings provide valuable insights into the modulation of GMI properties in Co-AWs, paving the way for their optimized application in advanced magnetic sensor technologies. Full article
(This article belongs to the Section Carbon Materials and Carbon Allotropes)
Show Figures

Graphical abstract

17 pages, 3277 KiB  
Article
Signal Differentiation of Moving Magnetic Nanoparticles for Enhanced Biodetection and Diagnostics
by Kee Young Hwang, Dakota Brown, Supun B. Attanayake, Dan Luu, Minh Dang Nguyen, T. Randall Lee and Manh-Huong Phan
Biosensors 2025, 15(2), 116; https://doi.org/10.3390/bios15020116 - 17 Feb 2025
Cited by 2 | Viewed by 1117
Abstract
Magnetic nanoparticles are extensively utilized as markers/signal labelling in various biomedical applications. Detecting and distinguishing magnetic signals from similarly sized moving magnetic nanoparticles in microfluidic systems is crucial yet challenging for biosensing. In this study, we have developed an original method to detect [...] Read more.
Magnetic nanoparticles are extensively utilized as markers/signal labelling in various biomedical applications. Detecting and distinguishing magnetic signals from similarly sized moving magnetic nanoparticles in microfluidic systems is crucial yet challenging for biosensing. In this study, we have developed an original method to detect and differentiate magnetic signals from moving superparamagnetic (SPM) and ferrimagnetic (FM) nanoparticles of comparable sizes. Our approach utilizes a highly sensitive magnetic-coil-based sensor that harnesses the combined effects of giant magnetoimpedance (GMI) and an LC-resonance circuit, offering performance superior to that of conventional GMI sensors. Iron oxide nanoparticles, which have similar particle sizes but differing coercivities (zero for SPM and non-zero for FM) or similar zero coercivities but differing particle sizes, flow through the magnetic coil at controlled velocities. Their distinct effects are analyzed through changes in the complex impedance of the sensing system. Our findings provide a unique pathway for utilizing SPM and FM nanoparticles as innovative magnetic markers to identify specific biological entities, thereby expanding their potential applications. Full article
(This article belongs to the Special Issue Biosensing Technologies in Medical Diagnosis)
Show Figures

Figure 1

21 pages, 4019 KiB  
Review
Effect of Temperature on Magnetoimpedance Effect and Magnetic Properties of Fe- and Co-Rich Glass-Coated Microwires
by Paula Corte-Leon, Ivan Skorvanek, František Andrejka, Milos Jakubcin, Juan Maria Blanco, Valentina Zhukova and Arcady Zhukov
Materials 2025, 18(2), 287; https://doi.org/10.3390/ma18020287 - 10 Jan 2025
Cited by 1 | Viewed by 862
Abstract
We provide new experimental studies of the temperature dependence of the giant magnetoimpedance (GMI) effect and hysteresis loops of Fe-rich and Co-rich amorphous microwires with rather different room temperature magnetic properties and GMI effect features. We observed a remarkable modification of hysteresis loops [...] Read more.
We provide new experimental studies of the temperature dependence of the giant magnetoimpedance (GMI) effect and hysteresis loops of Fe-rich and Co-rich amorphous microwires with rather different room temperature magnetic properties and GMI effect features. We observed a remarkable modification of hysteresis loops and magnetic field dependence of the GMI ratio upon heating in both of the studied samples. We observed a noticeable improvement in the GMI ratio and a change in hysteresis loops from rectangular to inclined upon heating in Fe-rich microwire. However, the opposite trend was observed in Co-rich microwire, in which, upon heating, the shape of the hysteresis loop changed from linear to rectangular. Generally, the evolution of the shape of the hysteresis loops during heating correlates with the modification of the dependencies of the GMI ratio ΔZ/Z on the magnetic field. For Co-rich microwire, the double-peak magnetic field dependence changed to single-peak, while for Fe-rich microwire, the opposite tendency was observed. The origin of the observed temperature dependences of the hysteresis loop and the GMI effect is discussed, considering internal stresses’ relaxation during heating, the temperature dependencies of the magnetostriction coefficient, and internal stresses, as well as the Hopkinson effect. Full article
Show Figures

