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Abstract: Controversy over the geodynamic interpretation of the early Paleozoic granites in the
South China Block constrains understanding of tectonic–magmatic evolution. In this paper, we
present zircon U-Pb age, Hf isotope, and major and trace element data of the early Paleozoic granites
in the Jilongjie region, south-central Hunan Province. A sample that yielded a weighted average
206Pb/238U age of 425 ± 3 Ma falls into the post-collisional granite field in the classification discrim-
inant of magmatic rocks. Geochemical features indicate that the Jilongjie pluton is a shoshonitic
metaluminous rock. The Jilongjie pluton’s chondrite-normalized rare earth element patterns exhibit a
slight enrichment of light rare earth elements (LREEs) relative to heavy rare earth elements (HREEs)
with (La/Yb)N ratios of 15.1–23.7 and weak Eu anomalies (Eu/Eu* = 0.68–0.78). Zircon Hf isotope
results show εHf(t) ranging from −9.94 to −0.69. Jilongjie granite’s parent magma originated from a
mixing of crust-derived felsic and mantle-derived mafic magmas, which then underwent fractional
crystallization during its ascent. Jilongjie granite was generated through a post-collisional extensional
setting associated with delamination of the thickened lithosphere.

Keywords: geochronology; petrogenesis; early Paleozoic; Jielongjie pluton; South China Block

1. Introduction

The South China Block (SCB) was formed by the amalgamation of the Cathaysia Block
in the southeast and the Yangtze Block in the northwest during the Neoproterozoic [1–5].
There is a significant amount of granite in the South China Block, which is generally
considered one of the largest granite provinces in the world [6,7]. These granites are
considered to have responded to the Caledonian, Indosinian, and Yanshanian tectonic
events in the South China Block [7–20]. Caledonian massive granitic intrusions outcrop to
the east of the Anhua–Luocheng Fault zone as batholiths and laccoliths, and are important
components of the Phanerozoic granites in the eastern South China Block (Figure 1).

In recent years, many studies have been carried out on Indosinian and Yanshanian
granites in the South China Block; Yanshanian granites are closely related to large-scale
mineralization [21–25]. However, the petrogenesis and tectonic setting of Caledonian
granites are still controversial (Table 1), with different viewpoints on tectonic settings,
such as continental margin arc, oceanic–continental subduction, continental collision, and
intracontinental orogeny.

In this paper, we present zircon U-Pb dating, Hf isotope results, and whole-rock
geochemical data for the early Paleozoic granites in the south-central Hunan, central
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South China Block, which have previously received much attention. In-depth study of
the petrogenesis and tectonic setting provides information to further understanding of the
SCB’s early Paleozoic tectonic–magmatic evolution.
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Figure 1. (a) Geotectonic map of China and its adjacent areas; (b) simplified geological map showing
the distribution of the Early Middle Paleozoic granites in the eastern SBC (modified from Li, et al. [26]
and Zhao, et al. [27]); (c) geological map of the Jilongjie area. Part of the data sources are shown in
Table 1.
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Table 1. Summary ages of the Early Middle Paleozoic rocks in SCB.

Number Locality Lithology Dating Method Age (Ma) Literature

1 Tanghu Granite Zircon U-Pb dating 433 ± 2 [28]

2
Wangyangshan Granite Zircon U-Pb dating 434

[29]Guidong Granodiorite Zircon U-Pb dating 425.5 ± 1.7
Zhaiqian Granite Zircon U-Pb dating 430.7 ± 1.9

3 Napeng Granite Zircon U-Pb dating 418 ± 12 [30]
4 Song Chay Granite Zircon U-Pb dating 428 ± 5 [31]
5 Zhuguang Granite Zircon U-Pb dating 446.7 ± 6.3; 424.6 ± 3.7 [32]

