Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (37)

Search Parameters:
Keywords = mafic plutonic rocks

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
57 pages, 42873 KiB  
Article
The Mazenod–Sue–Dianne IOCG District of the Great Bear Magmatic Zone Northwest Territories, Canada
by A. Hamid Mumin and Mark Hamilton
Minerals 2025, 15(7), 726; https://doi.org/10.3390/min15070726 - 11 Jul 2025
Viewed by 178
Abstract
The Mazenod Lake region of the southern Great Bear Magmatic Zone (GBMZ) of the Northwest Territories, Canada, comprises the north-central portion of the Faber volcano-plutonic belt. Widespread and abundant surface exposure of several coalescing hydrothermal systems enables this paper to document, without ambiguity, [...] Read more.
The Mazenod Lake region of the southern Great Bear Magmatic Zone (GBMZ) of the Northwest Territories, Canada, comprises the north-central portion of the Faber volcano-plutonic belt. Widespread and abundant surface exposure of several coalescing hydrothermal systems enables this paper to document, without ambiguity, the relationships between geology, structure, alteration, and mineralization in this well exposed iron-oxide–copper–gold (IOCG) mineral system. Mazenod geology comprises rhyodacite to basaltic-andesite ignimbrite sheets with interlayered volcaniclastic sedimentary rocks dominated by fine-grained laminated tuff sequences. Much of the intermediate to mafic nature of volcanic rocks is masked by low-intensity but pervasive metasomatism. The region is affected by a series of coalescing magmatic–hydrothermal systems that host the Sue–Dianne magnetite–hematite IOCG deposit and several related showings including magnetite, skarn, and iron oxide apatite (IOA) styles of alteration ± mineralization. The mid to upper levels of these systems are exposed at surface, with underlying batholith, pluton and stocks exposed along the periphery, as well as locally within volcanic rocks associated with more intense alteration and mineralization. Widespread alteration includes potassic and sodic metasomatism, and silicification with structurally controlled giant quartz complexes. Localized tourmaline, skarn, magnetite–actinolite, and iron-oxide alteration occur within structural breccias, and where most intense formed the Sue–Dianne Cu-Ag-Au diatreme-like breccia deposit. Magmatism, volcanism, hydrothermal alteration, and mineralization formed during a negative tectonic inversion within the Wopmay Orogen. This generated a series of oblique offset rifted basins with continental style arc magmatism and extensional structures unique to GBMZ rifting. All significant hydrothermal centers in the Mazenod region occur along and at the intersections of crustal faults either unique to or put under tension during the GBMZ inversion. Full article
Show Figures

Figure 1

20 pages, 10850 KiB  
Article
Microminerals as Complimentary Guides into Metallogeny and the Ore-Forming Potential of Igneous Rocks: Evidence from the Stanovoy Superterrane (Russian Far East)
by Valeria Krutikova, Nikolai Berdnikov and Pavel Kepezhinskas
Minerals 2025, 15(5), 504; https://doi.org/10.3390/min15050504 - 9 May 2025
Viewed by 421
Abstract
Numerous mineral microinclusions discovered in the Triassic Ildeus mafic–ultramafic intrusion are dominated by base metal sulfides, gold, silver, and their alloys, as well as rare earth element (REE) minerals. These mineral microinclusions were formed through both the magmatic differentiation of the Ildeus intrusion [...] Read more.
Numerous mineral microinclusions discovered in the Triassic Ildeus mafic–ultramafic intrusion are dominated by base metal sulfides, gold, silver, and their alloys, as well as rare earth element (REE) minerals. These mineral microinclusions were formed through both the magmatic differentiation of the Ildeus intrusion and the multi-stage interaction of intrusive rocks with late-magmatic, post-magmatic and post-collisional fluids. A comparison of the results of our microinclusions study with ore mineralization discovered within the Ildeus intrusion suggests that microinclusion assemblages in igneous rocks are, in some cases, precursors of potentially economic mineralization. In the case of the Ildeus rocks, sulfide microinclusions correspond to potentially economic disseminated nickel–cobalt sulfide ores, while microinclusions of gold and its alloys correlate with intrusion-hosted, erratic gold mineralization. The occurrence of silver and rare earth element minerals in Ildeus plutonic rocks indicates the possible presence of silver and REE mineralization, which is supported by sub-economic whole-rock silver and REE grades in parts of the Ildeus intrusion. The results of our investigation suggest that studies of mineral microinclusions in magmatic rocks may be useful in the evaluation of their metallogenic specialization and ore-forming potential and could possibly be utilized as an additional prospecting tool in the regional exploration for precious, base, and rare metals. Full article
(This article belongs to the Special Issue Igneous Rocks and Related Mineral Deposits)
Show Figures

