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Abstract: Hysteresis is a fundamental characteristic of magnetic materials. The Jiles—Atherton (J-A)
hysteresis model, which is known for its few parameters and clear physical interpretations, has been
widely employed in simulating hysteresis characteristics. To better analyze and compute hysteresis
behavior, this study established a state space representation based on the primitive J-A model. First,
based on the five fundamental equations of the J]-A model, a state space representation was established
through variable substitution and simplification. Furthermore, to address the singularity problem at
zero crossings, local linearization was obtained through an approximation method based on the actual
physical properties. Based on these, the state space model was implemented using the S-function.
To validate the effectiveness of the state space model, the hysteresis loops were obtained through
COMSOL finite element software and tested on a permalloy toroidal sample. The particle swarm
optimization (PSO) method was used for parameter identification of the state space model, and
the identification results show excellent agreement with the simulation and test results. Finally, a
closed-loop control system was constructed based on the state space model, and trajectory tracking
experiments were conducted. The results verify the feasibility of the state space representation of the
J-A model, which holds significant practical implications in the development of magnetically shielded
rooms, the suppression of magnetic interference in cold atom clocks, and various other applications.

Keywords: J-A model; hysteresis; state space representation; local linearization; closed-loop control

1. Introduction

Magnetic materials find extensive applications in various fields such as precision man-
ufacturing, aerospace, and medical devices [1-3]. Hysteresis is a fundamental phenomenon
observed in magnetic materials and is characterized by the dependence of the magneti-
zation state on the history of the applied magnetic field. Understanding and quantifying
hysteresis behavior is crucial for various applications. In magnet design and electromag-
netic device development, understanding and controlling hysteresis characteristics are
crucial for enhancing performance [4]. In sensor technology, hysteresis phenomena are
widely used in the production of magnetic sensors and magnetic storage devices [5]. In
medical imaging, hysteresis effects are employed in magnetic resonance imaging (MRI)
and other magnetic imaging techniques [6].

The hysteresis model is a mathematical model used to describe the hysteresis effect in
magnetic materials. By modeling the hysteresis characteristics of materials, it is possible
to better design and optimize magnetic systems and devices to meet various application
requirements [7,8]. Hysteresis models typically use different mathematical equations to
describe the relationship between magnetization intensity and an external field, mainly
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including models such as the Preisach model, Jiles—Atherton (J-A) model, Stoner—-Wohlfarth
model, and Prandtl-Ishlinskii (P-I) model. Among them, the Preisach model is a hysteresis
model with memory effects and simulates the complex hysteresis characteristics of mag-
netic materials based on a series of nonlinear switching elements [9,10]. The J-A model,
which is based on the dynamic behavior of microscale magnetic moments, simulates the
magnetization process under the influence of an external field by describing the internal
magnetic moments [11,12]. The Stoner—Wohlfarth model describes the magnetic moment re-
versal behavior of magnetic particles under an external field, assuming the particles have a
single magnetic moment that only flips when the external field exceeds a specific threshold.
This model provides a theoretical framework for explaining hysteresis loops and magnetic
moment reversal in ferromagnetic materials [13]. The Prandtl-Ishlinskii model is based on
combining multiple individual hysteresis elements through the composition of hysteresis
operators to simulate the complex nonlinear behavior of materials or systems. The principle
of this model lies in the effective capture of the nonlinear characteristics of materials or
systems by appropriately adjusting and combining these hysteresis elements [14,15].

Among the numerous models developed to describe hysteresis phenomena, the J-A
model is based on microscopic physical mechanisms, which makes its physical meaning
clear and precise [16,17]. The J-A model incorporates parameters such as coercivity, re-
manence, and magnetic viscosity to characterize the hysteresis loop. Through empirical
formulations and mathematical representations of energy dissipation mechanisms, the J-A
model effectively captures the intricate interplay between magnetic domains, enabling accu-
rate predictions of magnetization dynamics [18,19]. By calibrating the model parameters to
experimental data, researchers can tailor the J-A model to specific material properties and
geometries, enhancing its predictive capabilities across a wide range of applications [20,21].
Moreover, advancements in computational techniques facilitated the implementation of
the J-A model in numerical simulations, allowing researchers to explore complex hysteresis
phenomena in unprecedented detail [22,23].