6

Songwang Foliated granite

Zircon U-Pb dating

440.7 ± 5.6

[7]
Dagu Granitic gneiss 421.9 ± 9.8

Yuntan Biotite orthogneiss 427.1 ± 4.2
Chidong Biotite paragneiss 423.0 ± 7.0
Hebapu Granitic gneiss 429.6 ± 5.2

7 Weipu Granite Zircon U-Pb dating 427.4 ± 4.0 [33]
8 Northwestern Fujian Granite Zircon U-Pb dating 437 ± 5; 437 ± 4; 440 ± 5; 441 ± 4 [34]
9 Tianjingping Granodiorite Zircon U-Pb dating 447 ± 2 [35]

10
Sibao

Granite Shrimp U-Pb zircon 432
[26]Weipu 433

11 Yunkai Granite; gneissic granite Zircon U-Pb dating 430 ± 10; 443 ± 4; 437 ± 5 [36]

12

Wugong domain Gneissoid granite; orthogneiss; migmatite

Zircon U-Pb dating

455 ± 8; 455 ± 9; 456 ± 5; 443 ± 5; 424 ± 6; 452 ± 4

[37]
Northern Wuyi domain Genissoid granite; orthogneiss; migmatite 410 ± 10; 427 ± 15; 430 ± 9; 457 ± 6

Southern Wuyi domain Genissoid granite; orthogneiss 430 ± 6; 438 ± 3; 432 ± 6; 427 ± 4; 426 ± 6; 426 ± 8;
437 ± 3; 430 ± 6

Yunkai domain Orthogneiss; gneissoid granite; leucosome in
migmatite; paragneiss 450 ± 8; 449 ± 5; 443 ± 7; 415 ± 7; 435 ± 8; 452 ± 6

13 Wuping Gneissic granite

Zircon U-Pb dating

496 ± 4; 494 ± 6 [38]

14

Le’an Biotite monzogranite 429 ± 2

[39]

Zhangjiafang Biotite monzogranite 440 ± 2
Shuangzhuang Monzogranite; biotite monzogranite 424 ± 4; 441 ± 3
Pengongmiao Monzogranite 405 ± 3
Wanyangshan Monzogranite 433 ± 4

Tanghu Monzogranite 454 ± 2
Banshanpu Monzogranite 418 ± 2

Hongxiaqiao Granodiorite 432 ± 6
Miaoershan Monzogranite 400 ± 4; 415 ± 2

Haiyangshan Biotite monzogranite 429 ± 11
Fengdingshan Granodiorite 402 ± 2
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Table 1. Cont.

Number Locality Lithology Dating Method Age (Ma) Literature

15 Xuefengshan Beltt Granite Zircon U-Pb dating 428 ± 4; 438 ± 3; 437 ± 4; 411 ± 4; 412 ± 4; 424 ± 3 [40]
16 Taishan Granite Zircon U-Pb dating 436 ± 3; 436 ± 3; 436 ± 4; 436 ± 6; [41]

17
Yuechenling

Granite Zircon U-Pb dating 435 ± 4; 427 ± 3; 417 ± 6
[27]Miaoershan 404 ± 4

18 Northern Guangdong Basalt; andesite; dacite, ignimbrite Zircon U-Pb dating; Shrimp U-Pb
dating 435 ± 6; 435 ± 6 [42]

19 Yunkai Charnockite Zircon U-Pb dating 439 ± 2; 439 ± 4 [43]
20 Doulong Granite Zircon U-Pb dating 429 ± 3; 430 ± 3; 430 ± 2; 430 ± 2 [44]
21 Shangmushui Granodiorite Zircon U-Pb dating 444 ± 4 [45]
22 Wanyangshan Tonalite; granodiorite; monzonitic granite Zircon U-Pb dating 438 ± 3; 426 ± 3 [46]
23 Daning Granite SHRIMP 419.1 ± 6.4 [47]
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2. Geological Setting and Petrography

The SCB consists of the Cathaysia Block in the southeast and the Yangtze Block in the
northwest. The northeasterly trending Jiangshan–Shaoxing Fault is the present boundary
between the Cathaysia Block and the Yangtze Block [25,39,48]. However, the southwestern
extension is uncertain due to intensive younger tectonic modification and poor exposure.

