Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (31)

Search Parameters:
Keywords = magnetically shielded room

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1682 KiB  
Article
Recording of Cardiac Excitation Using a Novel Magnetocardiography System with Magnetoresistive Sensors Outside a Magnetic Shielded Room
by Leo Yaga, Miki Amemiya, Yu Natsume, Tomohiko Shibuya and Tetsuo Sasano
Sensors 2025, 25(15), 4642; https://doi.org/10.3390/s25154642 - 26 Jul 2025
Viewed by 373
Abstract
Magnetocardiography (MCG) provides a non-invasive, contactless technique for evaluating the magnetic fields generated by cardiac electrical activity, offering unique spatial insights into cardiac electrophysiology. However, conventional MCG systems depend on superconducting quantum interference devices that require cryogenic cooling and magnetic shielded environments, posing [...] Read more.
Magnetocardiography (MCG) provides a non-invasive, contactless technique for evaluating the magnetic fields generated by cardiac electrical activity, offering unique spatial insights into cardiac electrophysiology. However, conventional MCG systems depend on superconducting quantum interference devices that require cryogenic cooling and magnetic shielded environments, posing considerable impediments to widespread clinical adoption. In this study, we present a novel MCG system utilizing a high-sensitivity, wide-dynamic-range magnetoresistive sensor array operating at room temperature. To mitigate environmental interference, identical sensors were deployed as reference channels, enabling adaptive noise cancellation (ANC) without the need for traditional magnetic shielding. MCG recordings were obtained from 40 healthy participants, with signals processed using ANC, R-peak-synchronized averaging, and Bayesian spatial signal separation. This approach enabled the reliable detection of key cardiac components, including P, QRS, and T waves, from the unshielded MCG recordings. Our findings underscore the feasibility of a cost-effective, portable MCG system suitable for clinical settings, presenting new opportunities for noninvasive cardiac diagnostics and monitoring. Full article
(This article belongs to the Special Issue Novel Optical Sensors for Biomedical Applications—2nd Edition)
Show Figures

Figure 1

17 pages, 5664 KiB  
Article
Phantom-Based Approach for Comparing Conventional and Optically Pumped Magnetometer Magnetoencephalography Systems
by Daisuke Oyama and Hadi Zaatiti
Sensors 2025, 25(7), 2063; https://doi.org/10.3390/s25072063 - 26 Mar 2025
Viewed by 1094
Abstract
Magnetoencephalography (MEG) is a vital tool for understanding neural dynamics, offering a noninvasive technique for measuring subtle magnetic field variations around the scalp generated by synchronized neuronal activity. Two prominent sensor technologies exist: the well-established superconducting quantum interference device (SQUID) and the more [...] Read more.
Magnetoencephalography (MEG) is a vital tool for understanding neural dynamics, offering a noninvasive technique for measuring subtle magnetic field variations around the scalp generated by synchronized neuronal activity. Two prominent sensor technologies exist: the well-established superconducting quantum interference device (SQUID) and the more recent optically pumped magnetometer (OPM). Although many studies have compared these technologies using human-subject data in neuroscience and clinical studies, a direct hardware-level comparison using dry phantoms remains unexplored. This study presents a framework for comparing SQUID- with OPM-MEG systems in a controlled environment using a dry phantom that emulates neuronal activity, allowing strict control over physiological artifacts. Data were obtained from SQUID and OPM systems within the same shielded room, ensuring consistent environmental noise control and shielding conditions. Positioning the OPM sensors closer to the signal source resulted in a signal amplitude approximately 3–4 times larger than that detected by the SQUID-MEG system. However, the source localization error of the OPM-MEG system was approximately three times larger than that obtained by the SQUID-MEG system. The cause of the large source localization error was discussed in terms of sensor-to-source distance, sensor count, signal–noise ratio, and the spatial coverage provided by the sensor array of the source signal. Full article
(This article belongs to the Special Issue Advances in Magnetic Sensors and Their Applications)
Show Figures

