AWOA: An Advanced Whale Optimization Algorithm for Signal Detection in Underwater Magnetic Induction Multi-Input–Multi-Output Systems
Abstract
:1. Introduction
- (1)
- We propose a model of an underwater MIMO communication system based on magnetic induction technology;
- (2)
- We implement AWOA, an advanced whale optimization algorithm, to achieve signal detection in the proposed underwater MI-MIMO system;
- (3)
- We perform simulation experiments to compare the performance and complexity of AWOA with three standard signal detection algorithms, namely ZF, MMSE, and ML.
2. Related Work
2.1. Underwater Magnetic Induction MIMO Communication
2.2. Underwater MIMO Signal Detection
2.3. Summary
3. Methodology
3.1. Underwater Magnetic Induction MIMO Communication System Model
3.1.1. The Communication Procedure of Underwater MI
3.1.2. The Model of Underwater MI-MIMO
3.2. The Advanced Whale-Based Optimization Algorithm for Signal Detection in Underwater MI-MIMO Systems
Algorithm 1: The AWOA for underwater MI-MIMO signal detection | |
1: | Input: NT, NR, Max_, and G_number |
2: | Output: X_aim |
3: | WHalton = Halton * Wi (i = 1,2…n) //Use Halton to initialize the whale population |
4: | //Compute the fitness of each search unit to determine the optimal value |
5: | //Gaussian swims out of the local saddle point |
6: | While (t < Max_z) |
7: | For i = 1 to n do |
8: | //Calculates and updates all parameters and adaptive weight |
9: | If (1) < 0.5 |
10: | If (2) <1 |
11: |
|
12: | Else If (2) ≥1 |
13: |
|
14: | end if (2) |
15: | Else If (1) ≥ 0.5 |
16: |
|
17: | //Calculate the fitness of the whale after updating the position |
18: | t = t + 1 |
19: | End while |
3.3. Performance Analysis of the WOA
4. Experiments and Results
4.1. Experimental Parameters
4.2. The Verification of Communication Distance
4.3. The Comparison of Bit Error Ratios
4.4. Complexity Comparison
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
AWOA | Advanced whale optimization algorithm |
BER | Bit error rate |
GWO | Gray wolf optimization |
FLOPs | Floating point operations per second |
MI | Magnetic induction |
MIMO | Multi-input–multi-output |
MMSE | Minimum mean square error |
ML | Maximum likelihood |
MRC | Maximal ratio combining |
MISO | Multi-input–single-output |
OFDM | Orthogonal frequency division multiplexing |
PSO | Particle swarm optimization algorithm |
QPSK | Quadrature phase shift keying |
QAM | Quadrature amplitude modulation |
SVG | Singular value decomposition |
WOA | Whale optimization algorithm |
ZF | Zero forcing |
References
- Ali, M.F.; Jayakody, D.N.K.; Chursin, Y.A.; Affes, S.; Dmitry, S. Recent Advances and Future Directions on Underwater Wireless Communications. Arch. Comput. Methods Eng 2020, 27, 1379–1412. [Google Scholar] [CrossRef]
- Editorial Underwater Acoustic Communications: Where We Stand and What Is Next? IEEE J. Ocean. Eng. 2019, 44, 1–6. [CrossRef] [Green Version]
- Park, D.; Chung, W.K.; Kim, J. Analysis of Electromagnetic Waves Attenuation for Underwater Localization in Structured Environments. Int. J. Control Autom. Syst. 2020, 18, 575–586. [Google Scholar] [CrossRef]
- Schirripa Spagnolo, G.; Cozzella, L.; Leccese, F. Underwater Optical Wireless Communications: Overview. Sensors 2020, 20, 2261. [Google Scholar] [CrossRef]
- Muzzammil, M.; Ahmed, N.; Qiao, G.; Ullah, I.; Wan, L. Fundamentals and Advancements of Magnetic-Field Communication for Underwater Wireless Sensor Networks. IEEE Trans. Antennas Propagat. 2020, 68, 7555–7570. [Google Scholar] [CrossRef]
- Wei, D.; Yan, L.; Huang, C.; Wang, J.; Chen, J.; Pan, M.; Fang, Y. Dynamic Magnetic Induction Wireless Communications for Autonomous-Underwater-Vehicle-Assisted Underwater IoT. IEEE Internet Things J. 2020, 7, 9834–9845. [Google Scholar] [CrossRef]
