Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (42)

Search Parameters:
Keywords = magnesium isotopes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
34 pages, 12770 KiB  
Article
Immiscibility in Magma Conduits: Evidence from Granitic Enclaves
by Ya Tian, Guanglai Li, Yongle Yang, Chao Huang, Yinqiu Hu, Kai Xu and Ji Zhang
Minerals 2025, 15(7), 664; https://doi.org/10.3390/min15070664 - 20 Jun 2025
Viewed by 312
Abstract
Many granitic enclaves are developed in the volcanic channel of the Xiangshan volcanic basin. To explore their genesis, this study examined the petrography, geochemistry, LA-ICP-MS zircon U–Pb chronology, and zircon Hf isotopes of the granitic enclaves and compared them with the porphyroclastic lavas. [...] Read more.
Many granitic enclaves are developed in the volcanic channel of the Xiangshan volcanic basin. To explore their genesis, this study examined the petrography, geochemistry, LA-ICP-MS zircon U–Pb chronology, and zircon Hf isotopes of the granitic enclaves and compared them with the porphyroclastic lavas. In general, the granitic enclaves and porphyroclastic lavas have similar structures, and the rock-forming minerals and accessory minerals have relatively close compositions. In terms of rock geochemical characteristics, the granitic enclaves are richer in silicon and alkalis but have lower abundances of aluminum, magnesium, iron, and calcium than the porphyroclastic lavas. Rb, Th, K, Sm, and other elements are more enriched, whereas Ba, Ti, Nb, P, and other elements are more depleted. The granitic enclaves have lower rare earth contents (195.53 × 10−6–271.06 × 10−6) than the porphyroclastic lavas (246.67 × 10−6–314.27 × 10−6). The rare earth element distribution curves of the two are generally consistent, both right-leaning, and enriched with light rare earth patterns. The weighted average zircon U–Pb ages of two granitic enclave samples were 135.45 ± 0.54 Ma (MSWD = 0.62, n = 17) and 135.81 ± 0.60 Ma (MSWD = 0.40, n = 20), respectively, which are consistent with the weighted average age of a single porphyroclastic lava sample of 134.01 ± 0.53 Ma (MSWD = 2.0, n = 20). The zircons of the two kinds of rocks crystallize at almost the same temperature. The consistent trend of the rare earth element distribution curve of zircons in the granitic enclaves and the porphyroclastic lava samples indicates that the zircons of the two samples were formed in the same stage. The formation process of granitic enclaves may be that the lower crustal melt is induced to rise, and the crystallization differentiation occurs in the magma reservoir and is stored in the form of crystal mush, forming a shallow crystal mush reservoir. The crystal mush reservoir is composed of a large number of rock-forming minerals such as quartz, feldspar, and biotite, as well as accessory mineral crystals such as zircon and flowable intergranular melt. In the later stage of magma high evolution, a small and short-time magmatic activity caused a large amount of crystalline granitic crystal mush to pour into the volcanic pipeline. In the closed system of volcanic pipeline, the pressure and temperature decreased rapidly, and the supercooling degree increased, and the immiscibility finally formed pale granitic enclaves. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Figure 1

24 pages, 15632 KiB  
Article
Mineral Chemistry and Iron Isotope Characteristics of Magnetites in Pertek Fe-Skarn Deposit (Türkiye)
by Hatice Kara, Cihan Yalçın, Mehmet Ali Ertürk and Leyla Kalender
Minerals 2025, 15(4), 369; https://doi.org/10.3390/min15040369 - 1 Apr 2025
Cited by 2 | Viewed by 554
Abstract
This study investigates the mineral chemistry and iron isotope composition of the Pertek Fe-skarn deposit in the Eastern Taurides, Turkey, to elucidate skarn formation and ore genesis through chemical and isotopic parameters. The deposit consists of substantial and dispersed magnetite ores formed by [...] Read more.
This study investigates the mineral chemistry and iron isotope composition of the Pertek Fe-skarn deposit in the Eastern Taurides, Turkey, to elucidate skarn formation and ore genesis through chemical and isotopic parameters. The deposit consists of substantial and dispersed magnetite ores formed by the intrusion of a dioritic suite into marbles. Mineral assemblages, including hematite, goethite, andradite garnet, hedenbergite pyroxene, calcite, and quartz, exhibit compositional variations at different depths within the ore body. Magnetite is commonly associated with hematite, goethite, garnet, pyroxene, calcite, and quartz. Extensive LA–ICP–MS analysis of magnetite chemistry reveals elevated trace element concentrations of titanium (Ti), aluminum (Al), vanadium (V), and magnesium (Mg), distinguishing Pertek magnetite from low-temperature hydrothermal deposits. The enrichment of Ti (>300 ppm) and V (>200 ppm), along with the presence of Al and Mg, suggests formation from high-temperature hydrothermal fluids exceeding 300 °C. Discriminant diagrams, such as Al+Mn versus Ti+V, classify Pertek magnetite within the skarn deposit domain, affirming its medium- to high-temperature hydrothermal origin (200–500 °C), characteristic of skarn-type deposits. Magnetite thermometry calculations yield an average formation temperature of 414.53 °C. Geochemical classification diagrams, including Ni/(Cr+Mn) versus Ti+V and TiO2-Al2O3-MgO+MnO, further support the skarn-type genesis of the deposit, distinguishing Pertek magnetite from other iron oxide deposits. The Fe-skarn ore samples display low total REE concentrations, variable Eu anomalies, enrichment in LREEs, and depletion in HREEs, consistent with fluid–rock interactions in a magmatic–hydrothermal system. The δ56Fe values of magnetite range from 0.272‰ to 0.361‰, while the calculated δ56Fe_aq values (0.479‰ to 0.568‰) suggest a magmatic–hydrothermal origin. The δ57Fe values (0.419‰ to 0.530‰) and the calculated 103lnβ value of 0.006397 indicate re-equilibration of the magmatic–hydrothermal fluid during ore formation. Full article
(This article belongs to the Section Mineral Deposits)
Show Figures