Figure 1

18 pages, 4085 KiB  
Article
Error Modeling of Fiber Optic Gyroscope Universal Time Measurement
by Zishuai Wang, Yingmin Yi, Chunyi Su, Jinsheng Zhang, Yiwei Yuan and Yuchen Zhao
Appl. Sci. 2025, 15(1), 24; https://doi.org/10.3390/app15010024 - 24 Dec 2024
Viewed by 1270
Abstract
Since the fiber optic gyroscope (FOG) is rigidly strapped down to the earth’s crust, there are various errors that affect the universal time (UT1) measurements. In this paper, the errors caused by various physical factors and mechanisms are analyzed in detail, with precession [...] Read more.
Since the fiber optic gyroscope (FOG) is rigidly strapped down to the earth’s crust, there are various errors that affect the universal time (UT1) measurements. In this paper, the errors caused by various physical factors and mechanisms are analyzed in detail, with precession and nutation errors being taken into account, and modeling of the observation equations based on precession and nutation error correction is proposed. The mapping relationship with UT1 is established based on this observation equation; after the corresponding error correction and VLBI calibration, the high-accuracy solution of UT1 is finally completed. Through 14-day measurement experiments under a room temperature environment without any vibration isolation and magnetic shielding devices, the error variation of UT1 solution compared with the earth orientation parameter (EOP) 14 C04 data is calculated at less than 3.57 ms, with UT1 solution accuracy improved by 56% compared with the traditional method. These results indicate that this work facilitates the study of giant FOG error modeling and correction, advancing our understanding of errors in giant FOG measurements and improving the accuracy of UT1 solution. Full article
Show Figures

Figure 1

18 pages, 5721 KiB  
Article
A Novel Simulation Model of Shielding Performance Based on the Anisotropic Magnetic Property of Magnetic Shields
by Yuzheng Ma, Minxia Shi, Leran Zhang, Teng Li, Xuechen Ling, Shuai Yuan, Hanxing Wang and Yi Gao
Materials 2024, 17(23), 5906; https://doi.org/10.3390/ma17235906 - 2 Dec 2024
Viewed by 972
Abstract
To achieve a near-zero magnetic field environment, the use of permalloy sheets with high-performance magnetic properties is essential. However, mainstream welding processes for magnetically shielded rooms (MSRs), such as argon arc welding and laser welding, can degrade the magnetic properties of the material. [...] Read more.
To achieve a near-zero magnetic field environment, the use of permalloy sheets with high-performance magnetic properties is essential. However, mainstream welding processes for magnetically shielded rooms (MSRs), such as argon arc welding and laser welding, can degrade the magnetic properties of the material. Additionally, neglecting the anisotropy of permalloy sheets can introduce unpredictable errors in the evaluation of MSR performance. To address this issue, this paper proposes a modified model for calculating the shielding factor (SF) of MSRs that incorporates the anisotropic magnetic characteristics of permalloy sheets. These characteristics were measured using a two-dimensional single sheet tester (2D-SST). A high-precision measurement system was developed, comprising a 2D-SST (to generate two-dimensional magnetic fields and sense the induced B and H signals) and a control system (to apply in-phase 2D excitation signals and amplify, filter, and record the B and H data). Hysteresis loops were tested at low frequencies (0.1–9 Hz) and under different magnetization states (0.1–0.6 T) in two orientations—parallel and perpendicular to the annealing magnetic field—to verify anisotropy under varying conditions. Initial permeability, near-saturation magnetization, and basic magnetization curves (BM curves) were measured across different directions to provide parameters for simulations and theoretical calculations. Based on these measurements and finite element simulations, a mathematical model was developed to adjust the empirical coefficient λ used in theoretical SF calculations. The results revealed that the ratio of empirical coefficients in different directions is inversely proportional to the ratio of magnetic permeability in the corresponding directions. A verification group was established to compare the original model and the modified model. The mean squared error (MSE) between the original model and the finite element simulation was 49.97, while the MSE between the improved model and the finite element simulation was reduced to 0.13. This indicates a substantial improvement in the computational accuracy of the modified model. Full article
Show Figures

Figure 1

12 pages, 2324 KiB  
Article
Fast Degaussing Procedure for a Magnetically Shielded Room
by Peter A. Koss, Jens Voigt, Ronja Rasser and Allard Schnabel
Materials 2024, 17(23), 5877; https://doi.org/10.3390/ma17235877 - 30 Nov 2024
Viewed by 3956
Abstract
A demagnetization study was conducted on a magnetically shielded room (MSR) at Fraunhofer IPM, designed for applications such as magnetoencephalography (MEG) and material testing. With a composite of two layers of mu-metal and an intermediate aluminum layer, the MSR must provide a residual [...] Read more.
A demagnetization study was conducted on a magnetically shielded room (MSR) at Fraunhofer IPM, designed for applications such as magnetoencephalography (MEG) and material testing. With a composite of two layers of mu-metal and an intermediate aluminum layer, the MSR must provide a residual field under 5 nT for the successful operation of optically pumped magnetometers (OPMs). The degaussing process, employing six individual coils, reached the necessary residual magnetic field within the central 1 m3 volume in under four minutes. Due to the low-frequency shielding factor of 100, the obtained average residual field is shown to be limited by environmental residual field changes after degaussing and not by the degaussing procedure. Full article
Show Figures