- Pierre-Jean, B.; Philippe, F.; Beatrice, T.; Yves, A.; Yassine, A.; Gilles, F.; Maelle, D.; Pauline, S. Contactless Data Transfer for Autonomous Underwater Vehicle Docking Station. In Proceedings of the OCEANS 2021, San Diego, CA, USA, 20 September 2021; pp. 1–5. [Google Scholar]
- Li, Y.; Wang, S.; Jin, C.; Zhang, Y.; Jiang, T. A Survey of Underwater Magnetic Induction Communications: Fundamental Issues, Recent Advances, and Challenges. IEEE Commun. Surv. Tutor. 2019, 21, 2466–2487. [Google Scholar] [CrossRef]
- Albreem, M.A.; Juntti, M.; Shahabuddin, S. Massive MIMO Detection Techniques: A Survey. IEEE Commun. Surv. Tutor. 2019, 21, 3109–3132. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Cao, H.; Zhou, M.; Yang, L. Cell-Free Massive MIMO: Zero Forcing and Conjugate Beamforming Receivers. J. Commun. Netw. 2019, 21, 529–538. [Google Scholar] [CrossRef]
- Ping, L.; Paul, D.; Narasimhan, R.; Cioffi, J. On the Distribution of SINR for the MMSE MIMO Receiver and Performance Analysis. IEEE Trans. Inf.—Theory 2006, 52, 271–286. [Google Scholar] [CrossRef]
- Jain, M.; Sharma, N.; Gupta, A.; Rawal, D.; Garg, P. Performance Analysis of NOMA Assisted Underwater Visible Light Communication System. IEEE Wirel. Commun. Lett. 2020, 9, 1291–1294. [Google Scholar] [CrossRef]
- Mirjalili, S.; Lewis, A. The Whale Optimization Algorithm. Adv. Eng. Softw. 2016, 95, 51–67. [Google Scholar] [CrossRef]
- Pham, Q.-V.; Mirjalili, S.; Kumar, N.; Alazab, M.; Hwang, W.-J. Whale Optimization Algorithm with Applications to Resource Allocation in Wireless Networks. IEEE Trans. Veh. Technol. 2020, 69, 4285–4297. [Google Scholar] [CrossRef]
- Kumar, M.; Chaparala, A. OBC-WOA: Opposition-Based Chaotic Whale Optimization Algorithm for Energy Efficient Clustering in Wireless Sensor Network. IJIES 2019, 12, 249–258. [Google Scholar] [CrossRef]
- Chen, X.; Cheng, L.; Liu, C.; Liu, Q.; Liu, J.; Mao, Y.; Murphy, J. A WOA-Based Optimization Approach for Task Scheduling in Cloud Computing Systems. IEEE Syst. J. 2020, 14, 3117–3128. [Google Scholar] [CrossRef]
- Rana, N.; Latiff, M.S.A.; Abdulhamid, S.M.; Chiroma, H. Whale Optimization Algorithm: A Systematic Review of Contemporary Applications, Modifications and Developments. Neural Comput. Appl. 2020, 32, 16245–16277. [Google Scholar] [CrossRef]
- Li, Z.; Sun, Z. Optimal Active and Reconfigurable Meta-Sphere Design for Metamaterial-Enhanced Magnetic Induction Communications. IEEE Trans. Antennas Propagat. 2022, 70, 8148–8163. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, D.; Liu, G.; Jiang, T. Performance Analysis of Two-Hop Active Relaying for Dynamic Magnetic Induction Based Underwater Wireless Sensor Networks. IEEE Trans. Commun. 2022, 70, 6938–6949. [Google Scholar] [CrossRef]
- Guo, H.; Sun, Z. Increasing the Capacity of Magnetic Induction Communication Using MIMO Coil-Array. In Proceedings of the 2016 IEEE Global Communications Conference (GLOBECOM), Washington, DC, USA, 4–8 December 2016; pp. 1–6. [Google Scholar]
- Guo, H.; Sun, Z.; Wang, P. On Reliability of Underwater Magnetic Induction Communications with Tri-Axis Coils. In Proceedings of the ICC 2019—2019 IEEE International Conference on Communications (ICC), Shanghai, China, 20–24 May 2019; pp. 1–6. [Google Scholar]
- Tal, N.; Morag, Y.; Levron, Y. Magnetic Induction Antenna Arrays for MIMO And Multiple-Frequency Communication Systems. PIER C 2017, 75, 155–167. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.-J.; Park, J.; Oh, K.-S.; Choi, J.P.; Jang, J.E.; Choi, J.-W. Near-Field Magnetic Induction MIMO Communication Using Heterogeneous Multipole Loop Antenna Array for Higher Data Rate Transmission. IEEE Trans. Antennas Propagat. 2016, 64, 1952–1962. [Google Scholar] [CrossRef]