To utilize the J-A model in practical applications, parameter identification is required.
Currently, common methods for parameter identification in the J-A model can be catego-
rized into two types: formula-based and fitting-based methods. Although the formula-
based method has clear physical significance, it is highly sensitive to the selection of initial
values and the order of parameter iteration. This sensitivity often leads to non-convergence
or entrapment in local optima, resulting in low accuracy and efficiency in parameter identi-
fication [24,25]. The fitting-based method uses the least squares function of measured and
calculated values as the objective function, and employs optimization algorithms to extract
parameters of the J-A hysteresis model. Currently, various intelligent algorithms, such as
the genetic algorithm (GA), simulated annealing, and particle swarm optimization (PSO),
are applied to the parameter identification of the J]-A model [26,27]. These algorithms offer
advantages such as simplicity in implementation and high execution efficiency.

The numerical calculation of the J-A model is widely applied across various fields. For
magnetostrictive materials, Rong et al. proposed a rational expression for the dynamic J-A
model and introduced a numerical computation method to rapidly obtain high-precision
model results [28]. Chen et al. proposed a modeling method for an axial flux permanent
magnet hysteresis damper (APHD) based on the vector J-A model, which improves the
calculation convergence and reduces the calculation time. A rapid identification method
based on numerical techniques and genetic algorithms was employed to obtain the param-
eters of the J-A hysteresis model [29]. For magnetic particle imaging, Li et al. proposed a
more accurate model to describe the dynamic magnetization of superparamagnetic iron
oxide (SPIO) nanoparticles, which was termed the modified J-A model. This model was
applied in x-space algorithms to enhance the image resolution, thereby improving the
performance of magnetic particle imaging (MPI) in medical fields, including cardiovascular
imaging [30,31].

In many applications, the J-A model also needs to be integrated into control systems. In
the low-frequency external fields experienced by satellites in low Earth orbit, the placement
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of any magnetically sensitive devices within the magnetic shield should consider the
hysteresis effects. Peng et al. introduced the J-A hysteresis model to predict and compute
magnetization-induced magnetic fields and suppressed external interference by adjusting
the current of compensating coils to maintain a stable field within the shield [32]. To
achieve precise control of electromagnetic actuators, Rosenbaum et al. described hysteresis
characteristics using both the J-A model and the Preisach model. They implemented
feedforward control based on the inverse model and conducted experiments on a force-
controlled electromagnet system [33]. Chen et al. combined the Jiles—Atherton model with
a magneto-mechanical effect to develop a self-sensing model that effectively describes the
relationship between magnetization and magnetostriction. The drive coil is used to detect
the induced voltage caused by changes in magnetization. The integration of sensing and
actuation functions results in a compact actuator structure capable of real-time actuation
state sensing [34].

Hysteresis can impact the stability and accuracy of the system in many applications.
Developing a dynamic model of magnetization and integrating it into the control system
significantly aids in controller design and system simulation. Therefore, this study further
established a state space representation of the J-A model based on the numerical calculation
model and integrated it into a closed-loop control system to achieve trajectory tracking.
First, based on the five fundamental equations of the J-A model, a state space representation
was established through variable substitution and simplification. Further addressing the
singularity problem at zero-crossing points, a locally linearized form was derived using an
approximation method based on actual physical characteristics. The feasibility of the state
space model was demonstrated through modeling and simulation using the S-function
module of Simulink. Additionally, the PSO algorithm was employed for parameter identifi-
cation based on the hysteresis loops obtained through COMSOL finite element software and
tested on a permalloy toroidal sample, which confirmed the good approximation ability of
the J-A state space model to actual hysteresis loops. Finally, a closed-loop control system
was constructed based on the state space model, and trajectory tracking experiments were
conducted. The state space representation of the J-A model holds significant practical
significance for the design and analysis of systems containing hysteresis properties, such as
transformer design, the active suppression of magnetic interference in cold atomic clock
magnetic shielding systems, and the control of magnetostrictive materials.

2. State Space Representation of the J-A Model
2.1. J-A Hysteresis Model

The J-A model is a mathematical model that was designed to describe hysteresis
phenomena and is applicable to the modeling and analysis of magnetic materials, such
as soft magnetic materials and magnetic storage materials. In the fields of magnetic field
control and magnetic device design, the J-A model is employed for predicting and analyzing
hysteresis effects. The J-A model starts from the energy balance equation in the process
of material magnetization and derives a set of differential equations that characterize the
variation in magnetization intensity during the material magnetization process.