Figure 1

12 pages, 5542 KiB  
Article
Superconducting Self-Shielded and Zero-Boil-Off Magnetoencephalogram Systems: A Dry Phantom Evaluation
by Keita Tanaka, Akihiko Tsukahara, Hiroki Miyanaga, Shoji Tsunematsu, Takanori Kato, Yuji Matsubara and Hiromu Sakai
Sensors 2024, 24(18), 6044; https://doi.org/10.3390/s24186044 - 18 Sep 2024
Cited by 2 | Viewed by 1385
Abstract
Magnetoencephalography (MEG) systems are advanced neuroimaging tools used to measure the magnetic fields produced by neuronal activity in the human brain. However, they require significant amounts of liquid helium to keep the superconducting quantum interference device (SQUID) sensors in a stable superconducting state. [...] Read more.
Magnetoencephalography (MEG) systems are advanced neuroimaging tools used to measure the magnetic fields produced by neuronal activity in the human brain. However, they require significant amounts of liquid helium to keep the superconducting quantum interference device (SQUID) sensors in a stable superconducting state. Additionally, MEG systems must be installed in a magnetically shielded room to minimize interference from external magnetic fields. We have developed an advanced MEG system that incorporates a superconducting magnetic shield and a zero-boil-off system. This system overcomes the typical limitations of traditional MEG systems, such as the frequent need for liquid helium refills and the spatial constraints imposed by magnetically shielded rooms. To validate the system, we conducted an evaluation using signal source estimation. This involved a phantom with 50 current sources of known location and magnitude under active zero-boil-off conditions. Our evaluations focused on the precision of the magnetic field distribution and the quantification of estimation errors. We achieved a consistent magnetic field distribution that matched the source current, maintaining an estimation error margin within 3.5 mm, regardless of the frequency of the signal source current. These findings affirm the practicality and efficacy of the system. Full article
(This article belongs to the Collection Biomedical Imaging & Instrumentation)
Show Figures

Figure 1

17 pages, 3167 KiB  
Article
Dynamic Field Nulling Method for Magnetically Shielded Room Based on Padé Approximation and Generalized Active Disturbance Rejection Control
by Jiye Zhao, Xinxiu Zhou and Jinji Sun
Electronics 2024, 13(16), 3163; https://doi.org/10.3390/electronics13163163 - 10 Aug 2024
Cited by 1 | Viewed by 1161
Abstract
Magnetically shielded rooms (MSRs) provide a near-zero field environment for magnetoencephalography (MEG) research. Due to the high cost of high-permeability materials and the weak shielding capability against low-frequency magnetic disturbance, it is necessary to further design active compensation coils combined with a closed-loop [...] Read more.
Magnetically shielded rooms (MSRs) provide a near-zero field environment for magnetoencephalography (MEG) research. Due to the high cost of high-permeability materials and the weak shielding capability against low-frequency magnetic disturbance, it is necessary to further design active compensation coils combined with a closed-loop control system to achieve dynamic nulling of environmental magnetic disturbance. To enhance the performance of the dynamic nulling system, this paper proposes a novel controller design method based on Padé approximation and generalized active disturbance rejection control (GADRC). First, a precise closed-loop model of the dynamic nulling system is established. On this basis, the delay element of the optically pumped magnetometer (OPM) is approximated using the Padé approximation method, and the controller is designed within the GADRC framework. The system’s stability and disturbance suppression capability are analyzed using frequency-domain methods. To validate the effectiveness of the proposed method, simulations and experiments are conducted, achieving a shielding factor greater than 40 dB at 0.1 Hz. After filtering out power frequency interference, the peak-to-peak field fluctuation is reduced from 320.3 pT to 1.8 pT. Full article
(This article belongs to the Section Systems & Control Engineering)
Show Figures