Figure 1

29 pages, 27225 KiB  
Article
Paleo-Asian Ocean Ridge Subduction: Evidence from Volcanic Rocks in the Fuyun–Qinghe Area, Southern Margin of the Chinese Altay
by Jixu Liu, Cui Liu, Qing Liu, Zhaohua Luo, Yong Liu, Chenghao Zhou, Xu Guo, Xianghui Yu and Miao Wang
Appl. Sci. 2025, 15(7), 3736; https://doi.org/10.3390/app15073736 - 28 Mar 2025
Viewed by 398
Abstract
The Chinese Altay is located in the western segment of the Central Asian Orogenic Belt (CAOB) and preserves critical records of the Paleo-Asian Ocean (PAO) Plate evolution during the Paleozoic era. This region also hosts significant mineral deposits, making it a focal point [...] Read more.
The Chinese Altay is located in the western segment of the Central Asian Orogenic Belt (CAOB) and preserves critical records of the Paleo-Asian Ocean (PAO) Plate evolution during the Paleozoic era. This region also hosts significant mineral deposits, making it a focal point for geological research. In this paper, field investigation, petrology, mineralogy, and petrography studies were conducted on volcanic rocks in the Fuyun–Qinghe area, southern margin of the Chinese Altay, and the paper provided new zircon LA-ICP-MS dating data, Lu-Hf isotope data, and whole-rock geochemical data of the basaltic to andesitic volcanic rocks. Thus, the formation age, petrogenesis, and tectonic setting of these rocks were discussed, which was of great significance to reveal the nature of the PAO Plate. The findings showed that the basaltic andesitic volcanic breccia was formed at 382.9 ± 3.4 Ma, the basalt was 401.7 ± 4.7 Ma, and the andesites were 405.1 ± 5.6 Ma and 404.8 ± 6.7 Ma, which indicated that the above rocks were formed in the Early–Middle Devonian. The volcanic rock assemblages were hawaiite, mugearite, potassic trachybasalt, basaltic andesite, andesite, benmoreite, etc., which contained labeled magmatic rocks such as adakite, sub-boninite, niobium-enriched arc basalt (NEAB), picrite, high-magnesium andesite (HMA), and magnesium andesite (MA). Comprehensive analysis indicated that magma probably mainly originated from three sources: (1) partial melting of the PAO slab, (2) partial melting of the overlying garnet–spinel lherzolite mantle peridotite metasomatized by subducting-related fluids (melts), and (3) a possible input of the asthenosphere. Comparative analysis with modern analogs (e.g., Chile Triple Junction) indicates that ridge subduction of the PAO had existed in the Fuyun–Qinghe area during the Early–Middle Devonian. Based on available evidence, we tentatively named the oceanic plates in this region the central Fuyun–Qinghe Ridge and the Junggar Ocean Plates, separated by the ridge on both sides. Although the ocean had a certain scale, it had entered the climax period of transition from ocean to continent. Full article
(This article belongs to the Special Issue Recent Advances in Geochemistry)
Show Figures