The Cathaysia basement is considered to be predominantly composed of gneiss, schist,
migmatite, amphibolite, and pyroclastic rocks from the Mesoproterozoic and Paleoprotero-
zoic ages [14,49–51]. The Precambrian Cathaysia Block basement can be divided into the
Nanling–Yunkai terrane in the southwest and the Wuyishan terrane in the northeast [52].
The oldest basement rocks in the Cathaysia Block are amphibolites (~1.80 Ga) distributed
on the Wuyishan terrane [53]. Moreover, minor Mesoproterozoic granite (~1.43 Ga) was
identified on Hainan Island in the south [54]. Recently, some Neoproterozoic mafic rocks
were identified in the Cathaysian block [55]. The basement of the Yangtze Block is mainly
composed of Proterozoic rocks, with minor Archean rocks, such as Kongling complex,
dating to ca. 3.2 Ga [56–59]. Moreover, Neoproterozoic volcanic rocks appear around the
Yangtze Block.

Samples for this study were collected in Jilongjie Town, 30 km southwest of Hengyang
City, Hunan Province (N 26◦50′17.81′′; E 112◦15′10.21′′). The plutonic rock area is approx-
imately 25 km2; host rocks are quartz sandstone and siltstone of the Permian Yangping
and Leping Formation, as well as Carboniferous dolomite and dolomitic limestone. Plu-
tonic rocks are in nonconformity contact with host rocks (Figure 2a). Exposed rock units
in the study area also include Sinian slate, dolomite and limestone, Cambrian slate and
phyllite, Ordovician phyllite and limestone, Devonian limestone, dolomite and mudstone,
Carboniferous sandstone and siltstone, Cretaceous Dongjing Formation sandstone and
conglomerate, Paleogene Dongtang Formation sandstone and sandy mudstone, and Qua-
ternary sandy clay and sandy soil (Figure 1c).
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Figure 2. (a) Field contact relationship between rocks; (b) field photo of Jilongjie granite; (c) field
photo of Permian sandstone; (d) hand specimen photo of Jilongjie granite; (e,f) photomicrographs of
Jilongjie granite. Q—quartz; Kf—potassium feldspar; Pl—plagioclase; Bt—biotite; Hb—hornblende.
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Jilongjie plutonic rocks are uniform in structure; their main minerals are K-feldspar
(35%~40%), plagioclase (25%~30%), quartz (20%~30%), biotite (6%~10%), and amphibole
(2%~4%); their accessory minerals include titanite, magnetite, and zircon (Figure 2e,f).
Plagioclase occurs mainly as euhedral plate-like crystals, with albite twining; K-feldspar
and quartz are anhedral (Figure 2e,f).

3. Analytical Methods

Zircon U-Pb dating, major and trace element analyses of whole rock, and zircon Hf
isotopic analyses were conducted at the Wuhan SampleSolution Analytical Technology
Co., Ltd., Wuhan, China. Zircon U-Pb dating analysis was conducted using laser ablation
inductively coupled plasma mass spectrometry (LA-ICP-MS). Detailed operating condi-
tions for the LA system and ICP-MS instrument and data reduction were the same as
described in [60]. Ion-signal intensities were acquired using an Agilent 7700e (Agilent
Technology, Tokyo, Japan). In this study, the spot size was set to 32 µm and the laser
frequency was set to 5 Hz. U-Pb dating and trace element calibration used zircon 91500 and
glass NIST610 (Wuhan SampleSolution Analytical Technology Co., Ltd., Wuhan, China) as
external standards, respectively. Off-line selection and integration of background and ana-
lyzed signals, time-drift correction, and quantitative calibration for trace element analysis
and U-Pb dating were completed using ICPMSDataCal 12.2, an Excel-based software [61].
Concordia diagrams and weighted mean calculations of zircon samples were conducted
using the Isoplot/Ex (version 3.0) program [62].