- Nguyen, H.; Agbinya, J.I.; Devlin, J. Channel Characterisation and Link Budget of MIMO Configuration in Near Field Magnetic Communication. Int. J. Electron. Telecommun. 2013, 59, 255–262. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, H.; Agbinya, J.I.; Devlin, J. FPGA-Based Implementation of Multiple Modes in Near Field Inductive Communication Using Frequency Splitting and MIMO Configuration. IEEE Trans. Circuits Syst. I 2015, 62, 302–310. [Google Scholar] [CrossRef]
- Zhou, W.; Shin, Y. Application of OFDM in Underwater Magnetic Induction Communication. In Proceedings of the 2019 International Conference on Information Networking (ICOIN), Kuala Lumpur, Malaysia, 9–11 January 2019; pp. 320–323. [Google Scholar]
- Hoa, D.T. OFDM in near field magnetic induction communication. Ph. D. Thesis, La Trobe University, Melbourne, Australia, 2016. [Google Scholar]
- Wang, J.; Cheng, W.; Zhang, H. Optimal Current Control for MISO-OFDM Based Through-the-Earth Communications with Magnetic Induction. In Proceedings of the 2021 IEEE/CIC International Conference on Communications in China (ICCC), Xiamen, China, 28 July 2021; pp. 133–138. [Google Scholar]
- Li, Z.; Desai, S.; Sudev, V.D.; Wang, P.; Han, J.; Sun, Z. Underwater Cooperative MIMO Communications Using Hybrid Acoustic and Magnetic Induction Technique. Comput. Netw. 2020, 173, 107191. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Sun, Y.; Shi, W. Capacity of Magnetic-Induction MIMO Communication for Wireless Underground Sensor Networks. Int. J. Distrib. Sens. Netw. 2015, 2015, 426324. [Google Scholar] [CrossRef]
- Kisseleff, S.; Akyildiz, I.F.; Gerstacker, W. Transmitter-Side Channel Estimation in Magnetic Induction Based Communication Systems. In Proceedings of the 2014 IEEE International Black Sea Conference on Communications and Networking (BlackSeaCom), Odessa, Ukraine, 27–30 May 2014; pp. 16–21. [Google Scholar]
- Ren, Q.; Sun, Y.; Wang, T.; Zhang, B. Energy-Efficient Cooperative MIMO Formation for Underwater MI-Assisted Acoustic Wireless Sensor Networks. Remote Sens. 2022, 14, 3641. [Google Scholar] [CrossRef]
- Ren, Q.; Sun, Y.; Huo, Y.; Zhang, L.; Li, S. Connectivity on Underwater MI-Assisted Acoustic Cooperative MIMO Networks. Sensors 2020, 20, 3317. [Google Scholar] [CrossRef]
- Hwang, S. Magnetic MIMO System Using Signal Processing for Robustness to Misalignment. In Ph.D. Dissertation; DGIST: Daegu, Republic of Korea, 2017. [Google Scholar]
- Zhao, G.; Wang, J.; Chen, W.; Song, J. A Novel Signal Detection Algorithm for Underwater MIMO-OFDM Systems Based on Generalized MMSE. J. Sens. 2019, 2019, 2603051. [Google Scholar] [CrossRef]
- Jiang, F.; Li, C.; Gong, Z.; Zhang, Y.; Liu, S.; Hao, K. Efficient and Fast Processing of Large Array Signal Detection in Underwater Acoustic Communications. In Proceedings of the ICC 2019—2019 IEEE International Conference on Communications (ICC), Shanghai, China, 20–24 May 2019; pp. 1–6. [Google Scholar]
- Wang, J.; Ma, S.; Cui, Y.; Sun, H.; Zhou, M.; Wang, B.; Li, J.; Liu, L. Signal Detection for Full-Duplex Cognitive Underwater Acoustic Communications with SIC Using Model-Driven Deep Learning Network. In Proceedings of the 2019 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC), Dalian, China, 20–22 September 2019; pp. 1–6. [Google Scholar]
- Qin, X.; Qu, F.; Wu, Y.; Ma, D. On Sparse Bayesian Spreading Function Estimation Based Iterative Detection in Multiple-Input Multiple-Output Underwater Acoustic Communications. In Proceedings of the 2018 OCEANS—MTS/IEEE Kobe Techno-Oceans (OTO), Kobe, Japan, 28–31 May 2018; pp. 1–7. [Google Scholar]