Graphical abstract

30 pages, 15713 KiB  
Article
Magma Mixing Origin for the Menyuan Granodioritic Pluton in the North Qilian Orogenic Belt, China
by Shugang Xia, Yu Qi, Shengyao Yu, Xiaocong Jiang, Xiangyu Gao, Yue Wang, Chuanzhi Li, Qian Wang, Lintao Wang and Yinbiao Peng
Minerals 2025, 15(4), 391; https://doi.org/10.3390/min15040391 - 8 Apr 2025
Viewed by 620
Abstract
Magma mixing or mingling is not just a geological phenomenon that widely occurs in granitoid magmatism, but a complex dynamic process that influences the formation of mafic microgranular enclaves (MMEs) and the diversity of granitic rocks. Herein, we carried out a comprehensive study [...] Read more.
Magma mixing or mingling is not just a geological phenomenon that widely occurs in granitoid magmatism, but a complex dynamic process that influences the formation of mafic microgranular enclaves (MMEs) and the diversity of granitic rocks. Herein, we carried out a comprehensive study that encompassed the petrology, mineral chemistry, zircon U-Pb ages, Lu-Hf isotopes, whole-rock elements, and Sr-Nd isotope compositions of the Menyuan Granodioritic Pluton in the northern margin of the Qilian Block, to elucidate the petrogenesis and physical and chemical processes occurring during magma mixing. The Menyuan Granodioritic Pluton is mainly composed of granodiorites accompanied by numerous mafic microgranular enclaves (MMEs) and is intruded by minor gabbro dikes. LA-ICP-MS zircon U-Pb dating reveals that these rocks possess a similar crystallization age of ca. 456 Ma. The Menyuan host granodiorites, characterized as metaluminous to weakly peraluminous, belong to subduction-related I-type calc-alkaline granites. The MMEs and gabbroic dikes have relatively low SiO2 contents and high Mg# values, probably reflecting a mantle-derived origin. They are enriched in large ion lithophile elements (LILEs) and light, rare earth elements (LREEs) but are depleted in high field strength elements (HFSEs), indicating continental arc-like geochemical affinities. The host granodiorites yield relatively enriched whole-rock Sr-Nd and zircon Hf isotopic compositions (87Sr/86Sri = 0.7072–0.7158; εNd(t) = −9.21 to −4.23; εHf(t) = −8.8 to −1.2), implying a derivation from the anatexis of the ancient mafic lower continental crust beneath the Qilian Block. The MMEs have similar initial Sr isotopes but distinct whole-rock Nd and zircon Hf isotopic compositions compared with the host granodiorites (87Sr/86Sri = 0.7078–0.7089; εNd(t) = −3.88 to −1.68; εHf(t) = −0.1 to +4.1). Field observation, microtextural and mineral chemical evidence, geochemical characteristics, and whole-rock Nd and zircon Hf isotopic differences between the host granodiorites and MMEs suggest insufficient magma mixing of lithospheric mantle mafic magma and lower continental crust felsic melt. In combination with evidence from regional geology, we propose that the anatexis of the ancient mafic lower continental crust and subsequent magma mixing formed in an active continental arc setting, which was triggered by the subducted slab rollback and mantle upwelling during the southward subduction of the Qilian Proto-Tethys Ocean during the Middle-Late Ordovician. Full article
(This article belongs to the Special Issue Tectonic Evolution of the Tethys Ocean in the Qinghai–Tibet Plateau)
Show Figures

Figure 1

26 pages, 15286 KiB  
Article
Late Triassic Felsic and Mafic Magmatism in the South Qinling Orogen, Central China: Insights from the Petrology, Zircon U-Pb Geochronology, and Geochemistry of the Huoshaodian Pluton
by Meijing Li, Xianzhi Pei, Lei Pei, Zuochen Li, Ruibao Li, Shaowei Zhao, Li Qin, Mao Wang and Xiao Wang
Minerals 2025, 15(2), 120; https://doi.org/10.3390/min15020120 - 26 Jan 2025
Cited by 1 | Viewed by 888
Abstract
The petrology, geochemistry, and zircon U-Pb chronology of the Huoshaodian pluton in the Liuba area of the western part of the South Qinling tectonic belt are investigated in this study. The Huoshaodian pluton consists of gabbro, quartz diorite, and granodiorite, and the dominated [...] Read more.
The petrology, geochemistry, and zircon U-Pb chronology of the Huoshaodian pluton in the Liuba area of the western part of the South Qinling tectonic belt are investigated in this study. The Huoshaodian pluton consists of gabbro, quartz diorite, and granodiorite, and the dominated rock type is quartz diorite. The results indicate that the Huoshaodian pluton belongs to the calc-alkaline series. In the chondrite-normalized REE, all of the samples showed similar patterns, with an enrichment of light REEs and depletion of heavy REEs, but they showed slight differences in the degrees of Eu anomalies. The primitive mantle-normalized trace element diagram reveals an enrichment of large-ion lithophile elements (LILEs) and light rare earth elements (LREEs), as well as depleted high field strength elements (HFSEs). The zircon U-Pb dating results reveal that the gabbro, quartz diorite, and granodiorite have crystallization ages of 214.9 ± 0.58 Ma, 215.0 ± 1.2 Ma, and 215.4 ± 1.9 Ma, respectively, indicating that the Huoshaodian pluton was emplaced during the late Triassic period (214.9–215.4 Ma). In terms of petrogenesis, the gabbro of the Huoshaodian pluton originates from a transitional lithospheric mantle that has undergone fluid metasomatism and partial melting. Specifically, it originated through 1%–2% garnet spinel peridotite undergoing partial melting. In addition, the gabbro underwent a slight degree of contamination by crustal materials during its ascent and intrusion, with some continental crust material being incorporated. The quartz diorite and granodiorite of the Huoshaodian pluton are formed through partial melting processes occurring within the normal lower crust. Combined with the previous studies on the early Mesozoic tectonic evolution of the South Qinling, this study proposes that the formation mechanism of the Huoshaodian pluton may be as follows: in the early Triassic, the Mianlue Ocean subducted northward beneath the Qinling microblock, resulting in a large-scale continental-continental collision between the North China Block and the Yangtze Block; when the oceanic crust subducted to a certain depth, the detachment of the subducting slab triggered the upwelling of mantle material. The heat from mantle-derived magma caused the partial melting of the mafic lower crust, while the mafic magma entered into the upper granitic magma chamber and began to mix. Due to the high viscosity contrast and temperature difference between the two end-member magmas, incomplete mixing led to the formation of a melt with distinct adakitic characteristics and a mafic melt representing mantle-derived material. Full article
Show Figures