Figure 1

28 pages, 9029 KiB  
Article
Petrogenesis, Geochemistry, and Geological Significance of the Kongco Granitic Porphyry Dykes in the Northern Part of the Central Lhasa Microblock, Tibet
by Anping Xiang, Hong Liu, Wenxin Fan, Qing Zhou, Hong Wang and Kaizhi Li
Minerals 2025, 15(3), 283; https://doi.org/10.3390/min15030283 - 11 Mar 2025
Viewed by 780
Abstract
The Kongco area of Nima in the northern part of the Lhasa terrane has a suite of alkaline granitic porphyry dykes associated with Early Cretaceous granites and accompanied by Cu/Mo mineralization. LA-ICP-MS 206Pb/238U zircon geochronology performed on the dykes produced [...] Read more.
The Kongco area of Nima in the northern part of the Lhasa terrane has a suite of alkaline granitic porphyry dykes associated with Early Cretaceous granites and accompanied by Cu/Mo mineralization. LA-ICP-MS 206Pb/238U zircon geochronology performed on the dykes produced an age of 104.15 ± 0.94 Ma (MSWD = 0.98), indicating the Early Cretaceous emplacement of the dykes. The dykes exhibit high silica (SiO2 = 76.22~77.90 wt.%), high potassium (K2O = 4.97~6.21 wt.%), high alkalinity (K2O + Na2O = 8.07~8.98 wt.%), low calcium (CaO = 0.24~0.83 wt.%), low magnesium (MgO = 0.06~0.20 wt.%), and moderate aluminum content (Al2O3 = 11.93~12.45 wt.%). The Rieterman index (σ) ranges from 1.93 to 2.34. A/NK (molar ratio Al2O3/(Na2O + K2O)) and A/CNK (molar ratio Al2O3/(CaO + Na2O + K2O)) values of the dykes range from 1.06 to 1.18 and 0.98 to 1.09, respectively. The dykes are relatively enriched in Rb, Th, U, K, Ta, Ce, Nd, Zr, Hf, Sm, Y, Yb, and Lu, and they show a noticeable relative depletion in Ba, Nb, Sr, P, Eu, and Ti, as well as an average differentiation index (DI) of 96.42. The dykes also exhibit high FeOT/MgO ratios (3.60~10.41), Ga/Al ratios (2.22 × 10−4~3.01 × 10−4), Y/Nb ratios (1.75~2.40), and Rb/Nb ratios (8.36~20.76). Additionally, they have high whole-rock Zr saturation temperatures (884~914 °C), a pronounced Eu negative anomaly (δEu = 0.04~0.23), and a rightward-sloping “V-shaped” rare earth element pattern. These characteristics suggest that the granitic porphyry dykes can be classified as A2-type granites formed in a post-collisional tectonic environment and that they are weakly peraluminous, high-potassium, and Calc-alkaline basaltic rocks. Positive εHf(t) values = 0.43~3.63 and a relatively young Hf crustal model age (TDM2 = 826~1005 Ma, 87Sr/86Sr ratios = 0.7043~0.7064, and εNd(t) = −8.60~−2.95 all indicate lower crust and mantle mixing. The lower crust and mantle mixing model is also supported by (206Pb/204Pb)t = 18.627~18.788, (207Pb/204Pb)t = 15.707~15.719, (208Pb/204Pb)t = 39.038~39.110). Together, the Hf, Sr and Pb isotopic ratios indicate that the Kongco granitic porphyry dykes where derived from juvenile crust formed by the addition of mantle material to the lower crust. From this, we infer that the Kongco granitic porphyry dykes are related to a partial melting of the lower crust induced by subduction slab break-off and asthenospheric upwelling during the collision between the Qiangtang and Lhasa terranes and that they experienced significant fractional crystallization dominated by potassium feldspar and amphibole. These dykes are also accompanied by significant copper mineralization (five samples, copper content 0.2%), suggesting a close relationship between the magmatism associated with these dykes and regional metallogenesis, indicating a high potential for mineral exploration. Full article
(This article belongs to the Special Issue Using Mineral Chemistry to Characterize Ore-Forming Processes)
Show Figures

Figure 1

21 pages, 13736 KiB  
Article
Gold Mineralization at the Syenite-Hosted Anwangshan Gold Deposit, Western Qinling Orogen, Central China
by Wenyuan Chen, Zhibo Yan, Jin Yuan, Yuanyuan Zhao, Xinyu Xu, Liqiang Sun, Xinbiao Lü and Jian Ma
Minerals 2024, 14(10), 1057; https://doi.org/10.3390/min14101057 - 21 Oct 2024
Viewed by 1580
Abstract
The Anwangshan gold deposit is located in the northwestern part of the Fengtai Basin, Western Qinling Orogen (WQO). The gold ore is hosted within quartz syenite and its contact zone. The U–Pb weighted mean age of the quartz syenite is 231 ± 1.8 [...] Read more.
The Anwangshan gold deposit is located in the northwestern part of the Fengtai Basin, Western Qinling Orogen (WQO). The gold ore is hosted within quartz syenite and its contact zone. The U–Pb weighted mean age of the quartz syenite is 231 ± 1.8 Ma. It is characterized by high potassium (K2O = 10.13%, K2O/Na2O > 1) and high magnesium (Mg# = 55.31 to 72.78) content, enriched in large ion lithophile elements (Th, U, and Ba) and light rare earth elements (LREE), with a typical “TNT” (Ti, Nb, and Ta) deficiency. The geochemical features and Hf isotope compositions (εHf(t) = −6.68 to +2.25) suggest that the quartz syenite would form from partial melting of an enriched lithospheric mantle under an extensional setting. Three generations of gold mineralization have been identified, including the quartz–sericite–pyrite (Py1) stage I, the quartz–pyrite (Py2)–polymetallic sulfide–early calcite stage II, and the epidote–late calcite stage III. In situ sulfur isotope analysis of pyrite shows that Py1 (δ34S = −1.1 to +3.8‰) possesses mantle sulfur characteristics. However, Py2 has totally different δ34S (+5.1 to +6.7‰), which lies between the typical orogenic gold deposits in the WQO (δ34S = +8 to +12‰) and mantle sulfur. This suggests a mixed source of metamorphosed sediments and magmatic sulfur during stage II gold mineralization. The fluid inclusions in auriferous quartz have three different types, including the liquid-rich phase type, pure (gas or liquid)-phase type, and daughter-minerals-bearing phase type. Multiple-stage fluid inclusions indicate that the ore fluids are medium-temperature (concentrated at 220 to 270 °C), medium-salinity (7.85 to 13.80% NaCleq) CO2–H2O–NaCl systems. The salinity is quite different from typical orogenic gold deposits in WQO and worldwide, and this is more likely to be a mixture of magmatic and metamorphic fluids as well. In summary, the quartz syenite should have not only a spatio-temporal but also a genetical relationship with the Anwangshan gold deposit. It could provide most of the gold and ore fluids at the first stage, with metamorphic fluids and/or gold joining in during the later stages. Full article
(This article belongs to the Special Issue The Formation and Evolution of Gold Deposits in China)
Show Figures