Graphical abstract

16 pages, 2528 KiB  
Article
Effects of Magnetostatic Interactions in FeNi-Based Multilayered Magnetoimpedance Elements
by Grigory Yu. Melnikov, Sergey V. Komogortsev, Andrey V. Svalov, Alexander A. Gorchakovskiy, Irina G. Vazhenina and Galina V. Kurlyandskaya
Sensors 2024, 24(19), 6308; https://doi.org/10.3390/s24196308 - 29 Sep 2024
Viewed by 1287
Abstract
Multilayered [Cu(3 nm)/FeNi(100 nm)]5/Cu(150 nm)/FeNi(10 nm)/Cu(150 nm)/FeNi(10 nm)/Cu(150 nm)/[Cu(3 nm)/FeNi(100 nm)]5 structures were obtained by using the magnetron sputtering technique in the external in-plane magnetic field. From these, multilayer magnetoimpedance elements were fabricated in the shape of elongated stripes using [...] Read more.
Multilayered [Cu(3 nm)/FeNi(100 nm)]5/Cu(150 nm)/FeNi(10 nm)/Cu(150 nm)/FeNi(10 nm)/Cu(150 nm)/[Cu(3 nm)/FeNi(100 nm)]5 structures were obtained by using the magnetron sputtering technique in the external in-plane magnetic field. From these, multilayer magnetoimpedance elements were fabricated in the shape of elongated stripes using the lift-off lithographic process. In order to obtain maximum magnetoimpedance (MI) sensitivity with respect to the external magnetic field, the short side of the rectangular element was oriented along the direction of the technological magnetic field applied during the multilayered structure deposition. MI sensitivity was defined as the change of the total impedance or its real part per unit of the magnetic field. The design of the elements (multilayered structure, shape of the element, etc.) contributed to the dynamic and static magnetic properties. The magnetostatic properties of the MI elements, including analysis of the magnetic domain structure, indicated the crucial importance of magnetostatic interactions between FeNi magnetic layers in the analyzed [Cu(3 nm)/FeNi(100 nm)]5 multilayers. In addition, the uniformity of the magnetic parameters was defined by the advanced technique of the local measurements of the ferromagnetic resonance field. Dynamic methods allowed investigation of the elements at different thicknesses by varying the frequency of the electromagnetic excitation. The maximum sensitivity of 40%/Oe with respect to the applied field in the range of the fields of 3 Oe to 5 Oe is promising for different applications. Full article
(This article belongs to the Special Issue Challenges and Future Trends of Magnetic Sensors)
Show Figures

Figure 1

14 pages, 1327 KiB  
Article
Microfluidic Detection of SPIONs and Co-Ferrite Ferrofluid Using Amorphous Wire Magneto-Impedance Sensor
by Gabriele Barrera, Federica Celegato, Marta Vassallo, Daniele Martella, Marco Coïsson, Elena S. Olivetti, Luca Martino, Hüseyin Sözeri, Alessandra Manzin and Paola Tiberto
Sensors 2024, 24(15), 4902; https://doi.org/10.3390/s24154902 - 28 Jul 2024
Cited by 5 | Viewed by 2133
Abstract
The detection of magnetic nanoparticles in a liquid medium and the quantification of their concentration have the potential to improve the efficiency of several relevant applications in different fields, including medicine, environmental remediation, and mechanical engineering. To this end, sensors based on the [...] Read more.
The detection of magnetic nanoparticles in a liquid medium and the quantification of their concentration have the potential to improve the efficiency of several relevant applications in different fields, including medicine, environmental remediation, and mechanical engineering. To this end, sensors based on the magneto-impedance effect have attracted much attention due to their high sensitivity to the stray magnetic field generated by magnetic nanoparticles, their simple fabrication process, and their relatively low cost. To improve the sensitivity of these sensors, a multidisciplinary approach is required to study a wide range of soft magnetic materials as sensing elements and to customize the magnetic properties of nanoparticles. The combination of magneto-impedance sensors with ad hoc microfluidic systems favors the design of integrated portable devices with high specificity towards magnetic ferrofluids, allowing the use of very small sample volumes and making measurements faster and more reliable. In this work, a magneto-impedance sensor based on an amorphous Fe73.5Nb3Cu1Si13.5B9 wire as the sensing element is integrated into a customized millifluidic chip. The sensor detects the presence of magnetic nanoparticles in the ferrofluid and distinguishes the different stray fields generated by single-domain superparamagnetic iron oxide nanoparticles or magnetically blocked Co-ferrite nanoparticles. Full article
(This article belongs to the Special Issue Challenges and Future Trends of Magnetic Sensors)
Show Figures