Figure 1

20 pages, 10269 KiB  
Article
Neoproterozoic Tectonics of the Arabian-Nubian Shield: Insights from U–Pb Zircon Geochronology, Sr–Nd–Hf Isotopes, and Geochemistry of the Deki Amhare Complex Granitoids, Central Eritrea
by Peng Hu, Guoping Zeng, Zicheng Zhang, Wenshuai Xiang, Junsheng Jiang and Kai Zhao
Minerals 2024, 14(11), 1067; https://doi.org/10.3390/min14111067 - 24 Oct 2024
Cited by 1 | Viewed by 1237
Abstract
The Deki Amhare complex is located in central Eritrea, within the Arabian–Nubian Shield (ANS). It consists of an inner core of monzogranite porphyry and diorite enclaves (MMEs), surrounded outwardly by granodiorite and quartz diorite. The zircon U–Pb ages, whole-rock geochemistry, and Sr–Nd–Hf isotopic [...] Read more.
The Deki Amhare complex is located in central Eritrea, within the Arabian–Nubian Shield (ANS). It consists of an inner core of monzogranite porphyry and diorite enclaves (MMEs), surrounded outwardly by granodiorite and quartz diorite. The zircon U–Pb ages, whole-rock geochemistry, and Sr–Nd–Hf isotopic compositions of the Deki Amhare complex granitoids were used to discuss the Neoproterozoic tectonics of the ANS. The Late Tonian granodiorite and quartz diorite are metaluminous and calc-alkaline to slightly high-K calc-alkaline I-type plutons, with ages of 811.2 ± 4.8 Ma and 811.6 ± 5.7 Ma, respectively. They exhibit positive εHf(t) (7.6–9.5) and εNd(t) (3.9–4.7) values and relatively low (87Sr/86Sr)i ratios (0.70374–0.70463), indicating that they derived from the partial melting of a metasomatized mantle wedge during intra-oceanic subduction. The Ediacaran monzogranite porphyry and MMEs are subalkaline to alkaline A2-type granitoids with ages of 620.0 ± 4.3 Ma and 614.8 ± 3.9 Ma. These display positive εHf(t) (5.3–8.7) and εNd(t) (4.2–4.7) values, as well as low (87Sr/86Sr)i ratios (0.70310–0.70480), implying that they formed through crust–mantle magma mixing related to post-collisional slab break-off. Based on these data, three stages of regional tectonic evolution can be described: (1) from ~1200 Ma to ~875 Ma, the mafic oceanic crust was derived from depleted mantle during the opening of the Mozambique Ocean; (2) from ~875 Ma to ~630 Ma, intra-oceanic subduction and arc formation occurred with the development of I-type batholiths; and (3) from ~630 Ma to ~600 Ma, crustal and lithospheric reworking took place post-collision, leading to the formation of A2-type granitoids. Full article
Show Figures

Figure 1

28 pages, 12399 KiB  
Review
A Review of the Mineral Chemistry and Crystallization Conditions of Ediacaran–Cambrian A-Type Granites in the Central Subprovince of the Borborema Province, Northeastern Brazil
by Jefferson Valdemiro de Lima, Ignez de Pinho Guimarães, José Victor Antunes de Amorim, Caio Cezar Garnier Brainer, Lucilene dos Santos and Adejardo Francisco da Silva Filho
Minerals 2024, 14(10), 1022; https://doi.org/10.3390/min14101022 - 11 Oct 2024
Cited by 1 | Viewed by 1186
Abstract
Ediacaran–Cambrian magmatism in the Central Subprovince (Borborema Province, NE Brazil) generated abundant A-type granites. This study reviews published whole-rock and mineral chemistry data from thirteen Ediacaran–Cambrian A-type intrusions and a related dike swarm. It also presents new mineral chemistry and whole-rock data for [...] Read more.
Ediacaran–Cambrian magmatism in the Central Subprovince (Borborema Province, NE Brazil) generated abundant A-type granites. This study reviews published whole-rock and mineral chemistry data from thirteen Ediacaran–Cambrian A-type intrusions and a related dike swarm. It also presents new mineral chemistry and whole-rock data for one of these intrusions, along with zircon trace element data for five of the intrusions. Geochronological data from the literature indicate the formation of these A-type intrusions during a 55 Myr interval (580–525 Ma), succeeding the post-collisional high-K magmatism in the region at c. 590–580 Ma. The studied plutons intruded Paleoproterozoic basement gneisses or Neoproterozoic supracrustal rocks. They are ferroan, metaluminous to peraluminous and mostly alkalic–calcic. The crystallization parameters show pressure estimates mainly from 4 to 7 kbar, corresponding to crustal depths of 12 to 21 km, and temperatures ranging from 1160 to 650 °C in granitoids containing mafic enclaves, and from 990 to 680 °C in those lacking or containing only rare mafic enclaves. The presence of Fe-rich mineral assemblages including ilmenite indicates that the A-type granites crystallized under low ƒO2 conditions. Zircon trace element analyses suggest post-magmatic hydrothermal processes, interpreted to be associated with shear zone reactivation. Whole-rock geochemical characteristics, the chemistry of the Fe-rich mafic mineral assemblages, and zircon trace elements in the studied granitoids share important similarities with A2-type granites worldwide. Full article
Show Figures

