Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (27)

Search Parameters:
Keywords = magnetic induction (MI)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 67621 KiB  
Article
Magnetic Induction Spectroscopy-Based Non-Contact Assessment of Avocado Fruit Condition
by Tianyang Lu, Adam D. Fletcher, Richard John Colgan and Michael D. O’Toole
Sensors 2025, 25(13), 4195; https://doi.org/10.3390/s25134195 - 5 Jul 2025
Viewed by 404
Abstract
This study demonstrates that the ripeness of avocado fruits can be analyzed using frequency-dependent electrical conductivity and permittivity through a non-invasive Magnetic Induction Spectroscopy (MIS) method. Utilizing an MIS system for conductivity and permittivity measurements of a large sample set ( [...] Read more.
This study demonstrates that the ripeness of avocado fruits can be analyzed using frequency-dependent electrical conductivity and permittivity through a non-invasive Magnetic Induction Spectroscopy (MIS) method. Utilizing an MIS system for conductivity and permittivity measurements of a large sample set (N=60) of avocado fruits across multiple frequencies from 100 kHz to 3 MHz enables clear observation of their dispersion behavior and the evolution of their spectra over ripening time in a completely non-contact manner. For the entire sample batch, the conductivity spectrum exhibits a general upward shift and spectral flattening over ripening time. To further quantify these features, normalized gradient analysis and equivalent circuit modeling were employed, and statistical analysis confirmed the correlations between electrical parameters and ripening stages. The trend characteristics of the normalized gradient parameter Py provide a basis for defining the three ripening stages within the 22-day period: early pre-ripe stage (0–5 days), ripe stage (5–15 days), and overripe stage (after 15 days). The equivalent circuit model, which is both physically interpretable and fitted to experimental data, revealed that the ripening process of avocado fruits is characterized by a weakening of capacitive structures and an increase in extracellular solution conductivity, suggesting changes in cellular integrity and extracellular composition, respectively. The results also highlight significant inter-sample variability, which is inherent to biological samples. To further investigate individual conductivity variation trends, Gaussian Mixture Model (GMM) clustering and Principal Component Analysis (PCA) was conducted for exploratory sample classification and visualization. Through this approach, the sample set was classified into three categories, each corresponding to distinct conductivity variation patterns. Full article
(This article belongs to the Special Issue Application of Sensors Technologies in Agricultural Engineering)
Show Figures

Figure 1

20 pages, 1495 KiB  
Article
A Distributed Energy-Throughput Efficient Cross-Layer Framework Using Hybrid Optimization Algorithm
by Pratap Singh, Nitin Mittal, Vikas Mittal, Tapankumar Trivedi, Ashish Singh, Szymon Łukasik and Rohit Salgotra
Mathematics 2025, 13(2), 224; https://doi.org/10.3390/math13020224 - 10 Jan 2025
Viewed by 771
Abstract
Magnetic induction (MI)-operated wireless sensor networks (WSNs), due to their similar performance in air, underwater, and underground mediums, are rapidly emerging networks that offer a wide range of applications, including mine prevention, power grid maintenance, underground pipeline monitoring, and upstream oil monitoring. MI-based [...] Read more.
Magnetic induction (MI)-operated wireless sensor networks (WSNs), due to their similar performance in air, underwater, and underground mediums, are rapidly emerging networks that offer a wide range of applications, including mine prevention, power grid maintenance, underground pipeline monitoring, and upstream oil monitoring. MI-based wireless underground sensor networks (WUSNs), utilizing small antenna coils, offer a viable solution by providing consistent channel conditions. The cross-layer protocols address the specific challenges of WUSNs, leading to improved network performance and enhanced operational capabilities in real-world applications. This work proposes a distributed cross-layer solution, leveraging the hybrid marine predator naked mole rat algorithm (MPNMRA) for MI-operated WUSNs. The solution, called DECMN (distributed energy-throughput efficient cross-layer network using MPNMRA), is designed to optimize the MI communication channels, MI relay coils (MI waveguide), and MI waveguide with 3D coils to fulfill quality of service (QoS) parameters, while achieving energy savings and throughput gains. DECMN utilizes the interactions between various layers to develop cross-layer protocols based on MPNMRA. Simulation results demonstrate the effectiveness of DECMN, offering energy savings, increased throughput, and reliable transmissions within the performance limits. Full article
Show Figures