The J-A model [16,17] is based on the non-hysteretic magnetization curve. In this
approach, it is possible to distinguish between irreversible and reversible domain wall dis-
placements. Using the Langevin function, the description of non-hysteretic magnetization
strength M, can be represented as

Man = M; (coth<l;le> _ Ii) (1)

where a represents the domain wall density in soft magnetic materials. M; stands for the
saturation magnetization, which is the maximum magnetization that a material can achieve
when subjected to an applied field. H, represents the effective field strength, which takes
into account the interactions between magnetic domains. It can be expressed in terms of
the field strength H and the total magnetization M
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H, = H+aM ()

where « represents the degree of field interaction between magnetic domains. The irre-
versible magnetization strength M;,, corresponds to the defective domain portion within
soft magnetic materials, which represents the irreversible component during the magneti-
zation process. It can be calculated using the following equation

dMirr o Mgy — Mirr (3)

dH 6k — a(May — Mjy,)
where k represents the pinning factor, indicating the blocking effect or loss within magnetic
domains. 0 is the directional parameter, which takes a value of +1 when dH /dt > 0 and
—1when dH /dt < 0, with t representing time. The reversible magnetization strength M,
represents the reversible component generated by wall deformation at coupled sites under
the influence of an external field. It can be expressed as follows:

Moy = C(Mzm - Mirr) (4)

where c represents the reversibility coefficient, ¢ € [0, 1]. The total magnetization M can be
expressed as

M= Mrev + Mirr (5)

2.2. State Space Representation

The above five equations constitute the hysteresis J-A model. Based on this, the state
space representation is further established below. This contributes to the analysis and
control of magnetic materials and hysteresis. State space equations are a mathematical
model used to describe the behavior of dynamic systems. They are typically represented by
a set of differential equations that describe how the system state changes over time. These
equations detail the evolution of the system state and how the system responds to inputs to
produce outputs. State space equations are widely employed in control system engineering,
signal processing, and various engineering fields, and provide a comprehensive tool for
the analysis and design of systems.

From Equations (1) and (2), the anhysteretic magnetization can be derived:

H+aM a
Man—M5<coth< p > _H+zxM) (6)

This is an equation regarding M,, with respect to H and M. From Equations (4) and (5),
the following can be derived:

M = cMan + (1 — C)Mirr 7)

This is an equation representing M as a function of M,, and M;,,. By observing that
Equations (6) and (7) both involve three variables (Mg, M;;,, and M), it is evident that
both M, and M;,, can be expressed as functions of M. Using Equation (7), M;, can be
expressed as a function of M, as follows:

1 o H+aM a
Mm_ch_chs<C0th< a > _H+1XM) ®)

Taking the derivative of the above equation with respect to H, the following can be obtained:

AMi, _ 1 dM ¢ dMg
dH 1—cdH 1-c dH
Combining Equations (3) and (9), the following can be obtained:

©)
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1 d7M . c dMgy _ Man — My, (10)
1-cdH 1—c dH 0k — a(Mgn — M)
Moving dM/dH to the left side of the equation yields
dM _ dMgy Man — M
T 1— 11
an ~ an T T TS 0k — aMor £ aM (1)

Furthermore, from

dMan  dMgy dH, 1 > He a dM
JH ~ dH, dH_MS< acsch <a>+H€2>(l+adH> (12)

The derivation yields

M 1 o(H\ , a iM Man — M
it =M (—geet () i) (108 )+ 00 gt .

Moving dM/dH to the left side of the equation yields

1 H, Man—M
aM cMS<—Ecsch2<7) + HLEZ) +(1—¢) ey e

dH 1—1xcMs<—%csch2(%> + H%)

(14)

It can be seen that the variables in Equation (14) include only H, and M,;,, and both H, and
M.y, are functions of H and M. Therefore, dM /dH can be entirely expressed as a function
of H and M. Combining Equations (1), (2), and (14), the state space representation of the J-A
model can be obtained. In time domain simulations, it can be used in the following form:

1 2 ( He Magn—M
M oM (—fesel® (M) + ) + (1= 0) e it dH

dt 1 — acM; (—%cschz(%) 4 HLE) dt

(15)

That is, M is a function of M, H,and H: M = f(M, H)H. The state equation flowchart for
the J-A model can be illustrated as shown in Figure 1.