Figure 1

23 pages, 11414 KiB  
Article
Mineralogy and Geochemistry of Upper Miocene Igneous Rocks, Kos Island, Greece: Extension during Strike-Slip Faulting and Subduction Rollback
by Georgia Pe-Piper, David J. W. Piper and Nikolaos Tsoukalas
Minerals 2024, 14(10), 989; https://doi.org/10.3390/min14100989 - 30 Sep 2024
Viewed by 1418
Abstract
Upper Miocene volcanic and plutonic rocks on Kos island preserve a record of magmatic and tectonic events in the transition zone between the Aegean and Anatolian microplates. Their field setting, syn-intrusion deformation, mineralogy, and geochemistry were investigated. Volcanic rocks, including trachyandesite flows and [...] Read more.
Upper Miocene volcanic and plutonic rocks on Kos island preserve a record of magmatic and tectonic events in the transition zone between the Aegean and Anatolian microplates. Their field setting, syn-intrusion deformation, mineralogy, and geochemistry were investigated. Volcanic rocks, including trachyandesite flows and trachyandesite to rhyolite domes, were extruded on a central E–W horst and directly overlie Alpine basement. Thick successions of trachytic flow tuffs are interbedded with fluvial and lacustrine basinal sediments to the south of this horst. Volcanism was synchronous with the emplacement of the Dikeos monzonite pluton, which is geochemically similar to some lithic clasts in the thick flow tuffs and is cut by mafic dykes including lamprophyres. Two main types of mafic magma were present: a K-rich lamprophyric magma that evolved to trachyandesite and more calc-alkaline magma similar to mafic enclaves in the monzonite. Syn-intrusion structures in the monzonite indicate emplacement during E–W sinistral strike-slip faulting that created local transtensional deformation, providing accommodation for a Dikeos magma reservoir. A change in the style of deformation in the Late Miocene led to NW-striking extension in the footwall, occupied by mafic dykes and mineralized veins, and extensional detachment of the hanging wall, resulting in unroofing of the monzonite. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Figure 1

26 pages, 45411 KiB  
Article
Metallogenic Difference between the Late Aptian Nansu and Aishan Pluton in Jiaodong: Constraints from In Situ Apatite Elemental and Nd Isotopic Composition
by Kexin Li, Liqiang Yang, Lei Ju and Dong Xie
Minerals 2024, 14(4), 372; https://doi.org/10.3390/min14040372 - 31 Mar 2024
Viewed by 1797
Abstract
A series of Mo-polymetallic deposits have been developed in the Jiaodong Peninsula. Notably, these Mo-dominant deposits formed essentially during the same period as the well-known world-class Au deposits in this area, hinting at a potentially unique geological correlation between them. Therefore, conducting thorough [...] Read more.
A series of Mo-polymetallic deposits have been developed in the Jiaodong Peninsula. Notably, these Mo-dominant deposits formed essentially during the same period as the well-known world-class Au deposits in this area, hinting at a potentially unique geological correlation between them. Therefore, conducting thorough research on Mo deposits in Jiaodong holds significant importance in exploring the area’s controlling factors of Mesozoic metal endowments. To reveal the petrogenesis and metallogenic potentials of Mo-fertile and ore-barren granitoid, apatite grains from the Late Aptian Nansu granodiorite and Aishan monzogranite are investigated in this study. Detailed petrographical observations, combined with in situ analysis of electron probe micro-analyzer (EPMA) and Laser-ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), have been conducted on apatite grains from the Nansu and Aishan plutons. This comprehensive analysis, encompassing both major and trace elements as well as isotopic characteristics of apatite, aims to elucidate the metallogenic differences within the late Early Cretaceous granitoids of Jiaodong. The results reveal that the apatite grains across all samples belong to fluorapatites, suggesting their magmatic origin. Additionally, chondrite-normalized rare earth element (REE) patterns of apatites in ore-fertile and ore-barren granitoids exhibit a “right-leaning” trend, characterized by relative enrichments in light REEs and depletions in heavy REEs. Both the Nansu and Aishan plutons exhibit moderately negative Eu anomalies (with averages δEu values of 0.44 and 0.51, respectively), along with slightly positive Ce anomalies (averaging δCe values of 1.08 and 1.11, respectively). A negative correlation is observed between their δEu and δCe values, indicating that the parental magmas of ore-fertile and ore-barren granitoids were formed in a relatively oxidizing environment. The calculated apatite OH contents for the Nansu pluton range from 0.26 to 1.38, while those for the Aishan pluton vary between 0.24 and 1.51, indicating comparable melt H2O abundances. Consequently, the results suggest that neither the oxygen fugacities nor the water contents of the parental magma can account for the metallogenic differences between Nansu and Aishan plutons. The apatite in the Nansu pluton exhibits a higher Ce/Pb ratio and a relatively lower Th/U ratio, indicating the involvement of a greater volume of fluids in the magmatic evolution process of this ore-bearing granitoid. Apatite grains sourced from the Nansu and Aishan plutons exhibit εNd(t) values ranging from −16.63 to −17.61 (t = 115.7 Ma) and −17.86 to −20.86 (t = 116.8 Ma), respectively. These results suggest that their parental magmas primarily originated from the partial melting of Precambrian metamorphic basement rocks within the North China Craton, with a minor contribution from mantle-derived materials. Additionally, the presence of mafic microgranular enclaves in both the Nansu and Aishan plutons indicates that both have undergone magma mixing processes. The binary diagrams plotting the ratios of Ba/Th, Sr/Th, and U/Th against La/Sm demonstrate that apatite grains of ore-fertile granitoid exhibit a distinct trend towards sediment melting. This suggests the potential incorporation of sedimentary materials, particularly those rich in molybdenum, into the magmatic source of the Nansu pluton, ultimately leading to the occurrence of molybdenum mineralization. Full article
(This article belongs to the Special Issue The Formation and Evolution of Gold Deposits in China)
Show Figures