Figure 1

17 pages, 13628 KiB  
Article
State Space Representation of Jiles–Atherton Hysteresis Model and Application for Closed-Loop Control
by Jiye Zhao, Jiqiang Zhou, Lu Zhang and Jinji Sun
Materials 2024, 17(15), 3695; https://doi.org/10.3390/ma17153695 - 26 Jul 2024
Cited by 1 | Viewed by 1870
Abstract
Hysteresis is a fundamental characteristic of magnetic materials. The Jiles–Atherton (J-A) hysteresis model, which is known for its few parameters and clear physical interpretations, has been widely employed in simulating hysteresis characteristics. To better analyze and compute hysteresis behavior, this study established a [...] Read more.
Hysteresis is a fundamental characteristic of magnetic materials. The Jiles–Atherton (J-A) hysteresis model, which is known for its few parameters and clear physical interpretations, has been widely employed in simulating hysteresis characteristics. To better analyze and compute hysteresis behavior, this study established a state space representation based on the primitive J-A model. First, based on the five fundamental equations of the J-A model, a state space representation was established through variable substitution and simplification. Furthermore, to address the singularity problem at zero crossings, local linearization was obtained through an approximation method based on the actual physical properties. Based on these, the state space model was implemented using the S-function. To validate the effectiveness of the state space model, the hysteresis loops were obtained through COMSOL finite element software and tested on a permalloy toroidal sample. The particle swarm optimization (PSO) method was used for parameter identification of the state space model, and the identification results show excellent agreement with the simulation and test results. Finally, a closed-loop control system was constructed based on the state space model, and trajectory tracking experiments were conducted. The results verify the feasibility of the state space representation of the J-A model, which holds significant practical implications in the development of magnetically shielded rooms, the suppression of magnetic interference in cold atom clocks, and various other applications. Full article
Show Figures

Figure 1

30 pages, 3770 KiB  
Review
Recent Advances in Polymer Nanocomposites: Unveiling the Frontier of Shape Memory and Self-Healing Properties—A Comprehensive Review
by Huma Jamil, Muhammad Faizan, Muhammad Adeel, Teofil Jesionowski, Grzegorz Boczkaj and Aldona Balčiūnaitė
Molecules 2024, 29(6), 1267; https://doi.org/10.3390/molecules29061267 - 13 Mar 2024
Cited by 36 | Viewed by 8659
Abstract
Shape memory and self-healing polymer nanocomposites have attracted considerable attention due to their modifiable properties and promising applications. The incorporation of nanomaterials (polypyrrole, carboxyl methyl cellulose, carbon nanotubes, titania nanotubes, graphene, graphene oxide, mesoporous silica) into these polymers has significantly enhanced their performance, [...] Read more.
Shape memory and self-healing polymer nanocomposites have attracted considerable attention due to their modifiable properties and promising applications. The incorporation of nanomaterials (polypyrrole, carboxyl methyl cellulose, carbon nanotubes, titania nanotubes, graphene, graphene oxide, mesoporous silica) into these polymers has significantly enhanced their performance, opening up new avenues for diverse applications. The self-healing capability in polymer nanocomposites depends on several factors, including heat, quadruple hydrogen bonding, π–π stacking, Diels–Alder reactions, and metal–ligand coordination, which collectively govern the interactions within the composite materials. Among possible interactions, only quadruple hydrogen bonding between composite constituents has been shown to be effective in facilitating self-healing at approximately room temperature. Conversely, thermo-responsive self-healing and shape memory polymer nanocomposites require elevated temperatures to initiate the healing and recovery processes. Thermo-responsive (TRSMPs), light-actuated, magnetically actuated, and Electrically actuated Shape Memory Polymer Nanocomposite are discussed. This paper provides a comprehensive overview of the different types of interactions involved in SMP and SHP nanocomposites and examines their behavior at both room temperature and elevated temperature conditions, along with their biomedical applications. Among many applications of SMPs, special attention has been given to biomedical (drug delivery, orthodontics, tissue engineering, orthopedics, endovascular surgery), aerospace (hinges, space deployable structures, morphing aircrafts), textile (breathable fabrics, reinforced fabrics, self-healing electromagnetic interference shielding fabrics), sensor, electrical (triboelectric nanogenerators, information energy storage devices), electronic, paint and self-healing coating, and construction material (polymer cement composites) applications. Full article
Show Figures