Figure 1

14 pages, 6337 KiB  
Article
Research on the Capillary Filling Behavior of Liquid Solder Al-12Si under the Action of Electromagnetic Ultrasonic Wave
by Guijuan Chen, Qianqian Gao, Mingxuan Zhang and Haonan Yu
Appl. Sci. 2024, 14(11), 4557; https://doi.org/10.3390/app14114557 - 25 May 2024
Viewed by 1195
Abstract
To address the issues of high cost, low welding efficiency, and complex processes in vacuum brazing, we proposed a method of electromagnetic ultrasonic (EU)-assisted brazing with Al-12Si solder to join SiC ceramic and TC4 alloy. The results showed that the maximum magnetic induction [...] Read more.
To address the issues of high cost, low welding efficiency, and complex processes in vacuum brazing, we proposed a method of electromagnetic ultrasonic (EU)-assisted brazing with Al-12Si solder to join SiC ceramic and TC4 alloy. The results showed that the maximum magnetic induction strength (MIS) on the surface of the liquid solder was 0.629 T when subjected to a static and alternating magnetic field (MF). Additionally, the combined action of MF and eddy current generated a downward Lorentz force (LF) in the liquid solder, with the maximum LF in the horizontal and vertical directions being 48.91 kN m−3 and 60.93 kN m−3, respectively. Under the influence of an EU wave, the liquid solder exhibited capillary filling (CF) behavior. At 26 ms, the maximum length of CF was 12.21 mm. Full article
(This article belongs to the Special Issue Advanced Welding and Soldering Technologies for Metals and Alloys)
Show Figures

Figure 1

13 pages, 4504 KiB  
Article
Enhanced Magnetoimpedance Effect in Co-Based Micron Composite CoFeNiSiB Ribbon Strips Coated by Carbon and FeCoGa Nanofilms for Sensing Applications
by Zhen Yang, Mengyu Liu, Jingyuan Chen, Xuecheng Sun, Chong Lei, Yuanwei Shen, Zhenbao Wang, Mengjiao Zhu and Ziqin Meng
Sensors 2024, 24(10), 2961; https://doi.org/10.3390/s24102961 - 7 May 2024
Viewed by 3087
Abstract
Quenched Co-based ribbon strips are widely used in the fields of magnetic amplifier, magnetic head material, magnetic shield, electric reactor, inductance core, sensor core, anti-theft system label, and so on. In this study, Co-based composite CoFeNiSiB ribbon strips with a micron width were [...] Read more.
Quenched Co-based ribbon strips are widely used in the fields of magnetic amplifier, magnetic head material, magnetic shield, electric reactor, inductance core, sensor core, anti-theft system label, and so on. In this study, Co-based composite CoFeNiSiB ribbon strips with a micron width were fabricated by micro-electro-mechanical systems (MEMS) technology. The carbon and FeCoGa nanofilms were deposited for surface modification. The effect of carbon and FeCoGa nanofilm coatings on the crystal structure, surface morphology, magnetic properties, and magnetoimpedance (MI) effect of composite ribbon strips were systematically investigated. The results show that the surface roughness and coercivity of the composite ribbon strips are minimum at a thickness of the carbon coating of 60 nm. The maximum value of MI effect is 41% at 2 MHz, which is approximately 2.4 times greater than plain ribbon and 1.6 times greater than FeCoGa-coated composite ribbon strip. The addition of a carbon layer provides a conductive path for high frequency currents, which effectively reduces the characteristic frequency of the composite ribbon strip. The FeCoGa coating is able to close the flux path and reduce the coercivity, which, in turn, increases the transverse permeability and improves the MI effect. The findings indicate that a successful combination of carbon layer and magnetostrictive FeCoGa nanofilm layer can improve the MI effect and magnetic field sensitivity of the ribbon strips, demonstrating the potential of the composite strips for local and micro area field sensing applications. Full article
(This article belongs to the Special Issue Smart Sensors and Integration Technology for MEMS Devices)
Show Figures