Figure 1

17 pages, 9727 KiB  
Article
Chronological and Mineralogical Records of the Langqi Pluton, Fuzhou: Constraints on the Magma Mixing Process
by Zhouxin Chen, Liyuan Wang and Xue Yan
Minerals 2023, 13(12), 1538; https://doi.org/10.3390/min13121538 - 11 Dec 2023
Viewed by 1570
Abstract
The mafic microgranular enclaves (MMEs) from Mesozoic intermediate-acid magmatic rocks, widely developed along the Fujian coast, are considered to be the results of large-scale crust–mantle interaction by magma mixing. This paper is based on zircon U-Pb chronology, along with zircon Hf isotope and [...] Read more.
The mafic microgranular enclaves (MMEs) from Mesozoic intermediate-acid magmatic rocks, widely developed along the Fujian coast, are considered to be the results of large-scale crust–mantle interaction by magma mixing. This paper is based on zircon U-Pb chronology, along with zircon Hf isotope and mineral analyses for the host granite and MMEs from Langqi Island, in order to investigate the magma mixing mechanism of the Langqi pluton in Fuzhou, Southeast China. The results indicate that the MMEs were emplaced during the late Early Cretaceous (98.9 ± 2.2 Ma), identical to the age of the granite (100.1 ± 1.1 Ma) within the error range. The zircon εHf(t) values for the granite and MMEs are in the ranges of −2.1~0.0 and −1.7~+1.1. The zircon Hf isotope data indicate that both the granite and MMEs were predominantly derived from the ancient crustal basement of Cathaysia, with a partial mantle-derived contribution. The An values of plagioclase phenocrysts with oscillatory zoning patterns in the MMEs show oscillatory changes from the core to the rim, indicating multiple mixing events between the two magmas with different compositions. Amphiboles in the MMEs show characteristics of crust–mantle contamination, and the Ti migrated from the mafic magma with high concentration to the felsic magma with low concentration during the magma mixing process. Biotites in the host rock and MMEs belong to primary biotite, and they have relatively high MgO contents (ave. 12.78 wt.%) and relatively low FeOT/(MgO + FeOT) ratios (ave. 0.56), showing characteristics of crust–mantle contamination. The crust–mantle magma interaction in a crystal, mushy state played a significant role in controlling the formation and evolution of the Langqi pluton. The magmatism was predominantly sourced from mixing between the mantle-derived mafic magma and the crust-derived felsic magma during the subduction of the Paleo-Pacific Plate, resulting in the formation of the Langqi doleritic veins, granites, and MMEs. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Graphical abstract