Graphical abstract

15 pages, 6861 KiB  
Article
Demagnetization Parameters Evaluation of Magnetic Shields Based on Anhysteretic Magnetization Curve
by Jianzhi Yang, Minxia Shi, Xu Zhang, Yuzheng Ma, Yijin Liu, Shuai Yuan and Bangcheng Han
Materials 2023, 16(15), 5238; https://doi.org/10.3390/ma16155238 - 26 Jul 2023
Cited by 10 | Viewed by 2497
Abstract
To achieve the nearly zero-field environment, demagnetization is an indispensable step for magnetic shields composed of high-permeability material, which adjusts the magnetization of the material to establish magnetic equilibrium with the environmental field and improve the shielding performance. The ideal demagnetization can make [...] Read more.
To achieve the nearly zero-field environment, demagnetization is an indispensable step for magnetic shields composed of high-permeability material, which adjusts the magnetization of the material to establish magnetic equilibrium with the environmental field and improve the shielding performance. The ideal demagnetization can make the high-permeability material on the anhysteretic magnetization curve to have a higher permeability than on the initial magnetization curve. However, inappropriate parameters of degaussing field cause the magnetization state to deviate from the anhysteretic magnetization curve. Therefore, this article proposes a new assessment criterion to analyze and evaluate the parameters of degaussing field based on the difference between the final magnetization state after demagnetization and theoretical anhysteretic state of the shielding material. By this way, the magnetization states after demagnetizations with different initial amplitude, frequency, period number and envelope attenuation function are calculated based on the dynamic Jiles–Atherton (J–A) model, and their magnetization curves under these demagnetization conditions are also measured and compared, respectively. The lower frequency, appropriate amplitude, sufficient period number and logarithmic envelope attenuation function can make the magnetization state after demagnetization closer to the ideal value, which is also consistent with the static magnetic-shielding performance of a booth-type magnetically shielded room (MSR) under different demagnetization condition. Full article
Show Figures

Figure 1

6 pages, 898 KiB  
Communication
A Small Scale Optically Pumped Fetal Magnetocardiography System
by David Wurm, Peter Ewert, Peter Fierlinger, Ronald T. Wakai, Verena Wallner, Lena Wunderl and Annette Wacker-Gußmann
J. Clin. Med. 2023, 12(10), 3380; https://doi.org/10.3390/jcm12103380 - 10 May 2023
Cited by 4 | Viewed by 2633
Abstract
Introduction: Fetal magnetocardiography (fMCG) is considered the best technique for diagnosis of fetal arrhythmia. It is superior to more widely used methods such as fetal, fetal electrocardiography, and cardiotocography for evaluation of fetal rhythm. The combination of fMCG and fetal echocardiography can provide [...] Read more.
Introduction: Fetal magnetocardiography (fMCG) is considered the best technique for diagnosis of fetal arrhythmia. It is superior to more widely used methods such as fetal, fetal electrocardiography, and cardiotocography for evaluation of fetal rhythm. The combination of fMCG and fetal echocardiography can provide a more comprehensive evaluation of fetal cardiac rhythm and function than is currently possible. In this study, we demonstrate a practical fMCG system based on optically pumped magnetometers (OPMs). Methods: Seven pregnant women with uncomplicated pregnancies underwent fMCG at 26–36 weeks’ gestation. The recordings were made using an OPM-based fMCG system and a person-sized magnetic shield. The shield is much smaller than a shielded room and provides easy access with a large opening that allows the pregnant woman to lie comfortably in a prone position. Results: The data show no significant loss of quality compared to data acquired in a shielded room. Measurements of standard cardiac time intervals yielded the following results: PR = 104 ± 6 ms, QRS = 52.6 ± 1.5 ms, and QTc = 387 ± 19 ms. These results are compatible with those from prior studies performed using superconducting quantum interference device (SQUID) fMCG systems. Conclusions: To our knowledge, this is the first European fMCG device with OPM technology commissioned for basic research in a pediatric cardiology unit. We demonstrated a patient-friendly, comfortable, and open fMCG system. The data yielded consistent cardiac intervals, measured from time-averaged waveforms, compatible with published SQUID and OPM data. This is an important step toward making the method widely accessible. Full article
(This article belongs to the Section Cardiovascular Medicine)
Show Figures