- Lu, H.; Jiang, M.; Cheng, J. Deep Learning Aided Robust Joint Channel Classification, Channel Estimation, and Signal Detection for Underwater Optical Communication. IEEE Trans. Commun. 2021, 69, 2290–2303. [Google Scholar] [CrossRef]
- Ji, Y.-W.; Wu, G.-F.; Wang, C. Generalized Likelihood Block Detection for SPAD-Based Underwater VLC System. IEEE Photonics J. 2020, 12, 1–10. [Google Scholar] [CrossRef]
- Yang, G.; Moghadam, M.R.V.; Zhang, R. Magnetic MIMO Signal Processing and Optimization for Wireless Power Transfer. IEEE Trans. Signal Process. 2017, 65, 2860–2874. [Google Scholar] [CrossRef] [Green Version]
- Marques da Silva, M.; Dinis, R.; Aleixo, J.; Oliveira, L.M.L. On the Performance of LDPC-Coded MIMO Schemes for Underwater Communications Using 5G-like Processing. Appl. Sci. 2022, 12, 5549. [Google Scholar] [CrossRef]
- Akhondi, M.; Alirezapouri, M.A. A modified ZF algorithm for signal detection in an underwater MIMO STBC-OFDM acoustic communication system. Ann. Telecommun. 2023. [Google Scholar] [CrossRef]
- Gao, J.; Zhao, D.; Wu, C. A Joint Synchronization and Channel Estimation Algorithm for MIMO-OFDM System. TELKOMNIKA Indones. J. Electr. Eng. 2013, 11, 7571–7579. [Google Scholar] [CrossRef]
Function | AWOA | WOA | GWO | PSO |
---|---|---|---|---|
1.92 × 10−3 | 1.53 × 100 | 2.37 × 10−1 | 1.03 × 103 | |
1.54 × 10−10 | 7.81 × 101 | 3.427 × 10−6 | 9.21 × 100 | |
1.01 × 10−1 | 1.60 × 10−1 | 5.54 × 100 | 8.96 × 103 | |
−2.09 × 104 | 1.99 × 103 | −5.27 × 103 | −3.15 × 103 | |
0 | 0 | 1.11 × 10−8 | 3.14 × 101 | |
8.88 × 10−16 | 3.46 × 10−10 | 2.96 × 10−6 | 2.47 × 101 |
Parameter | Value | Parameter | Value |
---|---|---|---|
Channel type | Rayleigh | Noise type | Gauss noise |
Coding method | V-BLAST | Modulation method | QPSK,16-QAM |
Carrier frequency | 125 kHz | Resonant frequency | 10–30 kHz |
Number of frames | 1000 | Population | 100 |
Transmitting power | 3.3–5.0 w | Receiving sensitivity | 500 μV |
Depth of nodes in water | 1 m | Transmission distance | 0.5–6.5 m |
Coil radius | 0.25 m | Coil diameter | 0.59 mm |
Coil turns | 30 | Coil resistance | 1.4456 Ω |
Number of symmetrical antennas | 2–2, 4–4, 8–8 | Number of asymmetric antennas | 2–4,4–6,4–8 |
Tuned capacitance | 390 nF | Inductance | 534.518 μH |
Propagation speed | 3.0 × 108 m/s | Node mobility | 1.5 m/s |
Magnetic permeability | 4π × 10−7 H/m | The relative speed of nodes | 0 m/s |
Type of water body | Seawater | Conductivity | 25,000 µS/cm |
Distance (m) | Alignment Mode | Control Signal Reception | Data signal Reception |
---|---|---|---|
3.5 | Horizontal | √ | √ |
Vertical | √ | × | |
4.5 | Horizontal | √ | √ |
Vertical | × | × | |
5.5 | Horizontal | √ | √ |
Vertical | × | × | |
6.5 | Horizontal | × | √ |
Vertical | × | × |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, G.; Wang, J.; Zhang, J. AWOA: An Advanced Whale Optimization Algorithm for Signal Detection in Underwater Magnetic Induction Multi-Input–Multi-Output Systems. Electronics 2023, 12, 1559. https://doi.org/10.3390/electronics12071559
Gao G, Wang J, Zhang J. AWOA: An Advanced Whale Optimization Algorithm for Signal Detection in Underwater Magnetic Induction Multi-Input–Multi-Output Systems. Electronics. 2023; 12(7):1559. https://doi.org/10.3390/electronics12071559
Chicago/Turabian StyleGao, Guohong, Jianping Wang, and Jie Zhang. 2023. "AWOA: An Advanced Whale Optimization Algorithm for Signal Detection in Underwater Magnetic Induction Multi-Input–Multi-Output Systems" Electronics 12, no. 7: 1559. https://doi.org/10.3390/electronics12071559
APA StyleGao, G., Wang, J., & Zhang, J. (2023). AWOA: An Advanced Whale Optimization Algorithm for Signal Detection in Underwater Magnetic Induction Multi-Input–Multi-Output Systems. Electronics, 12(7), 1559. https://doi.org/10.3390/electronics12071559