Figure 1

19 pages, 7184 KiB  
Article
Classification of Shredded Aluminium Scrap Metal Using Magnetic Induction Spectroscopy
by Kane C. Williams, Michael J. Mallaburn, Martin Gagola, Michael D. O’Toole, Rob Jones and Anthony J. Peyton
Sensors 2023, 23(18), 7837; https://doi.org/10.3390/s23187837 - 12 Sep 2023
Cited by 9 | Viewed by 2863
Abstract
Recycling aluminium is essential for a circular economy, reducing the energy required and greenhouse gas emissions compared to extraction from virgin ore. A ‘Twitch’ waste stream is a mix of shredded wrought and cast aluminium. Wrought must be separated before recycling to prevent [...] Read more.
Recycling aluminium is essential for a circular economy, reducing the energy required and greenhouse gas emissions compared to extraction from virgin ore. A ‘Twitch’ waste stream is a mix of shredded wrought and cast aluminium. Wrought must be separated before recycling to prevent contamination from the impurities present in the cast. In this paper, we demonstrate magnetic induction spectroscopy (MIS) to classify wrought from cast aluminium. MIS measures the scattering of an oscillating magnetic field to characterise a material. The conductivity difference between cast and wrought makes it a promising choice for MIS. We first show how wrought can be classified on a laboratory system with 89.66% recovery and 94.96% purity. We then implement the first industrial MIS material recovery solution for sorting Twitch, combining our sensors with a commercial-scale separator system. The industrial system did not reflect the laboratory results. The analysis found three areas of reduced performance: (1) metal pieces correctly classified by one sensor were misclassified by adjacent sensors that only captured part of the metal; (2) the metal surface facing the sensor can produce different classification results; and (3) the choice of machine learning algorithm is significant with artificial neural networks producing the best results on unseen data. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

19 pages, 2387 KiB  
Article
Development of an HTS-SQUID-Based Receiver for Long-Range Magnetic Induction Communication in Extreme Environments
by Yulong Li, Tiequan Xu, Yue Wang, Furen Wang and Zizhao Gan
Sensors 2023, 23(9), 4434; https://doi.org/10.3390/s23094434 - 30 Apr 2023
Cited by 2 | Viewed by 3619
Abstract
The communication range of magnetic-induction (MI) technology in extreme environments such as underwater or underground is limited by the dipole-like attenuation behavior of the magnetic field as well as the eddy current induced loss in conductive media, and therefore a highly sensitive receiver [...] Read more.
The communication range of magnetic-induction (MI) technology in extreme environments such as underwater or underground is limited by the dipole-like attenuation behavior of the magnetic field as well as the eddy current induced loss in conductive media, and therefore a highly sensitive receiver is generally required. In this work, we propose the use of a highly sensitive superconducting quantum interference device (SQUID) in MI communication and try to provide a comprehensive investigation on developing a SQUID-based receiver for practical MI applications. A portable receiver scheme integrating a SQUID sensor and a coil-based flux transformer was proposed. The high sensitivity and long-range communication capability of the proposed receiver was experimentally demonstrated by spectroscopic measurements and reception experiments on a receiver prototype. Based on the experimental demonstrations, the sensitivity optimization of the proposed scheme was further investigated by simulation studies, which suggest that a communication distance exceeding 100 m and a channel capacity of 20 kb/s in underwater environment could be achieved based upon the optimization of the developed prototype. The results presented in this work have highlighted the potential of deploying SQUID sensors for long-range MI applications in extreme environments. Full article
(This article belongs to the Section Communications)
Show Figures

Figure 1

19 pages, 3316 KiB  
Article
AWOA: An Advanced Whale Optimization Algorithm for Signal Detection in Underwater Magnetic Induction Multi-Input–Multi-Output Systems
by Guohong Gao, Jianping Wang and Jie Zhang
Electronics 2023, 12(7), 1559; https://doi.org/10.3390/electronics12071559 - 26 Mar 2023
Cited by 4 | Viewed by 2044
Abstract
With the increasing exploitation and use of marine resources, the limitations of acoustic, optical, and radio frequency technologies for underwater communications have become increasingly apparent. Magnetic induction (MI) is a new communication technology that enables wireless data transmission via magnetic field coupling between [...] Read more.
With the increasing exploitation and use of marine resources, the limitations of acoustic, optical, and radio frequency technologies for underwater communications have become increasingly apparent. Magnetic induction (MI) is a new communication technology that enables wireless data transmission via magnetic field coupling between transmitting and receiving coils. MI offers advantages such as channel stability, small antenna size, and no multi-path loss. Multi-input–multi-output (MIMO) is a multi-antenna technology that significantly increases system capacity and spectrum utilization without increasing bandwidth. The whale optimization algorithm (WOA) is a well-known bio-inspired algorithm that mimics the hunting behavior of whales to optimize swarm intelligence. This paper proposes a model for an underwater MIMO communication system based on magnetic induction. We then construct a signal detection algorithm for MI-MIMO systems using the advanced whale optimization algorithm (AWOA) and conduct simulation experiments to compare the performance and complexity of three standard signal detection algorithms: zero-forcing (ZF), minimum mean square error (MMSE), and maximum likelihood (ML). The experimental results show that AWOA achieves suboptimal results, as its bit error rate (BER) is close to that of the ML algorithm. Furthermore, the complexity of AWOA is comparable to that of the MMSE strategy. This work supports the development of a high-performance MI-based underwater communication system. Full article
Show Figures