Figure 1

16 pages, 624 KiB  
Article
Nutrient Composition and Quality Assessment of Royal Jelly Samples Relative to Feed Supplements
by Sampat Ghosh, Hyeonjeong Jang, Sukjun Sun and Chuleui Jung
Foods 2024, 13(12), 1942; https://doi.org/10.3390/foods13121942 - 20 Jun 2024
Cited by 4 | Viewed by 2393
Abstract
Royal jelly is a substance secreted by the hypopharyngeal and mandibular glands of nurse honey bees, serving as crucial nutritional source for young larvae, queen honey bees, and also valuable product for humans. In this study, the effect of the feed supplements on [...] Read more.
Royal jelly is a substance secreted by the hypopharyngeal and mandibular glands of nurse honey bees, serving as crucial nutritional source for young larvae, queen honey bees, and also valuable product for humans. In this study, the effect of the feed supplements on the nutritional composition and qualities of royal jelly was investigated. Two types of royal jelly samples were acquired: one from honey bees fed with sugar syrup as a feed supplement and the other from honey bees fed with honey. The production, harvesting, and storage of all royal jelly samples followed standard procedures. Parameters for quality assessment and nutritional value, including stable carbon isotopic ratio, moisture content, 10-hydroxy-2-decenoic acid (10-HDA) level, carbohydrate composition, amino acid composition, and mineral contents, were analyzed. The results revealed that despite variability in moisture content and carbohydrate composition, fructose was lower (2.6 and 4.1 g/100 g as is for sugar-fed and honey-fed royal jelly, respectively) and sucrose was higher (7.5 and 2.7 g/100 g as is for sugar-fed and honey-fed royal jelly, respectively) in the sugar-fed group. The stable isotope ratio (−16.4608‰ for sugar-fed and −21.9304‰ for honey-fed royal jelly) clearly distinguished the two groups. 10-HDA, amino acid composition, and total protein levels were not significantly different. Certain minerals, such as potassium, iron, magnesium, manganese, and phosphorus were higher in the honey-fed group. Hierarchical analysis based on moisture, sugar composition, 10-HDA, and stable carbon isotopes categorized the samples into two distinct groups. This study demonstrated that the feed source could affect the nutritional quality of royal jelly. Full article
Show Figures

Figure 1

23 pages, 4462 KiB  
Article
Synergic Origin and Evolution of TDS, Mg and Fluoride in Groundwater as Relative to Chronic Kidney Disease of Unknown Etiology (CKDu) in Sri Lanka
by K. S. G. S. Priyadarshanee, Zhonghe Pang, E. A. N. V. Edirisinghe, H. M. T. G. A. Pitawala, J. D. C. Gunasekara, W. M. G. S. Wijesooriya, Yinlei Hao, Yifan Bao and Jiao Tian
Water 2024, 16(11), 1606; https://doi.org/10.3390/w16111606 - 4 Jun 2024
Cited by 2 | Viewed by 1732
Abstract
The rural population in the Dry Zone of Sri Lanka is largely affected by Chronic Kidney Disease of Unknown etiology (CKDu). According to the multidisciplinary research carried out so far, quality of groundwater is considered one of the possible causative factors for CKDu. [...] Read more.
The rural population in the Dry Zone of Sri Lanka is largely affected by Chronic Kidney Disease of Unknown etiology (CKDu). According to the multidisciplinary research carried out so far, quality of groundwater is considered one of the possible causative factors for CKDu. Therefore, assessment of the quality of groundwater being used for drinking and its evolution mechanism is the key to identifying the linkage between CKDu and drinking water. This study aimed to perform a detailed investigation on groundwater sources using isotopic, chemical, and hydrogeological methods in the CKDu-endemic (site A) and the control area (sedimentary formation—site B) in the Malwathu Oya basin and the control areas in the Malala Oya basin (site C) selected for a systematic comparison. Our investigation shows that elevated levels of TDS, magnesium, and fluoride in the shallow groundwater affected by climatic, geochemical, and hydrogeological processes may contribute to the CKDu in the Dry Zone of Sri Lanka. All the groundwater samples analysed have exceeded the hardness threshold. Prominent Mg hardness proportion together with excess F in the CKDu endemic area may produce nephrotoxic MgF2 complexes that may trigger renal damage. In contrast, NaF complexes in the CKDu control area leads to reduction of F toxicity in the human body. Elevated F and Mg2+ are found in site A, low F and high Mg2+ in site B, and either combinations of low F and low Mg2+, high F and low Mg2+, or low F with high Mg2+ in site C. TDS, hardness, Mg2+, Na+, and F are formed with different mechanisms in the three selected areas. The primary process that regulates the evolution of groundwater types and contents in sites A and C is the weathering of silicates. Similarly, in site A, carbonate dissolution and reverse ion exchange are quite strong. Cation exchange and evaporite dissolution are more pronounced in site C. Shallow groundwaters are evapo-concentrated, hence their quality deteriorates more significantly than the deep groundwater in the CKDu endemic area. Dilution decreases the ion content in site A while evaporite dissolution increases it in site C after the rainy season. Evaporation and seawater mixing affect the quality of groundwater in site B. It is also found that a statistically significant difference exists in the F/Na+, F/Mg2+, and F/Ca2+ between the endemic and control areas. Intensive rock weathering combined with desorption has added excess F to the groundwater in site A, while cation exchange and fluorite dissolution are contributing factors in site C. Full article
(This article belongs to the Topic Advances in Hydrogeological Research)
Show Figures