Figure 1

14 pages, 3183 KiB  
Article
Theoretical Study of Microwires with an Inhomogeneous Magnetic Structure Using Magnetoimpedance Tomography
by Nikita A. Buznikov and Galina V. Kurlyandskaya
Sensors 2024, 24(11), 3669; https://doi.org/10.3390/s24113669 - 5 Jun 2024
Cited by 3 | Viewed by 1315
Abstract
The recently proposed magnetoimpedance tomography method is based on the analysis of the frequency dependences of the impedance measured at different external magnetic fields. The method allows one to analyze the distribution of magnetic properties over the cross-section of the ferromagnetic conductor. Here, [...] Read more.
The recently proposed magnetoimpedance tomography method is based on the analysis of the frequency dependences of the impedance measured at different external magnetic fields. The method allows one to analyze the distribution of magnetic properties over the cross-section of the ferromagnetic conductor. Here, we describe the example of theoretical study of the magnetoimpedance effect in an amorphous microwire with inhomogeneous magnetic structure. In the framework of the proposed model, it is assumed that the microwire cross-section consists of several regions with different features of the effective anisotropy. The distribution of the electromagnetic fields and the microwire impedance are found by an analytical solution of Maxwell equations in the particular regions. The field and frequency dependences of the microwire impedance are analyzed taking into account the frequency dependence of the permeability values in the considered regions. Although the calculations are given for the case of amorphous microwires, the obtained results can be useful for the development of the magnetoimpedance tomography method adaptation for different types of ferromagnetic conductors. Full article
(This article belongs to the Special Issue Challenges and Future Trends of Magnetic Sensors)
Show Figures

Figure 1

13 pages, 4504 KiB  
Article
Enhanced Magnetoimpedance Effect in Co-Based Micron Composite CoFeNiSiB Ribbon Strips Coated by Carbon and FeCoGa Nanofilms for Sensing Applications
by Zhen Yang, Mengyu Liu, Jingyuan Chen, Xuecheng Sun, Chong Lei, Yuanwei Shen, Zhenbao Wang, Mengjiao Zhu and Ziqin Meng
Sensors 2024, 24(10), 2961; https://doi.org/10.3390/s24102961 - 7 May 2024
Viewed by 3071
Abstract
Quenched Co-based ribbon strips are widely used in the fields of magnetic amplifier, magnetic head material, magnetic shield, electric reactor, inductance core, sensor core, anti-theft system label, and so on. In this study, Co-based composite CoFeNiSiB ribbon strips with a micron width were [...] Read more.
Quenched Co-based ribbon strips are widely used in the fields of magnetic amplifier, magnetic head material, magnetic shield, electric reactor, inductance core, sensor core, anti-theft system label, and so on. In this study, Co-based composite CoFeNiSiB ribbon strips with a micron width were fabricated by micro-electro-mechanical systems (MEMS) technology. The carbon and FeCoGa nanofilms were deposited for surface modification. The effect of carbon and FeCoGa nanofilm coatings on the crystal structure, surface morphology, magnetic properties, and magnetoimpedance (MI) effect of composite ribbon strips were systematically investigated. The results show that the surface roughness and coercivity of the composite ribbon strips are minimum at a thickness of the carbon coating of 60 nm. The maximum value of MI effect is 41% at 2 MHz, which is approximately 2.4 times greater than plain ribbon and 1.6 times greater than FeCoGa-coated composite ribbon strip. The addition of a carbon layer provides a conductive path for high frequency currents, which effectively reduces the characteristic frequency of the composite ribbon strip. The FeCoGa coating is able to close the flux path and reduce the coercivity, which, in turn, increases the transverse permeability and improves the MI effect. The findings indicate that a successful combination of carbon layer and magnetostrictive FeCoGa nanofilm layer can improve the MI effect and magnetic field sensitivity of the ribbon strips, demonstrating the potential of the composite strips for local and micro area field sensing applications. Full article
(This article belongs to the Special Issue Smart Sensors and Integration Technology for MEMS Devices)
Show Figures