Major and trace element analyses of whole rock were performed using X-ray fluo-
rescence (XRF, Rigaku, Japan) and ICP-MS (Agilent 7700e). Analytical uncertainties for
major elements were generally <1 wt.%. Analytical results for AGV-2, BHVO-2, BCR-2,
and RGM-2 international standards indicate that accuracies were better than 5% for most
elements. The analytical procedure details were as described by Liu, et al. [63].

Hafnium isotope ratio analysis experiments were conducted in situ using a Neptune
Plus multicollector (MC) ICP-MS (Thermo Fisher Scientific, Germany) in combination with
a Geolas HD excimer ArF laser ablation system (Coherent, Göttingen, Germany). This
laser ablation system includes a “wire” signal smoothing device that produces smooth
signals even at very low laser repetition rates (as low as 1 Hz) [64]. Helium was the carrier
gas within the ablation cell, and was merged with argon (makeup gas) after the ablation
cell. Small amounts of nitrogen were added to the argon makeup gas flow to improve its
sensitivity to Hf isotopes [65]. Compared to the standard arrangement, the addition of
nitrogen in combination with the newly designed X skimmer cone and Jet sample cone in
Neptune Plus improved the signal intensities of Hf, Yb, and Lu by factors of 5.3, 4.0, and 2.4,
respectively. Detailed operating conditions for the laser ablation system, the MC-ICP-MS
instrument, and the analytical method were the same as those described by Hu, et al. [66].

4. Results
4.1. Zircon U-Pb Geochronological Results

In this study, seventeen zircon grains in a sample (JL-U) from the Jilongjie pluton were
selected for LA-ICP-MS dating. Zircon U-Pb data are listed in Table 2, and the concordia
diagram is shown in Figure 3a. These zircon grains were euhedral, gray-white, or colorless.
The crystals were elongated with lengths ranging from 120 to 280 µm and aspect ratios
from 2:1 to 5:1. In cathodoluminescence, zircon crystals showed a clear and dense ring
structure, indicating magmatic origin (Figure 3a). Zircon trace element data showed high
Th/U values, which also indicate a magmatic crystallization origin [67]. Zircon trace
element contents are listed in Table 3, and the chondrite-normalized REE diagram is shown
in Figure 3b. Zircon crystals had similar characteristics to typical magmatic zircons [67],
such as positive Ce and negative Eu anomalies, and HREE enrichment relative to LREE
(Figure 3b).
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Table 2. LA-ICP-MS results of zircon from the Jilongjie pluton.

Samples and
Anal. NO.

Th
(ppm)

U
(ppm)

Th/U
Ratio

Isotopic Ratios (±1σ) Ages (±1σMa)
Concordance207Pb/206Pb 207Pb/235U 206Pb/238U 207Pb/206Pb 207Pb/235U 206Pb/238U

1. JL-U-01 838 1047 0.80 0.0599 0.0013 0.5609 0.0110 0.0679 0.0006 611 51 452 7 423 4 93%
2. JL-U-02 535 745 0.72 0.0602 0.0013 0.5762 0.0128 0.0692 0.0006 613 46 462 8 431 4 93%
3. JL-U-03 963 1035 0.93 0.0572 0.0013 0.5332 0.0112 0.0676 0.0007 498 45 434 7 421 4 97%
4. JL-U-04 1019 1029 0.99 0.0615 0.0012 0.5906 0.0119 0.0693 0.0007 657 44 471 8 432 4 91%
5. JL-U-05 628 867 0.72 0.0612 0.0013 0.5828 0.0119 0.0687 0.0005 656 38 466 8 428 3 91%
6. JL-U-06 575 772 0.75 0.0593 0.0012 0.5589 0.0107 0.0680 0.0005 589 10 451 7 424 3 93%
7. JL-U-07 705 908 0.78 0.0520 0.0011 0.4865 0.0100 0.0679 0.0007 283 48 403 7 423 4 94%
8. JL-U-08 824 973 0.85 0.0576 0.0012 0.5487 0.0115 0.0688 0.0006 522 44 444 8 429 3 96%
9. JL-U-09 648 926 0.70 0.0566 0.0012 0.5334 0.0110 0.0681 0.0005 476 46 434 7 425 3 97%