Figure 1

16 pages, 14962 KiB  
Article
Genesis and Related Reservoir Development Model of Ordovician Dolomite in Shuntogol Area, Tarim Basin
by Liangxuanzi Zhong, Leli Cheng, Heng Fu, Shaoze Zhao, Xiaobin Ye, Yidong Ding and Yin Senlin
Minerals 2024, 14(6), 545; https://doi.org/10.3390/min14060545 - 25 May 2024
Viewed by 1417
Abstract
The Ordovician thick dolostone in Shuntogol area of the Tarim Basin has the potential to form a large-scale reservoir, but its genesis and reservoir development model are still unclear. Starting from a sedimentary sequence, this study takes a batch of dolostone samples obtained [...] Read more.
The Ordovician thick dolostone in Shuntogol area of the Tarim Basin has the potential to form a large-scale reservoir, but its genesis and reservoir development model are still unclear. Starting from a sedimentary sequence, this study takes a batch of dolostone samples obtained from new drilling cores in recent years as the research object. On the basis of core observation and thin section identification, trace elements, cathodoluminescence, carbon and oxygen isotopes, rare earth elements, and X-ray diffraction order degree tests were carried out to discuss the origin of the dolomite and summarize the development model of the dolostone reservoir. The analysis results show that the Ordovician dolomite in the study area had a good crystalline shape, large thickness, high Fe and Mn values, and mostly showed bright red light or bright orange–red light under cathode rays. The ratio of δ18O values to seawater values at the same time showed a negative bias; the δCe values were negative anomalies, the δEu values were positive anomalies, and the order degree was high. This indicates that the dolomitization process occurred in a relatively closed diagenetic environment. The Ordovician carbonate rocks in the study area were low-lying during the sedimentary period, and with the rise of sea level, the open platform facies continued to develop. When the Middle and Lower Ordovician series entered the burial stage, the main hydrocarbon source rocks of the lower Cambrian Series entered the oil generation peak, and the resulting formation overpressure provided the dynamic source for the upward migration of the lower magnesium-rich fluid, and the dolomitization fluid entered the karst pore system in the target layer to produce all the dolomitization. This set of dolostone reservoirs is large in scale and can be used as a favorable substitute area for deep carbonate exploration for continuous study. Full article
Show Figures

Figure 1

13 pages, 1324 KiB  
Article
Advancing in Cesium Retention: Application of Magnesium Phosphate Cement Composites
by Sana Gharsallah, Nawel Khitouni, Abdulrahman Mallah, Abdulrahman Alsawi, Abdullah H. Alluhayb, Mohamed Khitouni, Clarence Charnay and Mahmoud Chemingui
Materials 2024, 17(9), 2132; https://doi.org/10.3390/ma17092132 - 1 May 2024
Viewed by 2351
Abstract
A serious risk that harms the safe use of water and affects aquatic ecosystems is water pollution. This occurs when the water’s natural equilibrium is disrupted by an excessive amount of substances, both naturally occurring and as a byproduct of human activities, that [...] Read more.
A serious risk that harms the safe use of water and affects aquatic ecosystems is water pollution. This occurs when the water’s natural equilibrium is disrupted by an excessive amount of substances, both naturally occurring and as a byproduct of human activities, that have varied degrees of toxicity. Radiation from Cs isotopes, which are common components of radioactive waste and are known for their long half-lives (30 years), which are longer than the natural decay processes, is a major source of contamination. Adsorption is a commonly used technique for reducing this kind of contamination, and zeolite chabazite has been chosen as the best adsorbent for cesium in this particular situation. The purpose of this research is to investigate a composite material based on magnesium phosphate cement (MPC). Magnesium oxide (MgO), potassium dihydrogen phosphate (KH2PO4), and properly selected retarders are used to create the MPC. The optimal conditions for this composite material are investigated through the utilization of X-ray diffraction, scanning electron microscopy, BET surface area analysis, and atomic absorption spectroscopy. The principal aim is to enable innovations in the elimination of radioactive waste-contaminated water using effective cesium removal. The most promising results were obtained by using KH2PO4 as an acid, and MgO as a base, and aiming for an M/P ratio of two or four. Furthermore, we chose zeolite chabazite as a crucial component. The best adsorption abilities for Cs were found at Qads = 106.997 mg/g for S2 and Qads = 122.108 mg/g for S1. As a result, zeolite is an eco-friendly material that is a potential usage option, with many benefits, such as low prices, stability, and ease of regeneration and use. Full article
Show Figures