Figure 1

23 pages, 5029 KiB  
Review
Magnetic Micro and Nano Sensors for Continuous Health Monitoring
by Tomasz Blachowicz, Ilda Kola, Andrea Ehrmann, Karoline Guenther and Guido Ehrmann
Micro 2024, 4(2), 206-228; https://doi.org/10.3390/micro4020015 - 6 Apr 2024
Cited by 9 | Viewed by 3681
Abstract
Magnetic micro and nano sensors can be used in a broad variety of applications, e.g., for navigation, automotives, smartphones and also for health monitoring. Based on physical effects such as the well-known magnetic induction, the Hall effect, tunnel magnetoresistance and giant magnetoresistance, they [...] Read more.
Magnetic micro and nano sensors can be used in a broad variety of applications, e.g., for navigation, automotives, smartphones and also for health monitoring. Based on physical effects such as the well-known magnetic induction, the Hall effect, tunnel magnetoresistance and giant magnetoresistance, they can be used to measure positions, flow, pressure and other physical properties. In biomedicine and healthcare, these miniaturized sensors can be either integrated into garments and other wearables, be directed through the body by passive capsules or active micro-robots or be implanted, which usually necessitates bio-functionalization and avoiding cell-toxic materials. This review describes the physical effects that can be applied in these sensors and discusses the most recent micro and nano sensors developed for healthcare applications. Full article
(This article belongs to the Section Microscale Physics)
Show Figures

Figure 1

18 pages, 5910 KiB  
Article
Optimization of Giant Magnetoimpedance Effect of Amorphous Microwires by Postprocessing
by Valentina Zhukova, Paula Corte-Leon, Ahmed Talaat, Mihail Ipatov, Alfonso García-Gomez, Alvaro González, Juan Maria Blanco and Arcady Zhukov
Processes 2024, 12(3), 556; https://doi.org/10.3390/pr12030556 - 12 Mar 2024
Cited by 3 | Viewed by 1506
Abstract
Magnetic microwires with amorphous structures can present a unique combination of excellent magnetic softness and giant magnetoimpedance (GMI) effects together with reduced dimensions and good mechanical properties. Such unique properties make them suitable for various technological applications. The high GMI effect, observed in [...] Read more.
Magnetic microwires with amorphous structures can present a unique combination of excellent magnetic softness and giant magnetoimpedance (GMI) effects together with reduced dimensions and good mechanical properties. Such unique properties make them suitable for various technological applications. The high GMI effect, observed in as-prepared Co-rich microwires, can be further optimized by postprocessing. However, unexpected magnetic hardening and a transformation of the linear hysteresis loop into a rectangular loop with a coercivity on the order of 90 A/m were observed in several Co-rich microwires upon conventional annealing. Several routes to improve magnetic softness and GMI effect in Fe- and Co-rich magnetic microwires are provided. We observed that stress annealing could remarkably improve the magnetic softness and GMI ratio of Co-rich microwires. Thus, almost unhysteretic loops with a coercivity of 2 A/m and a magnetic anisotropy field of about 70 A/m are achieved in Co-rich microwires stress annealed at appropriate conditions. The observed change in hysteresis loops and the GMI effect is explained by stress-annealing-induced anisotropy, which is affected by the stresses applied during annealing and by the annealing temperature. While as-prepared Fe-rich amorphous microwires present a low GMI effect, appropriate postprocessing (annealing and stress annealing) allows for a remarkable GMI ratio improvement (an order of magnitude). The evaluated dependence of the maximum GMI ratio on frequency allows the identification of the optimal frequency band for the studied samples. The origin of stress-annealing-induced anisotropy and related changes in hysteresis loops and the GMI effect are discussed in terms of the relaxation of internal stresses, “back-stresses”, as well as structural anisotropy. Full article
Show Figures