19 pages, 18955 KiB  
Article
Re-Os Systematics in the Layered Rocks and Cu-Ni-PGE Sulfide Ores from the Dovyren Intrusive Complex in Southern Siberia, Russia: Implications for the Original Mantle Source and the Effects of Two-Stage Crustal Contamination
by Alexey A. Ariskin, Svetlana G. Tessalina, Yuri A. Kostitsyn, Ivan V. Pshenitsyn, Sergei N. Sobolev, Georgy S. Nikolaev and Evgeny V. Kislov
Minerals 2023, 13(11), 1356; https://doi.org/10.3390/min13111356 - 24 Oct 2023
Cited by 1 | Viewed by 1606
Abstract
The Dovyren Intrusive Complex (Northern Baikal region, 728 ± 3 Ma) includes the dunite–troctolite–gabbronorite Yoko–Dovyren massif (YDM) associated with a sequence of underlying mafic-to-ultramafic sills, locally demonstrating interbedding relations with the most primitive rocks of the pluton. These sills and apophyses contain sulfide [...] Read more.
The Dovyren Intrusive Complex (Northern Baikal region, 728 ± 3 Ma) includes the dunite–troctolite–gabbronorite Yoko–Dovyren massif (YDM) associated with a sequence of underlying mafic-to-ultramafic sills, locally demonstrating interbedding relations with the most primitive rocks of the pluton. These sills and apophyses contain sulfide mineralization ranging from globular to net-textured and massive ores. Major types of the YDM cumulates and sulfide mineralization were examined for their PGE contents and Re-Os isotopic systematics. The ten analyzed samples included chilled and basal rocks, poorly mineralized troctolite, PGE-rich anorthosite, as well as three samples from a thick ore-bearing apophysis DV10 connected with the YDM. These samples yielded a Re-Os isochron with an age of 759 ± 36 Ma and an initial 187Os/188Os of 0.1309 ± 0.0026 (MSWD = 110), which is in consistent with the previously reported U–Pb zircon age. It is shown that being recalculated to γOs(t) at t = 728 Ma, these isotopic compositions demonstrate three clusters regarding the relationship between γOs(t) and 187Re/188Os: (i) the chilled gabbronorite (YDM) and subcontact olivine gabbronorite (DV10) yielded the most radiogenic values of γOs(t) 10.5 and 10.0 among basal ultramafics, (ii) plagiodunite, troctolite, and sulfide ores showed lower radiogenic compositions, with γOs(t) ranging from 7.3 to 8.7, (iii) olivine gabbronorite, plagioperidotite, and one sample of PGE-rich anorthosite yield very primitive γOs(t) in the range 4.5 to 5.6 (on average 5.2 ± 0.6). The lowest values of γOs(t) for the least fractionated rocks of the YDM suggest a primitive mantle source, formed from a partly contaminated Neoarchean protolith, which is considered to be anomalous in Upper Riphean due to very low εNd(t) of −16 for the most primitive Dovyren magma (Fo88-parent). The highest values of γOs(t) and relative enrichment in the 34S isotope in the chilled gabbronorite (YDM) and subcontact olivine gabbronorite (DV10) evidence that their primitive to evolved magmatic precursors could be affected by a metamorphic fluid enriched in radiogenic 187Os, originating in the exocontact halo due to the thermal decomposition of pyrite from the dehydrated country rocks. This is consistent with the second-stage contamination of the Dovyren magma by the hosting crustal rocks (probably of 10 wt% shists), generating more evolved Fo86-parent magma with higher εNd(t) of −14. Full article
Show Figures

Figure 1

25 pages, 7201 KiB  
Article
The REE-Zr-U-Th Minerals of the Maronia Monzodiorite, N. Greece: Implications on the Saturation and Segregation Mechanisms of Critical Metals in Intermediate–Mafic Compositions
by Charalampos Vasilatos and Angeliki Papoutsa
Minerals 2023, 13(10), 1256; https://doi.org/10.3390/min13101256 - 26 Sep 2023
Cited by 1 | Viewed by 1973
Abstract
This work delves into the presence of REE-Ti-Zr-U-Th minerals, in the mafic–intermediate rocks of the Maronia pluton, Greece, an Oligocene intrusion formed through arc-magmatism during subduction. In Maronia monzodiorite, critical metals are contained in three principal mineral groups, namely, the REE-Ti-Zr, REE-Ca-P, and [...] Read more.
This work delves into the presence of REE-Ti-Zr-U-Th minerals, in the mafic–intermediate rocks of the Maronia pluton, Greece, an Oligocene intrusion formed through arc-magmatism during subduction. In Maronia monzodiorite, critical metals are contained in three principal mineral groups, namely, the REE-Ti-Zr, REE-Ca-P, and U-Th assemblages. The REE-Ti-Zr group includes REE-ilmenite, chevkinite-like phases, zirconolite, and baddeleyite. The REE-Ca-P assemblage is represented by allanite-(Ce), monazite-(Ce), and huttonitic monazite-(Ce). The U-Th assemblage comprises thorite–coffinite and uraninite–thorianite solid solutions. The paragenetic sequencing of these minerals offers insights into their formation conditions and correlation with the pluton’s magmatic evolution. In the REE-Ti-Zr group, mineral formation progresses from REE-ilmenite to baddeleyite through chevkinite-like phases and zirconolite under oxidizing conditions. The REE-Ca-P sequence involves allanite-(Ce), followed by monazite-(Ce), late allanite-(Ce), and huttonitic monazite-(Ce). In the U-Th group, earlier thorite–coffinite phases are succeeded by uraninite–thorianite solid solutions, indicating Si-undersaturation at late magmatic stages. Fluctuations in Ca-activity induce alternating formations of allanite-(Ce) and monazite-(Ce). These mineral variations are attributed to early-stage interactions between high-K calc-alkaline and shoshonitic gabbroic melts, influencing critical metal enrichment and mineral speciation. The study’s insights into paragenesis and geological processes offer implications for mineral exploration in analogous geological settings. Full article
Show Figures