Figure 1

16 pages, 2696 KiB  
Review
Magneto-Acoustic Imaging in Biology
by Bradley J. Roth
Appl. Sci. 2023, 13(6), 3877; https://doi.org/10.3390/app13063877 - 18 Mar 2023
Cited by 3 | Viewed by 3249
Abstract
This review examines the use of magneto-acoustic methods to measure electrical conductivity. It focuses on two techniques developed in the last two decades: Magneto-Acoustic Tomography with Magnetic Induction (MAT-MI) and Magneto-Acousto-Electrical Tomography (MAET). These developments have the potential to change the way medical [...] Read more.
This review examines the use of magneto-acoustic methods to measure electrical conductivity. It focuses on two techniques developed in the last two decades: Magneto-Acoustic Tomography with Magnetic Induction (MAT-MI) and Magneto-Acousto-Electrical Tomography (MAET). These developments have the potential to change the way medical doctors image biological tissue. Full article
(This article belongs to the Section Acoustics and Vibrations)
Show Figures

Figure 1

15 pages, 5692 KiB  
Article
Osteogenic and Adipogenic Differentiation Potential of Oral Cancer Stem Cells May Offer New Treatment Modalities
by Milica Jaksic Karisik, Milos Lazarevic, Dijana Mitic, Nadja Nikolic, Maja Milosevic Markovic, Drago Jelovac and Jelena Milasin
Int. J. Mol. Sci. 2023, 24(5), 4704; https://doi.org/10.3390/ijms24054704 - 28 Feb 2023
Cited by 10 | Viewed by 2509
Abstract
(1) Treatment failure of oral squamous cell carcinoma (OSCC) is generally due to the development of therapeutic resistance caused by the existence of cancer stem cells (CSCs), a small cell subpopulation with marked self-renewal and differentiation capacity. Micro RNAs, notably miRNA-21, appear to [...] Read more.
(1) Treatment failure of oral squamous cell carcinoma (OSCC) is generally due to the development of therapeutic resistance caused by the existence of cancer stem cells (CSCs), a small cell subpopulation with marked self-renewal and differentiation capacity. Micro RNAs, notably miRNA-21, appear to play an important role in OSCC carcinogenesis. Our objectives were to explore the multipotency of oral CSCs by estimating their differentiation capacity and assessing the effects of differentiation on stemness, apoptosis, and several miRNAs’ expression. (2) A commercially available OSCC cell line (SCC25) and five primary OSCC cultures generated from tumor tissues obtained from five OSCC patients were used in the experiments. Cells harboring CD44, a CSC marker, were magnetically separated from the heterogeneous tumor cell populations. The CD44+ cells were then subjected to osteogenic and adipogenic induction, and the specific staining was used for differentiation confirmation. The kinetics of the differentiation process was evaluated by qPCR analysis of osteogenic (Bone Morphogenetic Protein—BMP4, Runt-related Transcription Factor 2—RUNX2, Alkaline Phosphatase—ALP) and adipogenic (Fibroblast Activation Protein Alpha—FAP, LIPIN, Peroxisome Proliferator-activated Receptor Gamma—PPARG) markers on days 0, 7, 14, and 21. Embryonic markers (Octamer-binding Transcription Factor 4—OCT4, Sex Determining Region Y Box 2—SOX2, and NANOG) and micro RNAs (miRNA-21, miRNA-133, and miRNA-491) were also correspondingly evaluated by qPCR. An Annexin V assay was used to assess the potential cytotoxic effects of the differentiation process. (3) Following differentiation, the levels of markers for the osteo/adipo lineages showed a gradual increase from day 0 to day 21 in the CD44+ cultures, while stemness markers and cell viability decreased. The oncogenic miRNA-21 also followed the same pattern of gradual decrease along the differentiation process, while tumor suppressor miRNA-133 and miRNA-491 levels increased. (4) Following induction, the CSCs acquired the characteristics of the differentiated cells. This was accompanied by loss of stemness properties, a decrease of the oncogenic and concomitant, and an increase of tumor suppressor micro RNAs. Full article
(This article belongs to the Special Issue Cancer Stem Cells in Solid Tumors)
Show Figures