Figure 1

19 pages, 4777 KiB  
Article
Dynamic Climate Influence on Magnesium Isotope Variation in Saline Lacustrine Dolomite: A Case Study of the Qianjiang Formation, Jianghan Basin
by Tianyu Wang, Kun Ling, Ren Wei and Lin Dong
Minerals 2024, 14(5), 459; https://doi.org/10.3390/min14050459 - 26 Apr 2024
Cited by 1 | Viewed by 1469
Abstract
The investigation of magnesium (Mg) isotopes in dolomite has mainly focused on marine dolomite environments, leaving a significant gap in the understanding of their dynamics within lacustrine settings, especially in saline lake basins. In this study, a total of 16 sediment core samples [...] Read more.
The investigation of magnesium (Mg) isotopes in dolomite has mainly focused on marine dolomite environments, leaving a significant gap in the understanding of their dynamics within lacustrine settings, especially in saline lake basins. In this study, a total of 16 sediment core samples from Well BX-7 in the Qianjiang Depression were sequentially selected for scanning electron microscope observation, whole-rock analysis for major and minor elements, and isotopic measurements including δ18Ocarb, δ13Ccarb, δ26Mgdol, and δ26MgSi. In addition, two intact cores were subjected to detailed analysis on the centimeter scale. Sedimentation models were established to elucidate dolomite formation under contrasting climatic conditions, specifically humid climates with a significant riverine Mg input versus relatively dry conditions with a lower Mg input. Furthermore, a quantitative model was developed to assess the magnesium flux and isotopic mass balance within lacustrine systems, simulating the magnesium isotope variations in lake water under different climatic scenarios. The dolomite sample data at a smaller scale (sampling interval ≈ 3~5 mm) demonstrate a consistent trend with the established model, providing additional confirmation of its reliability. Dolomite precipitated under humid climatic conditions exhibits a lower and relatively stable δ26Mgdol, lower δ18O, and higher CIA, indicating higher river inputs and relatively stable Mg isotope values of lake water controlled by river input. Nevertheless, dolomite formed under relatively dry climatic conditions shows a relatively high δ26Mgdol, higher δ18O, and lower CIA, suggesting reduced river inputs and weathering intensity, as well as relatively high magnesium isotope values of the lake water controlled by dolomite precipitation. This study contributes to the understanding of magnesium isotopes in lacustrine dolomite systems. Full article
Show Figures

Graphical abstract

21 pages, 8608 KiB  
Article
Origin and Geological Implications of Monzogranites and Rhyolitic Porphyries in the Wunugetu Porphyry Copper–Molybdenum Deposit, Northeast China: Evidence from Zircon U-Pb-Hf Isotopes and Whole-Rock Geochemistry
by Qingshuang Wang, Yanchen Yang, Qiulin Fu, Zhongyue Zhang, Xiaodan Guo, Taotao Wu, Lu Chai, Yongheng Zhou and Yonghai An
Minerals 2024, 14(3), 310; https://doi.org/10.3390/min14030310 - 15 Mar 2024
Viewed by 1707
Abstract
The Wunugetu deposit, a large-scale porphyry copper–molybdenum deposit, is located in the southern Erguna block. Its ore bodies are primarily found within monzogranites, granite porphyries, and biotite monzogranites. Additionally, the deposit contains late-stage intrusive dykes of rhyolitic porphyries. This study examined the deposit’s [...] Read more.
The Wunugetu deposit, a large-scale porphyry copper–molybdenum deposit, is located in the southern Erguna block. Its ore bodies are primarily found within monzogranites, granite porphyries, and biotite monzogranites. Additionally, the deposit contains late-stage intrusive dykes of rhyolitic porphyries. This study examined the deposit’s monzogranites and rhyolitic porphyries using lithogeochemistry, zircon U-Pb dating, and Hf isotopic analysis. The main findings include: (1) Zircon U-Pb dating showed that the monzogranites formed around 209.0 ± 1.0 Ma, whereas the rhyolitic porphyries in the northern portion formed around 170.49 ± 0.81 Ma, suggesting magmatic activity in the deposit spanned from the Late Triassic to the Middle Jurassic. (2) The monzogranites exhibited high silicon content (73.16–80.47 wt.%) and relatively low aluminum content (10.98–14.37 wt.%). They are enriched in alkalis (content: 3.42–10.10 wt.%) and deficient in magnesium and sodium, with aluminum saturation indices (A/CNK) ranging from 1.1 to 2.9. In addition, the monzogranites are enriched in large-ion lithophile elements (LILEs) such as Rb, K, and Ba and deficient in high-field-strength elements (HFSEs) like Nb, P, and Ti. (3) The monzogranites have low Zr + Nb + Ce + Y contents of (151.3–298.6 ppm) × 10−6 and 10,000 × Ga/Al ratios varying between 1.20 and 2.33, suggesting that they are characteristic of I-type granites. (4) Positive zircon εHf(t) values ranging from +0.3 to +7.6 in both rhyolitic porphyry and monzogranite samples, increasing with younger emplacement ages, imply that the deposit’s rocks originated from magmatic mixing between mantle-derived mafic magmas and remelts of the juvenile crust. Considering these results and the regional geological evolution, this study proposes that the Wunugetu deposit was formed in an active continental margin setting and was influenced by the Late Triassic–Middle Jurassic southeastward subduction of the Mongol-Okhotsk Ocean. Full article
Show Figures