Figure 1

28 pages, 8500 KiB  
Review
Metallogenic Model and Prospecting Progress of the Qiandongshan–Dongtangzi Large Pb-Zn Deposit, Fengtai Orefield, West Qinling Orogeny
by Ruiting Wang, Zhenjia Pang, Qingfeng Li, Geli Zhang, Jiafeng Zhang, Huan Cheng, Wentang Wu and Hongbo Yang
Minerals 2023, 13(9), 1163; https://doi.org/10.3390/min13091163 - 31 Aug 2023
Cited by 3 | Viewed by 1498
Abstract
The Qiandongshan–Dongtangzi large Pb-Zn deposit is located in the Fengxian–Taibai (abbr. Fengtai) polymetallic orefield. The ore bodies primarily occur within and around the contact surface between the limestone of the Gudaoling Formation and the phyllite of the Xinghongpu Formation, which are clearly controlled [...] Read more.
The Qiandongshan–Dongtangzi large Pb-Zn deposit is located in the Fengxian–Taibai (abbr. Fengtai) polymetallic orefield. The ore bodies primarily occur within and around the contact surface between the limestone of the Gudaoling Formation and the phyllite of the Xinghongpu Formation, which are clearly controlled by anticline and specific lithohorizon. Magmatic rocks are well developed in the mining area, consisting mainly of granitoid plutons and mafic–felsic dikes. Previous metallogenic geochronology studies have yielded a narrow range of ages between 226 and 211 Ma, overlapped by the extensive magmatism during the Late Triassic period in this region. The ω(Co)/ω(Ni) ratio of pyrite in lead–zinc ore ranges from 4.44 to 15.57 (avg. 8.56), implying that its genesis is probably related to volcanic and magmatic-hydrothermal fluids. The δD and δ18O values (ranging from −94.2‰ to −82‰, and 18.89‰ to 20.72‰, respectively,) of the ore-bearing quartz indicate that the fluids were perhaps derived from a magmatic source. The δ34S values of ore-related sulfides display a relatively narrow range of 4.29‰ to 9.63‰ and less than 10‰, resembling those of magmatic-hydrothermal origin Pb-Zn deposits. The Pb isotopic composition of the sulfides from the Qiandongshan–Dongtangzi Pb-Zn deposit (with 206Pb/204Pb ratios of 18.06 to 18.14, the 207Pb/204Pb ratios of 15.61 to 15.71, and 208Pb/204Pb ratios of 38.15 to 38.50) is similar to that of the Late Triassic Xiba granite pluton, suggesting that they share the same Pb source. The contents of W, Mo, As, Sb, Hg, Bi, Cd, and other elements associated with magmatic-hydrothermal fluids are high in lead–zinc ores, and the contents of Sn, W, Co, and Ni are also enriched in sphalerite. The contents of trace elements and rare earth elements in the ore are similar to those in the Xiba granite pluton, and they maybe propose a magmatic-hydrothermal origin as well. As a result of this information, the Qiandongshan–Dongtangzi large Pb-Zn deposit may be classified as a magmatic hydrothermal stratabound type, with the Si/Ca contact area being the ore-forming structural plane. Thus, a mineralization model has been proposed based on a comparative analysis of the geological and geochemical properties of the lead–zinc deposit in the Fengtai orefield. It is considered that the secondary anticlines developed on both wings of the Qiandongshan–Dongtangzi composite anticline are the favorable sites for Pb-Zn deposition. Accordingly, the Si/Ca plane and secondary anticline are the major ore-controlling factors and prospecting targets. The verification project was first set up on the north wing of the composite anticline, and thick lead–zinc ore bodies were found in all verification boreholes, accumulating successful experience for deep exploration of lead–zinc deposits in this region. Full article
(This article belongs to the Special Issue Genesis and Evolution of Pb-Zn-Ag Polymetallic Deposits)
Show Figures

Figure 1

40 pages, 17094 KiB  
Article
Magmatic–Hydrothermal Transport of Metals at Arc Plutonic Roots: Insights from the Ildeus Mafic–Ultramafic Complex, Stanovoy Suture Zone (Russian Far East)
by Pavel Kepezhinskas, Nikolai Berdnikov, Nikita Kepezhinskas, Valeria Krutikova and Ivan Astapov
Minerals 2023, 13(7), 878; https://doi.org/10.3390/min13070878 - 29 Jun 2023
Cited by 8 | Viewed by 2876
Abstract
The Ildeus mafic–ultramafic complex represents plutonic roots of a Triassic magmatic arc tectonically emplaced into the thickened uppermost crust beneath the Mesozoic Stanovoy collided margin. The mafic–ultramafic complex cumulates host Ni-Co-Cu-Pt-Ag-Au sulfide-native metal-alloy mineralization produced through magmatic differentiation of subduction-related primary mafic melt. [...] Read more.
The Ildeus mafic–ultramafic complex represents plutonic roots of a Triassic magmatic arc tectonically emplaced into the thickened uppermost crust beneath the Mesozoic Stanovoy collided margin. The mafic–ultramafic complex cumulates host Ni-Co-Cu-Pt-Ag-Au sulfide-native metal-alloy mineralization produced through magmatic differentiation of subduction-related primary mafic melt. This melt was sourced in the metal-rich sub-arc mantle wedge hybridized by reduced high-temperature H-S-Cl fluids and slab/sediment-derived siliceous melts carrying significant amounts of Pt, W, Au, Ag, Cu and Zn. Plutonic rocks experienced a pervasive later-stage metasomatic upgrade of the primary sulfide–native metal–alloy assemblage in the presence of oxidized hydrothermal fluid enriched in sulfate and chlorine. The new metasomatic assemblage formed in a shallow epithermal environment in the collided crust includes native gold, Ag-Au, Cu-Ag and Cu-Ag-Au alloys, heazlewoodite, digenite, chalcocite, cassiterite, galena, sphalerite, acanthite, composite Cu-Zn-Pb-Fe sulfides, Sb-As-Se sulfosalts and Pb-Ag tellurides. A two-stage model for magmatic–hydrothermal transport of some siderophile (W, Pt, Au) and chalcophile (Cu, Zn, Ag) metals in subduction–collision environments is proposed. Full article
Show Figures