Figure 1

7 pages, 4310 KiB  
Communication
Far-Field Spatial Response of Off-Diagonal GMI Wire Magnetometers. Application to Magnetic Field Sources Sensing
by Julien Gasnier and Christophe Dolabdjian
Magnetism 2024, 4(1), 47-53; https://doi.org/10.3390/magnetism4010004 - 21 Feb 2024
Cited by 2 | Viewed by 1421
Abstract
Studying the spatial response of a single-axis magnetometer could be the key parameter to optimize the ultimate performances of magnetic heads of detection. Indeed, the problem of non-orthogonality, misalignment, and 3D spatial response could be improved based on the knowledge of the 3D [...] Read more.
Studying the spatial response of a single-axis magnetometer could be the key parameter to optimize the ultimate performances of magnetic heads of detection. Indeed, the problem of non-orthogonality, misalignment, and 3D spatial response could be improved based on the knowledge of the 3D sensor spatial response. In that way, we have investigated the latter for our giant magneto-impedance (GMI) magnetometer, as a far-field pattern, by using a three-axis Helmholtz coil system. Firstly, we calibrate our device and secondly, we apply a specific 3D magnetic field to obtain this pattern. The latter helps to observe the directional or angular dependence of the sensor sensitivity versus the applied magnetic field, as we exemplified. The results confirm the excellent directivity of our off-diagonal GMI magnetometer. The evaluation of the associated error compared to an ideal vector magnetometer is also given and discussed. Full article
Show Figures

Figure 1

14 pages, 6061 KiB  
Article
Non-Contact Current Sensing System Based on the Giant Magnetoimpedance Effect of CoFeNiSiB Amorphous Ribbon Meanders
by Zhen Yang, Zhenbao Wang, Mengyu Liu and Xuecheng Sun
Micromachines 2024, 15(1), 161; https://doi.org/10.3390/mi15010161 - 21 Jan 2024
Cited by 2 | Viewed by 1815
Abstract
A sensitive non-contact sensing system based on the CoFeNiSiB amorphous ribbon giant magnetoimpedance (GMI) effect is proposed for current testing. The sensing system consists of a GMI probe, a sinusoidal current generator, a voltage follower, a preamplifier, a low-pass filter, and a peak [...] Read more.
A sensitive non-contact sensing system based on the CoFeNiSiB amorphous ribbon giant magnetoimpedance (GMI) effect is proposed for current testing. The sensing system consists of a GMI probe, a sinusoidal current generator, a voltage follower, a preamplifier, a low-pass filter, and a peak detector. Four different GMI probes derived from amorphous ribbon meanders are designed and fabricated through MEMS processes. GMI probes were driven by a 10 MHz, 5 mA AC current. A permanent magnet was used to provide a bias magnetic field for the probe. The effect of the bias magnetic field on the output DC voltage was investigated. This non-contact current sensing system exhibits good sensitivity and linearity at a bias magnetic field Hbias = 15 Oe. The sensitivity can reach up to 24.2 mV/A in the ±1.5 A range. Full article
(This article belongs to the Special Issue Magnetic Sensor Chips and Applications)
Show Figures