10. JL-U-10 1465 1032 1.42 0.0565 0.0013 0.5360 0.0120 0.0688 0.0006 478 52 436 8 429 4 98%
11. JL-U-11 584 1001 0.58 0.0578 0.0012 0.5395 0.0108 0.0673 0.0005 524 44 438 7 420 3 95%
12. JL-U-12 541 883 0.61 0.0570 0.0012 0.5332 0.0109 0.0676 0.0005 494 42 434 7 422 3 97%
13. JL-U-13 710 951 0.75 0.0620 0.0012 0.5737 0.0106 0.0668 0.0005 676 43 460 7 417 3 90%
14. JL-U-14 666 968 0.69 0.0579 0.0012 0.5563 0.0113 0.0693 0.0005 528 46 449 7 432 3 96%
15. JL-U-15 610 859 0.71 0.0567 0.0013 0.5344 0.0115 0.0679 0.0005 480 48 435 8 424 3 97%
16. JL-U-16 691 939 0.74 0.0565 0.0012 0.5409 0.0110 0.0691 0.0005 472 44 439 7 431 3 98%
17. JL-U-17 1048 960 1.09 0.0605 0.0013 0.5807 0.0124 0.0693 0.0006 620 46 465 8 432 3 92%



Minerals 2023, 13, 734 8 of 23

Table 3. Trace element (ppm) data of zircon from the Jilongjie pluton.

Samples La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Hf

JL-U-01 14.4 69.1 3.93 16.7 6.05 2.02 17.8 5.62 64.7 25.2 123 27.6 269 57.4 11,975
JL-U-02 4.49 43.6 2.15 11.3 5.94 1.92 14.2 4.13 44.9 16.3 74.6 16.2 159 35.1 11,808
JL-U-03 113 296 29.2 117 19.8 4.28 23.8 6.17 65.7 24.0 113 24.8 251 55.4 10,905
JL-U-04 0.14 36.0 0.26 3.04 3.76 1.18 14.1 4.64 52.0 19.5 93.2 20.3 201 43.7 12,041
JL-U-05 54.2 156 16.6 73.8 12.8 1.82 15.8 3.66 42.0 15.8 74.9 17.6 182 41.0 12,484
JL-U-06 16.0 63.7 5.14 23.6 5.41 1.31 14.0 4.11 47.6 17.5 83.7 18.8 188 42.1 11,647
JL-U-07 5.48 42.2 1.99 9.89 4.10 0.72 11.9 3.50 43.5 17.0 84.4 18.7 192 43.8 11,190
JL-U-08 26.1 88.4 7.05 29.0 6.72 1.51 12.3 3.77 42.7 16.8 81.0 18.6 189 41.9 11,752
JL-U-09 7.3 26.6 0.042 0.97 2.05 0.60 9.93 3.25 39.5 16.1 78.9 18.3 189 43.4 12,680
JL-U-10 1.79 54.3 2.52 16.6 11.5 3.81 25.3 6.83 73.2 25.4 113 24.5 233 50.1 10,947
JL-U-11 31.8 113 10.3 45.7 9.2 1.55 17.2 4.77 58.1 24.2 126 29.8 313 71.2 12,653
JL-U-12 2.14 32.9 0.85 4.54 2.77 0.61 11.1 3.64 47.0 19.4 98 23.2 243 56.0 12,367
JL-U-13 22.7 82.2 6.88 29.6 6.70 1.36 13.0 3.75 41.5 16.1 78.7 18.2 186 41.8 12,362
JL-U-14 2.84 36.6 1.03 5.79 3.13 0.89 11.4 3.91 48.0 20.1 98.8 22.9 240 54.4 12,462
JL-U-15 16.6 73.5 5.98 28.6 6.43 1.39 13.6 4.14 47.3 18.9 90.3 21.1 216 49.8 11,889
JL-U-16 23.3 91.3 9.15 44.7 9.49 1.51 16.3 4.37 46.4 17.5 84.3 19.1 191 43.1 12,040
JL-U-17 7.15 56.7 3.10 15.8 6.88 2.70 19.0 5.70 61.0 21.3 96.2 20.8 203 43.5 10,285
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Figure 3. Cathodoluminescence (CL) and U-Pb concordia diagrams (a) and chondrite normalized
REE pattern (b) of zircon crystals from the Jilongjie pluton.