[Initial H, M setting]

l

H,update ]
H,=H+aM
Iterative
M,, update computing
M,, =M (colh[ A, j— aj
) a H,
M solve
cM, —lcsch2 A, +4 +(1—c) Mo =M
aM a a) H? (1-¢)8k—aM,, +aM q4q
dr dr
l1-acM, [_lcsch2 [He }+ a, ]
a a H;

Figure 1. State space representation of the J-A model.
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With the powerful simulation capabilities of Simulink, this can be easily simulated.
First, set the initial values for H and M. Next, calculate the value of H, and use the obtained
H, to calculate the current M,,. Finally, iteratively calculate M using Equation (15), and
use the new input H, along with M, as the initial input for the next iteration.

Consequently, the state space representation of the J-A model can be established.
Defineu = [ u; uy |T =[ H dH/dt | as the generalized input of the system, with
the system state variable x and the system output y both being M. The state equation and
output equation of the system can be expressed as follows:

{ X = f(x,u1)ur (16)
y=x

Using the S-function module in Simulink, the state equation can be modeled, as shown in
Figure 2. The solution can be obtained by iteratively applying the Runge-Kutta method to
reveal the material’s magnetization state.

Hysteresis
loop
J-A: S-Function
/\/ i
X = f(x’l’l )”2 M| Time domain
y=x waveform

Figure 2. Simulation structure of the J-A model.

The model outputs time domain waveforms. By taking H as the independent variable
and M as the dependent variable, the hysteresis loop can be obtained. With the powerful
features of Simulink and S-function, it becomes easy to modify the system inputs and pa-
rameters and perform the combined simulations with controllers, as well as stability testing.
This contributes to both scientific research and engineering applications of hysteresis.

3. Local Linearization and Simulation
3.1. Local Linearization Based on L'Hopital’s Rule

The state space representation of the J-A model, derived as above, contributes to
a better analysis and computation of hysteresis behavior. However, the presence of a
singularity at H, = 0 in the expression of the J-A model can be inconvenient for its
practical use. The actual initial magnetization curve of the material can be divided into the
initial magnetization stage, the Rayleigh region, the maximum permeability region, the
approaching saturation region, and the paramagnetic region. The initial magnetization
stage represents the reversible magnetization stage under weak magnetic fields, where
the magnetization intensity M maintains a linear relationship with the external field H.
In this region, magnetic materials exhibit good reversibility, and the orientation of the
magnetic moment can rapidly change without causing significant hysteresis losses. This
is crucial for applications such as magnetic field control, magnetic storage, and magnetic
sensing in magnetic materials. The width and characteristics of the reversible magnetization
region typically depend on the magnetic properties of the material and the strength and
direction of the external magnetic field. Therefore, based on the physical characteristics, the
function value at H, = 0 is approximated and replaced. This is particularly meaningful for
systems like a demagnetization system and a closed-loop control system, where achieving
a convergence value of zero is crucial. Set

f(H,) = coth(?) — Hie (17)

Solve for the first and second derivatives of f(H,):
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H) = — e (e} 4 2
F(He) = — jescl? (<) + o (18s)
2 »(H H 2a
f"(H,) = ﬁcsch (;) coth(ﬂe) W (19)
Expand f(H,) using the Taylor series at the point H, = 0, as follows:
M) (0
£t = L2 (b = £(0) 4+ £(0) - H + o(H) 0)

The solution to this problem is challenging, and thus, we utilize L'Hopital’s rule for
solving it. L'Hopital’s rule is a mathematical tool employed for calculating limits, and
is particularly useful when encountering an indeterminate form like 0/0 in the process
of finding limits. The basic idea of this rule involves taking the derivatives of both the
numerator and denominator, then attempting to find the limit again, repeating the process
until a meaningful result is obtained. This rule is particularly useful when dealing with
some complex limit problems, especially in the computation of indeterminate fractional
limits. First, by applying L'Hopital’s rule to approximate and solve for f(0), set x = H./a,
and thus,