Figure 1

12 pages, 3513 KiB  
Article
Measurement and Analysis of Magnetic Properties of Permalloy for Magnetic Shielding Devices under Different Temperature Environments
by Jinji Sun, Jianyi Ren, Jin Li and Yuejing Huang
Materials 2023, 16(8), 3253; https://doi.org/10.3390/ma16083253 - 20 Apr 2023
Cited by 10 | Viewed by 4617
Abstract
The relative permeability, coercivity, and remanence of permalloy are closely related to the performance of magnetic shielding devices. In this paper, the relationship between the magnetic properties of permalloy and the working temperature of magnetic shielding devices is measured. Firstly, the measurement method [...] Read more.
The relative permeability, coercivity, and remanence of permalloy are closely related to the performance of magnetic shielding devices. In this paper, the relationship between the magnetic properties of permalloy and the working temperature of magnetic shielding devices is measured. Firstly, the measurement method of permalloy properties based on the simulated impact method is analyzed. What is more, a magnetic property test system consisting of a soft magnetic material tester and a high–low temperature chamber for permalloy ring samples at different temperatures was established to measure DC and AC (0.01 Hz to 1 kHz) magnetic properties at different temperatures (−60 °C to 140 °C). Finally, the results show that compared with room temperature (25 °C), the initial permeability (μi) decreases by 69.64% at −60 °C and increases by 38.23% at 140 °C, and the coercivity (hc) decreases by 34.81% at −60 °C and increases by 8.93% at 140 °C, which are the key parameters in the magnetic shielding device. It can be concluded that the relative permeability and remanence of permalloy are positively correlated with temperature, while the saturation magnetic flux density and coercivity are negatively correlated with temperature. This paper is of great significance to the magnetic analysis and design of magnetic shielding devices. Full article
Show Figures

Figure 1

15 pages, 9015 KiB  
Article
Measurement System for Short-Pulsed Magnetic Fields
by Voitech Stankevič, Skirmantas Keršulis, Justas Dilys, Vytautas Bleizgys, Mindaugas Viliūnas, Vilius Vertelis, Andrius Maneikis, Vakaris Rudokas, Valentina Plaušinaitienė and Nerija Žurauskienė
Sensors 2023, 23(3), 1435; https://doi.org/10.3390/s23031435 - 28 Jan 2023
Cited by 8 | Viewed by 3352
Abstract
A measurement system based on the colossal magnetoresistance CMR-B-scalar sensor was developed for the measurement of short-duration high-amplitude magnetic fields. The system consists of a magnetic field sensor made from thin nanostructured manganite film with minimized memory effect, and a magnetic field recording [...] Read more.
A measurement system based on the colossal magnetoresistance CMR-B-scalar sensor was developed for the measurement of short-duration high-amplitude magnetic fields. The system consists of a magnetic field sensor made from thin nanostructured manganite film with minimized memory effect, and a magnetic field recording module. The memory effect of the La1−xSrx(Mn1−yCoy)zO3 manganite films doped with different amounts of Co and Mn was investigated by measuring the magnetoresistance (MR) and resistance relaxation in pulsed magnetic fields up to 20 T in the temperature range of 80–365 K. It was found that for low-temperature applications, films doped with Co (LSMCO) are preferable due to the minimized magnetic memory effect at these temperatures, compared with LSMO films without Co. For applications at temperatures higher than room temperature, nanostructured manganite LSMO films with increased Mn content above the stoichiometric level have to be used. These films do not exhibit magnetic memory effects and have higher MR values. To avoid parasitic signal due to electromotive forces appearing in the transmission line of the sensor during measurement of short-pulsed magnetic fields, a bipolar-pulsed voltage supply for the sensor was used. For signal recording, a measurement module consisting of a pulsed voltage generator with a frequency up to 12.5 MHz, a 16-bit ADC with a sampling rate of 25 MHz, and a microprocessor was proposed. The circuit of the measurement module was shielded against low- and high-frequency electromagnetic noise, and the recorded signal was transmitted to a personal computer using a fiber optic link. The system was tested using magnetic field generators, generating magnetic fields with pulse durations ranging from 3 to 20 μs. The developed magnetic field measurement system can be used for the measurement of high-pulsed magnetic fields with pulse durations in the order of microseconds in different fields of science and industry. Full article
Show Figures