Seventeen zircon grains had consistent or near-uniform 206Pb/238U ages ranging from
417 ± 3 Ma to 432 ± 3 Ma, with a weighted mean age of 426 ± 3 Ma (MSWD = 2.1, n = 17)
(Figure 3a). The average age of Jilongjie plutonic rocks represents the crystallization age of
the magmatic rocks, indicating that they were emplaced in the early Paleozoic.

4.2. Whole-Rock Geochemistry

Eleven representative samples were selected for whole-rock major element and trace ele-
ment analyses (Table 3). Their loss on ignition (L.O.I.) range (1.83–3.04) suggests that Jilongjie
plutonic rocks were insignificantly affected by alteration. Hence, we normalized the major
element contents to 100% on a volatile-free basis. Jilongjie plutonic rocks had an SiO2 content
of 64.27–66.34 wt.%, K2O content of 4.38–4.94 wt.%, Na2O content of 2.50–2.93 wt.%, Al2O3
content of 12.95–14.31 wt.%, and total alkali (K2O + Na2O) content of 7.43–8.20. According to
the total alkali–silica (TAS) diagram of igneous rocks proposed by Le Maitre [68], all Jilongjie
plutons fall into the granite area (Figure 4a). In the K2O − SiO2 diagram, all samples fall
into the shoshonite field [69]. The samples’ A/CNK (Al2O3/(CaO + Na2O + K2O)) range
was 0.80–1.04, and their A/NK (Al2O3/(Na2O + K2O)) range was 1.28–1.53. Therefore, in
the A/CNK − A/NK diagram, Jilongjie granites fall into the meta-aluminous to weakly
peraluminous fields [70]. In conclusion, Jilongjie pluton is shoshonitic granite.
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Jilongjie granite contains 155.1–239.7 ppm of rare earth elements (∑REE). The chondrite-
normalized rare earth element pattern suggests that Jilongjie granite has obvious enrich-
ment of light rare earth elements relative to heavy rare earth elements ((La/Yb)N = 15.1–23.7)
(Figure 5a). The samples showed a weak negative Eu anomaly, with Eu/Eu* in the 0.68–0.78
range (Figure 5a, Table 4). In the primitive-mantle-normalized trace element diagram, the
samples clearly showed enrichment of large ion lithophile elements (such as Sr, Rb, and Ba)
and depletion of high-field-strength elements (such as Nb, Ta, and Ti) (Figure 5b).
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4.3. Zircon Hf Isotopic Results

Hafnium isotopic results and related parameters of 17 zircon grains of the Jilongjie gran-
ite samples are listed in Table 5. 176Lu/177Hf values were 0.001295–0.002283, 176Yb/177Hf
values were 0.30414–0.56216, and 176Hf/177Hf values were 0.282502–0.282238 (Table 5). The
Hf isotopic composition showed a wide variation; εHf(t) values were −9.94 to −0.69; model
age values TDM were 1.08–1.46 Ga, and two-stage model age values TDM2 were 1.46–2.04 Ga
(Table 5).
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Table 4. Major (wt.%) and trace element (ppm) concentrations of the Jilongjie granite.