Figure 1

23 pages, 722 KiB  
Article
High-Order Compensation Topology Integration for High-Tolerant Wireless Power Transfer
by Zhaoyang Yuan, Qingxin Yang, Xian Zhang, Xianjie Ma, Zhixin Chen, Ming Xue and Pengcheng Zhang
Energies 2023, 16(2), 638; https://doi.org/10.3390/en16020638 - 5 Jan 2023
Cited by 14 | Viewed by 3393
Abstract
Wireless power transfer (WPT) has been a promising way to transfer power wirelessly over certain distances through the mutual inductance (MI) of the magnetically coupled transmitter and receiver coils, providing significant benefits of convenience, safety, and feasibility to special occasions. The stable output [...] Read more.
Wireless power transfer (WPT) has been a promising way to transfer power wirelessly over certain distances through the mutual inductance (MI) of the magnetically coupled transmitter and receiver coils, providing significant benefits of convenience, safety, and feasibility to special occasions. The stable output and efficiency cannot be maintained due to the load variation and the inevitable misalignment between the magnetic couplers. High-order compensation topologies that are highly flexible in design due to more compensation elements are essential for the WPT to suppress the load variation and misalignment effects. However, due to core loss and thermal management, high-power-level and high-frequency inductor design have always been challenging for WPT systems. Space occupation and cost are other aspects to be considered for inductor design. Thus integrating these additional bulky inductors into the main coils has been a critical trial. As a result, the compensation topologies’ original input and output profiles will change or even disappear. This paper reviews the existing high-order compensation topologies and their integration principles and implementation for the WPT to obtain high misalignment tolerance. The design objectives and challenges of the integrated compensation topology in terms of misalignment tolerance capability are discussed. The relevant control systems to cope with coil misalignment and load variations are investigated. Challenges and future development of the high-tolerant WPT are discussed. Full article
(This article belongs to the Special Issue Advances in Wireless Power Transfer System)
Show Figures

Figure 1

28 pages, 8423 KiB  
Review
Energy Optimization Techniques in Underwater Internet of Things: Issues, State-of-the-Art, and Future Directions
by Delphin Raj Kesari Mary, Eunbi Ko, Dong Jin Yoon, Soo-Young Shin and Soo-Hyun Park
Water 2022, 14(20), 3240; https://doi.org/10.3390/w14203240 - 14 Oct 2022
Cited by 24 | Viewed by 5891
Abstract
The underwater internet of things (UIoT) has emerged as a booming technology in today’s digital world due to the enhancement of a wide range of underwater applications concerning ocean exploration, deep-sea monitoring, underwater surveillance, diver network monitoring, location and object tracking, etc. Generally, [...] Read more.
The underwater internet of things (UIoT) has emerged as a booming technology in today’s digital world due to the enhancement of a wide range of underwater applications concerning ocean exploration, deep-sea monitoring, underwater surveillance, diver network monitoring, location and object tracking, etc. Generally, acoustic, infrared (IR), visible light (VL), radiofrequency (RF), and magnet induction (MI) are used as the medium of communication in order to transfer information among digitally linked underwater devices. However, each communication medium has its advantages and limitations: for example, the acoustic communication medium is suitable for long-range data transmission but has challenges such as narrow bandwidth, long delay, and high cost, etc., and the optical medium is suitable for short-range data transmission but has challenges such as high attenuation, and optical scattering due to water particles, etc. Furthermore, UIoT devices are operated using batteries with limited capacity and high energy consumption; hence, energy consumption is considered as one of the most significant challenges in UIoT networks. Therefore, to support reliable and energy-efficient communication in UIoT networks, it is necessary to adopt robust energy optimization techniques for UIoT networks. Hence, this paper focuses on identifying the various issues concerning energy optimization in the underwater internet of things and state-of-the-art contributions relevant to inducement techniques of energy optimization in the underwater internet of things; that provides a systematic literature review (SLR) on various power-saving and optimization techniques of UIoT networks since 2010, along with core applications, and research gaps. Finally, future directions are proposed based on the analysis of various energy optimization issues and techniques of UIoT networks. This research contributes much to the profit of researchers and developers to build smart, energy-efficient, auto-rechargeable, and battery-less communication systems for UIoT networks. Full article
(This article belongs to the Special Issue AI and Deep Learning Applications for Water Management)
Show Figures