Figure 1

18 pages, 10051 KiB  
Article
Development of Magnetocardiograph without Magnetically Shielded Room Using High-Detectivity TMR Sensors
by Koshi Kurashima, Makoto Kataoka, Takafumi Nakano, Kosuke Fujiwara, Seiichi Kato, Takenobu Nakamura, Masaki Yuzawa, Masanori Masuda, Kakeru Ichimura, Shigeki Okatake, Yoshitaka Moriyasu, Kazuhiro Sugiyama, Mikihiko Oogane, Yasuo Ando, Seiji Kumagai, Hitoshi Matsuzaki and Hidenori Mochizuki
Sensors 2023, 23(2), 646; https://doi.org/10.3390/s23020646 - 6 Jan 2023
Cited by 30 | Viewed by 6551
Abstract
A magnetocardiograph that enables the clear observation of heart magnetic field mappings without magnetically shielded rooms at room temperatures has been successfully manufactured. Compared to widespread electrocardiographs, magnetocardiographs commonly have a higher spatial resolution, which is expected to lead to early diagnoses of [...] Read more.
A magnetocardiograph that enables the clear observation of heart magnetic field mappings without magnetically shielded rooms at room temperatures has been successfully manufactured. Compared to widespread electrocardiographs, magnetocardiographs commonly have a higher spatial resolution, which is expected to lead to early diagnoses of ischemic heart disease and high diagnostic accuracy of ventricular arrhythmia, which involves the risk of sudden death. However, as the conventional superconducting quantum interference device (SQUID) magnetocardiographs require large magnetically shielded rooms and huge running costs to cool the SQUID sensors, magnetocardiography is still unfamiliar technology. Here, in order to achieve the heart field detectivity of 1.0 pT without magnetically shielded rooms and enough magnetocardiography accuracy, we aimed to improve the detectivity of tunneling magnetoresistance (TMR) sensors and to decrease the environmental and sensor noises with a mathematical algorithm. The magnetic detectivity of the TMR sensors was confirmed to be 14.1 pTrms on average in the frequency band between 0.2 and 100 Hz in uncooled states, thanks to the original multilayer structure and the innovative pattern of free layers. By constructing a sensor array using 288 TMR sensors and applying the mathematical magnetic shield technology of signal space separation (SSS), we confirmed that SSS reduces the environmental magnetic noise by −73 dB, which overtakes the general triple magnetically shielded rooms. Moreover, applying digital processing that combined the signal average of heart magnetic fields for one minute and the projection operation, we succeeded in reducing the sensor noise by about −23 dB. The heart magnetic field resolution measured on a subject in a laboratory in an office building was 0.99 pTrms and obtained magnetocardiograms and current arrow maps as clear as the SQUID magnetocardiograph does in the QRS and ST segments. Upon utilizing its superior spatial resolution, this magnetocardiograph has the potential to be an important tool for the early diagnosis of ischemic heart disease and the risk management of sudden death triggered by ventricular arrhythmia. Full article
(This article belongs to the Special Issue Advanced Imaging and Sensing Technologies of Cardiovascular Disease)
Show Figures

Figure 1

15 pages, 6739 KiB  
Article
Research on the Influence of Power-Supply Mode and Copper-Shielding Layer on the Loss of Cryogenic Permanent Magnet Motor for LNG Pump
by Shuqi Liu, Baojun Ge, Dajun Tao, Yue Wang, Peng Hou and Yong Wang
Energies 2022, 15(13), 4822; https://doi.org/10.3390/en15134822 - 1 Jul 2022
Cited by 3 | Viewed by 1789
Abstract
In order to study the method for reducing the losses in cryogenic permanent magnet motors for LNG pumps, the design of a submersible cryogenic permanent magnet brushless DC motor is presented in this paper. First, the materials used in the motor were tested [...] Read more.
In order to study the method for reducing the losses in cryogenic permanent magnet motors for LNG pumps, the design of a submersible cryogenic permanent magnet brushless DC motor is presented in this paper. First, the materials used in the motor were tested at room temperature and at a low temperature, and the BH curve and BP curve of the silicon-steel sheet were obtained. Next, DC power supply and PWM power supply were used to analyze the influence of the power-supply mode on the motor loss. Finally, based on the calculation results of the motor loss, the ability of the copper-shielding layer to reduce the motor loss was explored. In the calculation process, the influence of the temperature was considered, and the motor losses at different temperatures were compared and analyzed, which provided a reference for reducing the loss of the cryogenic permanent magnet motor. Full article
(This article belongs to the Special Issue Design, Analysis and Control of Permanent Magnet Machines)
Show Figures

Figure 1

Back to TopTop