1 x(er4+e ) —(ef—e™™)

= coth(x) — — = 21
flax) = coth(x) — NEp— e
As H, approaches 0, the following can be obtained:
, . . ox(ef e ) —(eF—e)
hll:glof(He) M, flax) = lim, x(e¥ —e¥) (22)
After two applications of L'Hopital’s rule, the following can be obtained:
, num” (x) ef—eFt+x(ef+eY)
1 = = 2
a;gof(ax) den”(x)  2(e*+e )+ x(eX —e ) @3

where num(x) represents the numerator of the original expression and den(x) represents
the denominator. From the results of the two applications of L'Hopital’s rule, it is evident
that as x approaches 0, num' (x) approaches 0, while den” (x) approaches 4. Therefore,
I}irgo f(H.) = 0. Next, by applying L'Hopital’s rule for local linearization to solve for f’(0),

it follows that
1 1 1 1 4?24y
! 2
- _z L=z 24
fllax) = = _esch*(x) + — - = = — Py (24)
Performing four iterations of L'Hopital’s rule gives
(4) 1 8(e2x —2x
lim f’(ax)zwzf~ — (e +e ™) — (25)
ax—0 den® (x) a 24(e>* +e72) +32x(e?* —e=2) +o(x)

From the results of the four iterations of L'Hopital’s rule, it can be determined that as x ap-
proaches 0, num'®) (x) approaches 8 and den(*) (x) approaches 24. Therefore, I}imo f'(He) =
ad

1/3a. Thus,

f(H,) = f(0) + f'(0) - Ho +0(H,) ~ 0+41/3a- H, (26)

Substituting M /3a - H, for My, Ms/3a for dM,,, /dH,, and H + aM for H, in Equation (11),
the following can be obtained:
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M Mg ( dM) H% — M
— =c—(14+a— | +(1—-c¢ A 27
dH ~ " 3a am ) )(1_c)5k—sze%+aM )
Moving dM/dH to the left side of the equation yields
M M [(1 — )k — a(H + M) M 1 aM] + (1= ¢)(H +aM)M; — (1 —c)3aM o8
dH (3a — acMs) {(1 —c)ék—oc(H—i—ocM)gA’; +ocM]
It can be observed that as M and H approach 0,
dM cM;
li _—_— = 29
M,}Jnlo dH  3a— acM; (29)
dM cMs dH
li —_— = 0
M,ggo dt 3a — acM; dt (30)

At this point, M = KH. This achieves the local linearization expansion at the zero-crossing
point of the J-A model. This aligns with the objective physical phenomenon of material
magnetization and provides a foundation for the analysis and design of systems containing
hysteresis characteristics.

To implement local linearization, it is necessary to preset a threshold Hy,, along with
conditional statements. When the input value H,. exceeds the threshold Hy,, calculations
are performed according to the original formula; however, when the input value H, is less
than or equal to the threshold H;,, the calculation is carried out using the local linearization
formula. Figure 3 illustrates the modified state flowchart incorporating local linearization.

Initial H, M setting
|

M solve at initial time
aMm cM dH
- T (r=0)

dt  3a-acM, dt

Iterative
computing
|
cM, —7csch7[—P]+ a7 +(1_C) ‘Alau_M .
aMm a a H; (1-¢)ok—aM,, +aM gq M oM dH
d - >y aM _ M, di
l—acMy[—lcsch‘[H?j+i’J dt 3a-acM; dt
a a H;
I
I

Figure 3. State space representation of the J-A model with local linearization.

Figure 4 shows the graph of the error function between the Langevin function and the
linear approximation, i.e., g(x) = coth(x) —1/x — x/3. Since x = H,/a, Hy, can be chosen
based on the iterative calculation step size and the linear approximation error.
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%10

Figure 4. The error function between the Langevin function and the linear approximation.

3.2. S-Function Development and Simulation

Based on the analysis and derivation mentioned above, we further implemented the
linearized J-A model state space representation, as follows:

x = Kuyp
The definitions of u, x, and y are the same as in Section 2.2. Defineu = [ u; up ]T =

[ H dH/dt | as the generalized input of the system, with the system state variable x
and the system output y both being M. The simulation structure of the J-A model with
the introduction of small-range linearization is shown in Figure 5. The only necessary
modification involves supplementing the S-function module. The implementation of this
only requires adding conditional statements, making it very easy to achieve. Therefore, a
simulation model is established, and the iterative solution is obtained using the Runge—
Kutta method.