Figure 1

15 pages, 1641 KiB  
Article
Serum Mg Isotopic Composition Reveals That Mg Dyshomeostasis Remains in Type 1 Diabetes despite the Resolution of Hypomagnesemia
by Kaj Vaughan Sullivan, Yasmina Assantuh, Rosa Grigoryan, Marta Costas-Rodríguez, Eduardo Bolea-Fernandez, Bruno Lapauw, Steven Van Laecke and Frank Vanhaecke
Int. J. Mol. Sci. 2023, 24(21), 15683; https://doi.org/10.3390/ijms242115683 - 27 Oct 2023
Viewed by 1850
Abstract
Hypomagnesemia was historically prevalent in individuals with type 1 diabetes mellitus (T1DM), but contemporary results indicate an incidence comparable to that in the general population, likely due to improved treatment in recent decades, resulting in better glycemic control. However, a recent study found [...] Read more.
Hypomagnesemia was historically prevalent in individuals with type 1 diabetes mellitus (T1DM), but contemporary results indicate an incidence comparable to that in the general population, likely due to improved treatment in recent decades, resulting in better glycemic control. However, a recent study found a significant difference between the serum Mg isotopic composition of T1DM individuals and controls, indicating that disruptions to Mg homeostasis persist. Significant deviations were also found in samples taken one year apart. To investigate whether the temporal variability in serum Mg isotopic composition is linked to the transient impact of administered insulin, Mg isotope ratios were determined in serum from 15 T1DM individuals before and one hour after insulin injection/meal consumption using multi-collector inductively coupled plasma-mass spectrometry. Consistent with results of the previous study, significant difference in the serum Mg isotopic composition was found between T1DM individuals and 10 sex-matched controls. However, the average difference between pre- and post-insulin injection/meal T1DM samples of 0.05 ± 0.13‰ (1SD) was not significant. No difference was observed for controls before (−0.12 ± 0.16‰) and after the meal (−0.10 ± 0.13‰) either, suggesting a lack of a postprandial Mg isotopic response within one hour of food consumption, and that the timing of the most recent meal may not require controlling for when determining serum Mg isotopic composition. Full article
(This article belongs to the Special Issue The Role of Mg Homeostasis in Disease)
Show Figures

Figure 1

19 pages, 30442 KiB  
Article
Analysis of the Recharge Area of the Perrot Spring (Aosta Valley) Using a Hydrochemical and Isotopic Approach
by Luis Miguel Santillán-Quiroga, Daniele Cocca, Manuela Lasagna, Chiara Marchina, Enrico Destefanis, Maria Gabriella Forno, Marco Gattiglio, Giacomo Vescovo and Domenico Antonio De Luca
Water 2023, 15(21), 3756; https://doi.org/10.3390/w15213756 - 27 Oct 2023
Cited by 2 | Viewed by 1903
Abstract
The Perrot Spring (1300 m a.s.l.), located to the right of the Chalamy valley in the Monte Avic Natural Park (Valle d’Aosta, Italy), is an important source of drinking water for the municipality of Champdepraz. This spring is located on a large slope [...] Read more.
The Perrot Spring (1300 m a.s.l.), located to the right of the Chalamy valley in the Monte Avic Natural Park (Valle d’Aosta, Italy), is an important source of drinking water for the municipality of Champdepraz. This spring is located on a large slope characterised by the presence of a Quaternary cover of various origins (glacial, glaciolacustrine, and landslide) above the bedrock (essentially serpentinite referred to the Zermatt–Saas Zone, Penninic Domain). Water emerges at the contact between the landslide bodies and impermeable or semi-permeable glaciolacustrine deposits. The aim of this study is to define the processes and recharge zones of this spring. The analysis of the data revealed the presence of two contributions to the Perrot Spring input: a spring thaw contribution defined by a small increase in flow and an autumn contribution from rainwater infiltration. The low average temperature and low variation of the annual temperature (4.8–6.5 °C) suggest a sufficiently deep flow circuit. Chemical analyses showed a groundwater chemistry consistent with the regional geology: the hydrochemical facies is calcium–magnesium bicarbonate and isotopic analyses (δ2H and δ18O) of rainfall and spring water suggested a recharge altitude of about 2100 m a.s.l. In conclusion, this study makes it possible to recognize the water inputs to the spring discharge and to delineate its recharge area, which can be proposed to implement strategies to protect the resource. Full article
(This article belongs to the Special Issue The Use of Environmental Isotopes in Hydrogeology)
Show Figures