Figure 1

23 pages, 7088 KiB  
Article
Machine Learning-Based Prediction of Node Localization Accuracy in IIoT-Based MI-UWSNs and Design of a TD Coil for Omnidirectional Communication
by Qiao Gang, Aman Muhammad, Zahid Ullah Khan, Muhammad Shahbaz Khan, Fawad Ahmed and Jawad Ahmad
Sustainability 2022, 14(15), 9683; https://doi.org/10.3390/su14159683 - 6 Aug 2022
Cited by 27 | Viewed by 2419
Abstract
This study aims to realize Sustainable Development Goals (SDGs), i.e., SDG 9: Industry Innovation and Infrastructure and SDG 14: Life below Water, through the improvement of localization estimation accuracy in magneto-inductive underwater wireless sensor networks (MI-UWSNs). The accurate localization of sensor nodes in [...] Read more.
This study aims to realize Sustainable Development Goals (SDGs), i.e., SDG 9: Industry Innovation and Infrastructure and SDG 14: Life below Water, through the improvement of localization estimation accuracy in magneto-inductive underwater wireless sensor networks (MI-UWSNs). The accurate localization of sensor nodes in MI communication can effectively be utilized for industrial IoT applications, e.g., underwater gas and oil pipeline monitoring, and in other important underwater IoT applications, e.g., smart monitoring of sea animals, etc. The most-feasible technology for medium- and short-range communication in IIoT-based UWSNs is MI communication. To improve underwater communication, this paper presents a machine learning-based prediction of localization estimation accuracy of randomly deployed sensor Rx nodes through anchor Tx nodes in the MI-UWSNs. For the training of ML models, extensive simulations have been performed to create two separate datasets for the two configurations of excitation current provided to the Tri-directional (TD) coils, i.e., configuration1-case1_configuration2-case1 (c1c1_c2c1) and configuration1-case2_configuration2-case2 (c1c2_c2c2). Two ML models have been created for each case. The accuracies of both models lie between 95% and 97%. The prediction results have been validated by both the test dataset and verified simulation results. The other important contribution of this paper is the development of a novel assembling technique of a MI-TD coil to achieve an approximate omnidirectional magnetic flux around the communicating coils, which, in turn, will improve the localization accuracy of the Rx nodes in IIoT-based MI-UWSNs. Full article
(This article belongs to the Special Issue Industrial Internet of Things (IIoTs) and Industry 4.0)
Show Figures

Figure 1

21 pages, 784 KiB  
Article
Energy-Efficient Cooperative MIMO Formation for Underwater MI-Assisted Acoustic Wireless Sensor Networks
by Qingyan Ren, Yanjing Sun, Tingting Wang and Beibei Zhang
Remote Sens. 2022, 14(15), 3641; https://doi.org/10.3390/rs14153641 - 29 Jul 2022
Cited by 6 | Viewed by 2284
Abstract
The energy problem has become one of the critical factors limiting the development of underwater wireless sensor networks (UWSNs), and cooperative multiple-input–multiple-output (MIMO) technology has shown advantages in energy saving. However, the design of energy-efficient cooperative MIMO techniques does not consider the actual [...] Read more.
The energy problem has become one of the critical factors limiting the development of underwater wireless sensor networks (UWSNs), and cooperative multiple-input–multiple-output (MIMO) technology has shown advantages in energy saving. However, the design of energy-efficient cooperative MIMO techniques does not consider the actual underwater environment, such as the distribution of nodes. Underwater magnetic induction (MI)-assisted acoustic cooperative MIMO WSNs as a promising scheme in throughput, signal-to-noise ratio (SNR), and connectivity have been demonstrated. In this paper, the potential of the networks to reduce energy consumption is further explored through the joint use of cooperative MIMO and data aggregation, and a cooperative MIMO formation scheme is presented to make the network more energy efficient. For this purpose, we first derive a mathematical model to analyze the energy consumption during data transmission, considering the correlation between data generated by nodes. Based on this model, we proposed a cooperative MIMO size optimization algorithm, which considers the expected transmission distance and transmission power constraints. Moreover, a competitive cooperative MIMO formation algorithm that jointly designs master node (MN) selection and cooperative MIMO size can improve energy efficiency and guarantee the connectivity of underwater nodes and surface base station (BS). Our simulation results confirm that the proposed scheme achieves significant energy savings and prolongs the network lifetime considerably. Full article
(This article belongs to the Special Issue Underwater Communication and Networking)
Show Figures