Hysteresis
J-A: S-Function loop ]
/‘\/ H H, =H+aM
0 R
He < Hy M| Time domain

X=f(xu)u, | x=Ku, waveform

Figure 5. Simulation structure of the J-A model with local linearization.

By applying an exponentially decaying sinusoidal wave as the input, the Simulink
model and results are shown in Figures 6 and 7, respectively. The parameter settings are
shown in Table 1.

Table 1. Parameters of ]-A state space model.

Parameter Value Unit
M 7.2 x 10° A/m
a 1.15 A/m
o 2.11x 10 Dimensionless
k 2 A/m
c 0.47 Dimensionless
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Lissajous figure
(hysteresis loop)

———————————————————————————— O]

Exponentially decaying sinusoidal ]

wave Hysteresis loop
N >

Signal

M
JA_SFunc . D

JA_SFunction Output(M)
J-A state space
representation

—>D

O—»exp(-oooru S

___________________________ J Input(H)

Figure 6. Simulink model with J-A S-function.

(2) (b)

10.“ 0.8
€ 0.6 -
< 0
I 0.4

40 - 02

0 1000 2000 3000 4000 5000 ~

£ o
t(s) =

05 Mo 0.2
o ‘ 0.4
c
T 0

06 _
05
0.8
0 1000 2000 3000 4000 5000 10 5 0 5 10
t(s) H(A/m)

Figure 7. Calculation results of exponential decaying sinusoidal wave input: (a) time domain;
(b) hysteresis loop.

As the amplitude of the input H decreased, the amplitude of the output M also
decreased, gradually approaching zero. By plotting the Lissajous figure with H as the
independent variable and M as the dependent variable, the hysteresis loop of the material
could be obtained. The characteristics reflected by the curve matched the given parameter
values. It can be observed that the hysteresis characteristics were well-described, and the
singularity problem at the zero point was resolved. With this, the state space modeling of
the J-A model was completed.

4. Hysteresis Loop Simulation and Parameter Identification of J-A State Space Model
4.1. Parameter Identification

Sections 2 and 3 realized the state space representation and local linearization at the
zero crossing point of the J-A model. To simulate the hysteresis behavior of practical
magnetic materials, further identification of the five parameters in the J-A state space model
is required. In this section, the hysteresis loops were constructed using COMSOL finite
element software. Based on the hysteresis loops, parameter identification was carried out
using the PSO method. The simulation model referred to the COMSOL official example
library for modeling and simulation. The built-in J-A model was used to simulate and
obtain the hysteresis loop with parameters identical to those in Table 1.

PSO is an evolutionary computation technique used for solving optimization problems.
It simulates the behavior of swarms in nature, such as birds or fish, by continuously
adjusting the positions and velocities of individuals to find the optimal solution. In PSO,
each individual is called a particle, where its position represents a candidate solution in
the solution space, and its velocity represents the direction and speed of the particle’s
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movement in the solution space. The core idea of PSO is to continuously update the
positions and velocities of particles so that they move along the optimal direction in the
search space and gradually converge to the global or local optimal solution. During this
process, the movement of particles is influenced by their own historical best positions and
the historical best position of the swarm, while also considering an inertia term to maintain
the search diversity and convergence speed. The velocity and position update formulas for
particles in the PSO algorithm are as follows:

A = ok 4 okt (32)
UZJrl = wvg +cn (pf; — xs) ~+ corp (pg — xfl) (33)

where x represents the position of the particle, which corresponds to the parameters of the
J-A state space model that need to be solved. v represents the velocity of the particle, that
is, the change in the iteration of the parameter values. w is the inertia weight. r; and rp
are two random numbers in [0, 1]. ¢; is the local learning factor. c; is the global learning
factor. The position vector ?’5 is the optimal position of particle d after self-updating k
times, which is called PBest. p§ is the position of the best particle appearing after k updates
in the particle swarm, which is called GBest.