Figure 1

23 pages, 10746 KiB  
Review
Tectonic Evolution of the JLJB, North China Craton, Revisited: Constraints from Metamorphism, Geochemistry and Geochronology of the Ji’an Group and Related Granites
by Erlin Zhu, Chenyue Liang, Changqing Zheng, Xuechun Xu and Yan Yang
Minerals 2023, 13(7), 835; https://doi.org/10.3390/min13070835 - 21 Jun 2023
Cited by 1 | Viewed by 1504
Abstract
The Jiao-Liao-Ji Belt (JLJB) is the most representative Paleoproterozoic orogenic belt in the North China Craton (NCC). The sedimentation, metamorphism and magmatism of the Ji’an Group and associated granites provide significant insights into the tectonic evolution of the JLJB. In this study, we [...] Read more.
The Jiao-Liao-Ji Belt (JLJB) is the most representative Paleoproterozoic orogenic belt in the North China Craton (NCC). The sedimentation, metamorphism and magmatism of the Ji’an Group and associated granites provide significant insights into the tectonic evolution of the JLJB. In this study, we have synthesized published geochemistry and geochronology data on metasedimentary, metavolcanic and igneous rocks. According to the available data, the protoliths of the metasedimentary rocks are sets of shale, wacke, arkose, quartz sandstone and carbonate, while the protoliths of the metavolcanic rocks are calc-alkaline basalt, basaltic andesite, andesite, dacite and rhyolite. The rock assemblages indicate a transformation of the tectonic environment from a passive margin to an active continental margin following the onset of plate convergence and subduction. The A2-type gneissic granite (Qianzhuogou pluton) is formed in a subsequent back-arc basin extension setting at 2.20–2.14 Ga. The Ji’an Group was finally deposited in an active continental margin during the closure of a back-arc basin at 2.14–2.0 Ga. Then, the sediments were involved in a continent–arc–continent collision between the Longgang and Nangrim blocks at ~1.95 Ga. This process was accompanied by HP granulite-facies metamorphism at ~1.90 Ga. The subsequent exhumation and regional extension resulted in decompression melting during 1.90–1.86 Ga, producing metamorphism with an isothermal decompression clockwise P–T path. The resulting metapelites are characterized by perthite + sillimanite, and mafic granulites are characterized by orthopyroxene + clinopyroxene. The S-type porphyritic granite (Shuangcha pluton) is formed during the crustal anatexis. Meanwhile, extensive anatexis produced significant heating and triggered prograde to peak metamorphism with an anticlockwise P–T path. Cordierite-bearing symplectites around the garnet in the metapelites indicate a superposed isobaric cooling metamorphism. The ages of monazites and anatectic zircons suggest that the post-exhumation cooling occurred at 1.86–1.80 Ga. The Paleoproterozoic magmatism, sedimentation and metamorphism suggest a process of subduction back-arc basin extension and closure, collision and exhumation for the tectonic evolution of the JLJB. Full article
(This article belongs to the Special Issue Linking Metamorphism with Orogenesis)
Show Figures

Figure 1

23 pages, 5993 KiB  
Article
Geochronology and Petrogenesis of the Early Paleozoic Jilongjie Granites in the Central South China Block: Implication for Post-Kinematic Lithospheric Delamination
by Haiyang He, Tingting Wang, Qinglin Sui, Xianzhe Duan, Xuan Ren, Danping Hou, Yanshi Xie, Shan Liu, Peng Feng, Huanbao Zhang and Liang Chen
Minerals 2023, 13(6), 734; https://doi.org/10.3390/min13060734 - 29 May 2023
Cited by 2 | Viewed by 1884
Abstract
Controversy over the geodynamic interpretation of the early Paleozoic granites in the South China Block constrains understanding of tectonic–magmatic evolution. In this paper, we present zircon U-Pb age, Hf isotope, and major and trace element data of the early Paleozoic granites in the [...] Read more.
Controversy over the geodynamic interpretation of the early Paleozoic granites in the South China Block constrains understanding of tectonic–magmatic evolution. In this paper, we present zircon U-Pb age, Hf isotope, and major and trace element data of the early Paleozoic granites in the Jilongjie region, south-central Hunan Province. A sample that yielded a weighted average 206Pb/238U age of 425 ± 3 Ma falls into the post-collisional granite field in the classification discriminant of magmatic rocks. Geochemical features indicate that the Jilongjie pluton is a shoshonitic metaluminous rock. The Jilongjie pluton’s chondrite-normalized rare earth element patterns exhibit a slight enrichment of light rare earth elements (LREEs) relative to heavy rare earth elements (HREEs) with (La/Yb)N ratios of 15.1–23.7 and weak Eu anomalies (Eu/Eu* = 0.68–0.78). Zircon Hf isotope results show εHf(t) ranging from −9.94 to −0.69. Jilongjie granite’s parent magma originated from a mixing of crust-derived felsic and mantle-derived mafic magmas, which then underwent fractional crystallization during its ascent. Jilongjie granite was generated through a post-collisional extensional setting associated with delamination of the thickened lithosphere. Full article
(This article belongs to the Special Issue Mineralization in Subduction Zone)
Show Figures

Figure 1

Back to TopTop