Figure 1

19 pages, 4684 KiB  
Article
Optimization of Deep Learning Parameters for Magneto-Impedance Sensor in Metal Detection and Classification
by Hoijun Kim, Hobyung Chae, Soonchul Kwon and Seunghyun Lee
Sensors 2023, 23(22), 9259; https://doi.org/10.3390/s23229259 - 18 Nov 2023
Cited by 2 | Viewed by 1762
Abstract
Deep learning technology is generally applied to analyze periodic data, such as the data of electromyography (EMG) and acoustic signals. Conversely, its accuracy is compromised when applied to the anomalous and irregular nature of the data obtained using a magneto-impedance (MI) sensor. Thus, [...] Read more.
Deep learning technology is generally applied to analyze periodic data, such as the data of electromyography (EMG) and acoustic signals. Conversely, its accuracy is compromised when applied to the anomalous and irregular nature of the data obtained using a magneto-impedance (MI) sensor. Thus, we propose and analyze a deep learning model based on recurrent neural networks (RNNs) optimized for the MI sensor, such that it can detect and classify data that are relatively irregular and diverse compared to the EMG and acoustic signals. Our proposed method combines the long short-term memory (LSTM) and gated recurrent unit (GRU) models to detect and classify metal objects from signals acquired by an MI sensor. First, we configured various layers used in RNN with a basic model structure and tested the performance of each layer type. In addition, we succeeded in increasing the accuracy by processing the sequence length of the input data and performing additional work in the prediction process. An MI sensor acquires data in a non-contact mode; therefore, the proposed deep learning approach can be applied to drone control, electronic maps, geomagnetic measurement, autonomous driving, and foreign object detection. Full article
Show Figures

Figure 1

13 pages, 4708 KiB  
Article
Magnetoimpedance Effect in Cobalt-Based Amorphous Ribbons with an Inhomogeneous Magnetic Structure
by Dmitry A. Bukreev, Michael S. Derevyanko and Alexander V. Semirov
Sensors 2023, 23(19), 8283; https://doi.org/10.3390/s23198283 - 7 Oct 2023
Cited by 5 | Viewed by 1592
Abstract
The results of a computer simulation and experimental study of the magnetoimpedance effect (MI) in amorphous Co68.5Fe4.0Si15.0B12.5 and Co68.6Fe3.9Mo3.0Si12.0B12.5 ribbons in the ac frequency range from 0.01 [...] Read more.
The results of a computer simulation and experimental study of the magnetoimpedance effect (MI) in amorphous Co68.5Fe4.0Si15.0B12.5 and Co68.6Fe3.9Mo3.0Si12.0B12.5 ribbons in the ac frequency range from 0.01 to 100 MHz are presented. It was found that the maximum MI value exceeds 200%, which may be of interest in the development of magnetic field sensors. It is also shown that practically significant characteristics of the MI response strongly depend on the ac frequency, which is due to the inhomogeneous distribution of magnetic properties over the ribbon cross section. This distribution was studied using magnetoimpedance tomography based on the analysis of the experimental dependences of the reduced impedance on the ac frequency. Full article
(This article belongs to the Special Issue Challenges and Future Trends of Magnetic Sensors)
Show Figures

Figure 1

14 pages, 2852 KiB  
Article
Optimization of Magnetoimpedance Effect and Magnetic Properties of Fe-Rich Glass-Coated Microwires by Annealing
by Alvaro González, Alfonso García-Gomez, Valentina Zhukova, Paula Corte-Leon, Mihail Ipatov, Juan Maria Blanco, Julian Gonzalez and Arcady Zhukov
Sensors 2023, 23(17), 7481; https://doi.org/10.3390/s23177481 - 28 Aug 2023
Cited by 3 | Viewed by 1348
Abstract
As-prepared Fe-rich microwires with perfectly rectangular hysteresis loops present magnetization reversal through fast domain wall propagation, while the giant magnetoimpedance (GMI) effect in Fe-rich microwires is rather low. However, the lower cost of Fe-rich microwires makes them attractive for magnetic sensors applications. We [...] Read more.
As-prepared Fe-rich microwires with perfectly rectangular hysteresis loops present magnetization reversal through fast domain wall propagation, while the giant magnetoimpedance (GMI) effect in Fe-rich microwires is rather low. However, the lower cost of Fe-rich microwires makes them attractive for magnetic sensors applications. We studied the effect of conventional (furnace) annealing and Joule heating on magnetic-propertied domain wall (DW) dynamics and the GMI effect in two Fe microwires with different geometries. We observed that magnetic softness, GMI effect and domain wall (DW) dynamics can be substantially improved by appropriate annealing. Observed experimental results are discussed considering the counterbalance between the internal stresses relaxation and induced magnetic anisotropy associated with the presence of an Oersted magnetic field during Joule heating. Full article
(This article belongs to the Special Issue Recent Advances in Magnetic GSR Sensor)
Show Figures

Graphical abstract

Back to TopTop