The five parameters of the J-A state space model are taken as a multidimensional
vector to be optimized. The fitness function is defined as the mean square error of the
magnetic flux density at the sampling points, as follows:

N , D
% (Buli) — Be(0)
F=\ = 34
~ (34)

where By, represents the measured magnetic flux density value. B, denotes the computed
magnetic flux density value obtained from the J-A state space model under the correspond-
ing parameters. N is the total number of sampling points. i is the index of the sampling
point. Based on these factors, the flowchart of the algorithm can be illustrated as shown in
Figure 8.

Initialize the particle
swarm: J-A state space
modell(5>< 1) No
v

Calculate the fitness

N ) Update the velocity

2.(B,()=B.() and position of the
F=\H—— particle

GBest=Present Output GBest

Present<GBest End

PBest=Present

Figure 8. PSO algorithm flowchart.
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4.2. Identification Result

The parameter configurations are defined as follows: the initial population consisted
of 200 individuals, with a maximum iteration count of 300, w = 0.8, and ¢; = ¢, = 0.5.
The position range for the J-A state space model parameters [ M; a4 a k ¢ | spanned
[1x10°~10%x10° 0~10 0~10x10"> 0~10 0~ 1 |, while the velocity range
varied over £0.1 x [ 1x10° ~10x10° 0~10 0~10x10"° 0~10 0~1 ]. Fi-
nally, the identification result is shown in Table 2.

Table 2. The identification results of the simulation model.

Parameter Value Unit
M, 7.220 x 10° A/m
a 1.146 A/m
« 2118 x 10~° Dimensionless
k 1.977 A/m
c 0.466 Dimensionless

As shown in Figure 9, the blue curve represents the hysteresis loop obtained from the
COMSOL simulation result, while the red curve depicts the hysteresis loop generated using
the parameters identified and the J-A state space model. It is evident that the two curves
exhibit a good match, indicating a satisfactory fitting performance between them. This
suggests that the combination of the J-A state space model proposed in this paper, along
with the small neighborhood linearization method and the PSO parameter identification,
can provide a satisfactory description of the hysteresis characteristics of magnetic materials.

1

[ p—

051

H (A/m)
Figure 9. Fitting result of COMSOL-modeled data and J-A state space model.

To verify the fitting performance with the measured hysteresis loop, the permalloy
toroidal samples were tested for their hysteresis loop using the MARS-3000S soft mag-
netic material DC measurement system from Hunan Linkjoin Technology Co., Ltd. (Loudi,
China), as shown in Figure 10a. The testing method employed the simulated pulse tech-
nique. Excitation and induction coils were wound around the permalloy toroidal samples to
apply the excitation magnetic field and generate the corresponding induced electromotive
force. The identification result is shown in Table 3.

Figure 10b shows the fitting results of the parameters identified by the PSO. The blue
curve indicates the measured hysteresis loop, while the red curve shows the fitting results
of the J-A state space model. It can be seen that in most areas of the hysteresis loop, the fit
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was good, although there were some discrepancies in certain local regions. These errors
existed whether using the J-A state space model or the classical iterative calculation method.
In our opinion, this was due to the limitations of the primitive J-A model, sampling number
of the testing device, or the PSO algorithm, and further targeted research is needed in
the future. In a closed-loop control system, the impact of these errors can be effectively
suppressed by the control algorithm.

Table 3. The identification results of the measured data.

Parameter Value Unit
M 5.70 x 10° A/m
a 4.92 A/m
« 242 x 107 Dimensionless
k 5.57 A/m
c 0.89 Dimensionless

(b) 0.8

s

B(T)

Figure 10. The testing device and fitting result of permalloy toroidal sample: (a) testing device;
(b) fitting result.

The form of the state space representation and the application of local linearization
hold significant practical implications in various fields. In the construction of magnetically
shielded rooms, demagnetization of the high-permeability materials in the shielding layer
is required, and the quality of the demagnetization directly affects the shielding perfor-
mance. The proposed J-A state space model can effectively simulate the demagnetization
process and integrate with the demagnetization system, aiding in the evaluation of the
demagnetization performance. For applications such as cold atom clocks in the magnetic
field experienced by satellites in low Earth orbit, magnetic hysteresis effects should be con-
sidered for magnetic-sensitive devices inside a shield. The proposed J-A state space model
can effectively predict the field within the shield, thus achieving magnetic interference
suppression combined with the coil system. In fields such as electromagnetic actuators, the
proposed J-A state space model can also be used for system analysis and modeling, which
provides a foundation for controller design.