Figure 1

9 pages, 948 KiB  
Article
A New Sample Processing Protocol for Separation and Purification Enabling Precise Analysis of Various Non-Traditional Isotopes in Geological Samples with Low Concentrations
by Jianye Gui and Wei Zou
Separations 2023, 10(9), 497; https://doi.org/10.3390/separations10090497 - 12 Sep 2023
Viewed by 1600
Abstract
Many non-traditional isotopes, such as chlorine, magnesium, calcium, etc., are widely used as groundwater tracers. A new sample processing protocol of purification and concentration for isotopic analysis is presented to overcome many of the major drawbacks of existing methods. Contemporary sample preparation often [...] Read more.
Many non-traditional isotopes, such as chlorine, magnesium, calcium, etc., are widely used as groundwater tracers. A new sample processing protocol of purification and concentration for isotopic analysis is presented to overcome many of the major drawbacks of existing methods. Contemporary sample preparation often requires several laborious off-line procedures in a ultra clean laboratory prior to instrumental determination; additionally, interference ions in real samples are difficult to completely remove, especially when the concentration of those ions is equal to that of the target ions. The new protocol includes the following steps: (i) one-step purification using a newly developed isotopic preparative chromatograph (IPC) with a background suppressed mode to obtain extremely pure components that only have target ions and H2O; (ii) enrichment of the collected pure solution from the previous step using a newly developed ultra clean concentrator filled with high purity nitrogen; (iii) transforming the enriched target ion into suitable speciation inside the ultra clean concentrator; (iv) finally, sending the enriched solutions to a multi-collector inductively coupled-plasma mass-spectrometer (MC-ICP-MS) or thermal ionization mass spectrometer (TIMS). The present method was validated using certified reference materials and real samples for both chlorine and magnesium; the precision of chlorine ratio value was generally below 0.22‰ and that of Mg was below 0.12‰. This processing protocol provides a potential method for isotope sample preparation and analysis in a small number of geological samples with low concentrations of many other elements or compounds such as nitrate, sulfate, lithium, calcium, strontium, etc. Full article
(This article belongs to the Special Issue Application of Chromatography in Analytical Chemistry)
Show Figures

Figure 1

16 pages, 613 KiB  
Article
Synthesis of Elements in Compact Stars in Pycnonuclear Reactions with Carbon Isotopes: Quasibound States vs. States of Zero-Points Vibrations
by Sergei P. Maydanyuk, Gyorgy Wolf and Kostiantyn A. Shaulsky
Universe 2023, 9(8), 354; https://doi.org/10.3390/universe9080354 - 29 Jul 2023
Cited by 3 | Viewed by 1358
Abstract
(1) Purpose: Conditions of formation of compound nuclear systems needed for synthesis of heavy nuclei in pycnonuclear reactions in compact stars are studied on a quantum mechanical basis. (2) Methods: The method of multiple internal reflections is applied for pycnonuclear reactions in compact [...] Read more.
(1) Purpose: Conditions of formation of compound nuclear systems needed for synthesis of heavy nuclei in pycnonuclear reactions in compact stars are studied on a quantum mechanical basis. (2) Methods: The method of multiple internal reflections is applied for pycnonuclear reactions in compact stars with new calculations of quasibound spectra and spectra of zero-point vibrations. (3) Results: Peculiarities of the method are analyzed for reaction with isotopes of Carbon. The developed method takes into account continuity and conservation of quantum flux (describing pycnonuclear reaction) inside the full spacial region of reaction, including the nuclear region. This gives the appearance of new states (called quasibound states) in which compound nuclear systems of Magnesium are formed with the largest probability. These states have not been studied yet in synthesis of elements in stars. Energy spectra of zero-point vibrations and spectra of quasibound states are estimated with high precision for reactions with isotopes of Carbon. For the first time, the influence of plasma screening on quasibound states and states of zero-point vibrations in pycnonuclear reactions has been studied. (4) Conclusions: The probability of formation of a compound nucleus in quasibound states in pycnonuclear reaction is essentially larger than the probability of formation of this system in states of zero-point vibrations studied by Zel’dovich and followers. Therefore, synthesis of Magnesium from isotopes of Carbon is more probable through the quasibound states than through the states of zero-point vibrations in compact stars. Energy spectra of zero-point vibrations are changed essentially after taking plasma screening into account. Analysis shows that from all studied isotopes of Magnesium, only 24Mg is stable after synthesis at an energy of relative motion of 4.881 MeV of the incident nuclei 12C. Full article
(This article belongs to the Special Issue Zimányi School – Heavy Ion Physics)
Show Figures

Figure 1

Back to TopTop