Figure 1

18 pages, 4266 KiB  
Article
Addressing the Directionality Challenge through RSSI-Based Multilateration Technique, to Localize Nodes in Underwater WSNs by Using Magneto-Inductive Communication
by Gang Qiao, Aman Muhammad, Muhammad Muzzammil, Muhammad Shoaib Khan, Muhammad Owais Tariq and Muhammad Shahbaz Khan
J. Mar. Sci. Eng. 2022, 10(4), 530; https://doi.org/10.3390/jmse10040530 - 12 Apr 2022
Cited by 20 | Viewed by 2916
Abstract
The deployment and efficient use of wireless sensor networks (WSNs) in underwater and underground environments persists to be a difficult task. In addition, the localization of a sensor Rx node in WSNs is an important aspect for the successful communication with the aforementioned [...] Read more.
The deployment and efficient use of wireless sensor networks (WSNs) in underwater and underground environments persists to be a difficult task. In addition, the localization of a sensor Rx node in WSNs is an important aspect for the successful communication with the aforementioned environments. To overcome the limitations of electromagnetic, acoustic, and optical communication in underwater and underground wireless sensor networks (UWSNs), magneto-inductive (MI) communication technology emerged as a promising alternative for usage in UWSNs with a wide range of applications. To make the magneto-inductive underwater wireless sensor networks (MI-UWSNs) more efficient, recently, various research studies focused on the optimization of the physical layer, MAC layer, and routing layer, but none of them has taken into account the effect of directionality. Despite the directionality issue posed by the physical nature of a magnetic field, the unique qualities of MI communication open up a gateway for several applications. The directionality issue of MI sensors is a critical challenge that must be taken into account while developing any WSN protocol or localization algorithm. This paper highlights and discusses the severity and impact of the directionality issue in designing a localization algorithm for magneto-inductive wireless sensor networks (MI-WSNs). A received signal strength indicator (RSSI)-based multilateration localization algorithm is presented in this paper, where a minimum of 2 and maximum of 10 anchor Tx nodes are used to estimate the position of the sensor Rx nodes, which are deployed randomly in a 15 m × 15 m simulation environment. This RSSI-based multilateration technique is the most suitable option that can be used to quantify the impact of directionality on the localization of a sensor Rx node. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

12 pages, 18989 KiB  
Article
Research on Ultra-Low-Frequency Communication Based on the Rotating Shutter Antenna
by Faxiao Sun, Feng Zhang, Xiaoya Ma, Zhaoqian Gong, Yicai Ji and Guangyou Fang
Electronics 2022, 11(4), 596; https://doi.org/10.3390/electronics11040596 - 15 Feb 2022
Cited by 8 | Viewed by 3424
Abstract
This paper proposes a rotating shutter antenna that can directly generate 2FSK signals in the ULF band and it is expected to be used as the transmitter for magnetic induction (MI) underground communication systems. The antenna was modeled using ANSYS Maxwell and the [...] Read more.
This paper proposes a rotating shutter antenna that can directly generate 2FSK signals in the ULF band and it is expected to be used as the transmitter for magnetic induction (MI) underground communication systems. The antenna was modeled using ANSYS Maxwell and the magnetic field distribution was simulated. The results show that the interaction between the high-permeability shutter and the mutual cancellation of magnets decreased the transmitting magnetic moment of the antenna. A prototype antenna was manufactured and the time and frequency properties of the measured Bz field were the same as the simulated results, while the magnitude of the measured signal was larger. The propagation characteristics of the antenna in air–soil–rock were simulated using FEKO and the results show that the signal strength was greater than 1 fT at a depth of 450 m from the antenna whose magnetic moment as 1 Am2. The relationship between different magnetic components and azimuth could be used to enhance the signal strength. The formula of the Bz field was derived using the measured magnitude versus distance and the path loss was also analyzed. Finally, the 2FSK modulation property of the antenna was verified by indoor communication experiments with a code rate of 12.5 bps in the ULF band. Full article
(This article belongs to the Topic Antennas)
Show Figures

Figure 1

Back to TopTop