5. Closed-Loop Control of J-A State Space Model

Through the above analysis and calculations, a state space representation of the J-A
hysteresis model was established, and parameter identification was completed using the
PSO method. This provides a foundation for the design of closed-loop control systems.
Figure 11 represents the closed-loop block diagram of the system. The reference curve
was fed into the closed-loop system and the difference with the feedback signal was taken
to obtain the error signal e(t). k; is the feedback loop gain, which was set to 1. Through
closed-loop control, this does not need to model the system precisely. Even in the presence
of certain parameter deviations or external disturbances, the combination of feedback
signals and the action of the controller allowed us to still output the desired set point.
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. MOHI
J-A: S-Function —

k;

Figure 11. Closed-loop control system.

The implementation of controllers, other components, and operations in the system
can be easily achieved through modules in Simulink, as shown in Figure 12. The realization
of the J-A model was based on the S-function implementation discussed earlier. This greatly
facilitated the design and simulation of hysteresis control systems, which allowed for the
validation of system characteristics under various input conditions and the presence or
absence of external disturbances. It holds significant value for applications in engineering.

X=Ax+Bu H

y=CrtDu My (]

JA_SFunc P

v

Input

Controller Au
At J-A state space

D representation

Figure 12. Simulink model of closed-loop control system.

The parameters for the J-A model were the same as in the third section. To achieve the
regulation of hysteresis characteristics, the control was implemented based on the error
e(t) and its integral [ e(t)dt. The state variable x of the controller was defined as [ e(t)dt,
with the input u being e(t), and the output y formulated as kpe(t) + k; [ e(t)dt, as follows:

X=u

{ y = kpu +kix (35)
where k, =2 x 107® and k; = 5 x 10~*. A sinusoidal wave and triangular wave were used
as system inputs for research. We selected the input signal in the Simulink source library
and used the scope module to record the results. The results are shown in Figures 13 and 14.
In Figures 13a and 14a, the blue curve represents the set value of the system, while the red
asterisks denote the system output values. Figures 13b and 14b depict the control variable
of the system, namely, H. From the form of H, it can be seen that the control variable
contained components of hysteresis nonlinearity.

It can be observed that the system output could effectively track the input. There
was almost no deviation or lag between the system input and output. For the sinusoidal
input tracking, the maximum error between the set value and the track value was only
0.0063 T, which was 1.26% of the sinusoidal input amplitude. This occurred near the peak
of the sinusoidal wave, with the errors at other locations being less than 0.1%. When
using a triangular wave, which had discontinuous points as the input, the maximum error
between the set value and the tracking value was only 0.0091 T, which was 1.82% of the
triangular wave input amplitude. Similarly, this occurred near the peak of the triangular
wave, where the errors at other locations were less than 0.1%. The deviation and lag
between the system output and input were both very small. This implies that the hysteresis
state was successfully adjusted. It should be noted that PI control is not necessarily the
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optimal control method. Further research is needed to explore better design methods for
the controller.
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Figure 13. Tracking results of the sinusoidal wave input: (a) output variable M; (b) control variable H.
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Figure 14. Tracking results of the triangular wave input: (a) output variable M; (b) control variable H.

6. Conclusions

The J-A model is a commonly used model to describe the hysteresis characteristics of
magnetic materials. This study established the state space representation based on the five
basic equations of the J-A model. Furthermore, a small-range approximation linearization
was applied to address the singularity issues using L'Hopital’s rule, which enhanced
the integrity of the model. Subsequently, modeling was conducted using the S-function
module in Simulink, and the feasibility of the model was verified using exponentially
decaying sine waves and triangular waves as inputs. Then, parameter identification was
performed using the PSO algorithm combined with COMSOL finite element software,
which demonstrated that the proposed J-A state space model could effectively describe
the hysteresis characteristic. Finally, a closed-loop control system was established. The
tracking results for both the sinusoidal and triangular waves demonstrated that the system
could effectively adjust the hysteresis state. This has significant practical implications in
many areas, such as the development of magnetically shielded rooms and the suppression
of magnetic interference in cold atomic clocks.
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