Sample JL-1H JL-2H JL-3H JL-4H JL-5H JL-6H JL-7H JL-8H JL-9H JL-10H JL-11H

Rock type Granite

SiO2 65.48 64.95 64.70 66.34 64.27 65.47 65.81 65.22 65.22 65.97 65.70
TiO2 0.53 0.55 0.52 0.55 0.55 0.57 0.57 0.56 0.54 0.52 0.52

Al2O3 14.31 13.79 14.18 13.94 13.61 12.95 14.07 13.83 14.01 13.87 13.72
Fe2O3

T 3.14 3.42 3.46 3.23 3.31 3.06 3.30 2.72 3.16 2.89 2.88
MnO 0.04 0.05 0.05 0.05 0.06 0.05 0.05 0.06 0.05 0.05 0.05
MgO 1.67 2.40 1.86 2.06 2.50 1.56 2.09 1.89 2.02 2.05 2.03
CaO 2.41 2.84 2.62 2.33 3.00 3.33 2.51 2.90 2.31 2.74 2.72

Na2O 2.50 2.65 2.51 2.60 2.64 2.93 2.61 2.67 2.63 2.72 2.72
K2O 4.94 4.44 4.77 4.62 4.38 4.87 4.54 4.79 4.62 4.56 4.55
P2O5 0.20 0.20 0.19 0.20 0.20 0.21 0.21 0.20 0.20 0.19 0.19
L.O.I 2.17 2.74 2.49 1.83 2.04 3.04 1.99 2.68 1.87 2.46 2.38
Total 99.38 100.01 99.34 99.73 99.57 100.03 99.73 99.52 99.63 100.01 99.46

A/CNK 1.03 0.96 1.01 1.03 0.94 0.80 1.02 0.93 1.04 0.96 0.96
A/NK 1.51 1.51 1.53 1.50 1.50 1.28 1.53 1.44 1.50 1.47 1.46
Mg# 51.26 58.13 51.51 55.79 59.92 50.22 55.57 57.85 55.93 58.41 58.24

Trace element (ppm)

Sc 10.8 10.0 11.0 10.9 10.9 8.49 11.0 11.0 10.9 9.49 9.31
V 67.0 69.0 67.3 69.8 72.4 56.2 70.5 70.6 69.8 64.1 63.3
Cr 150 153 149 160 161 156 150 159 158 143 142
Co 10.8 11.4 12.8 10.5 11.9 6.87 10.4 7.82 9.89 9.23 8.93
Ni 66.3 66.1 69.9 61.2 65.3 37.9 62.1 46.2 60.5 53.1 52.0
Ga 16.5 16.9 16.7 16.6 16.7 15.4 16.4 16.1 16.7 16.1 15.6
Rb 287 249 266 252 243 271 249 264 255 247 246
Sr 144 154 139 155 144 126 161 154 165 155 155
Y 15.4 14.0 16.3 14.0 15.3 13.6 14.2 14.5 13.2 13.0 12.8
Zr 287 211 211 284 310 265 274 308 267 226 217
Nb 17.1 16.7 15.8 16.7 17.1 16.5 16.8 16.8 16.5 15.4 15.2
Ba 787 990 742 942 1012 918 836 935 885 923 931
La 41.8 41.9 37.9 40.2 36.6 28.6 44.1 29.5 41.1 38.8 35.8
Ce 88.9 89.3 81.8 88.0 81.9 56.8 97.6 70.3 89.4 87.6 79.1
Pr 10.0 10.4 9.53 10.4 9.73 6.61 11.4 8.72 10.4 10.1 9.30
Nd 38.5 39.7 36.4 39.2 37.2 26.4 42.9 34.6 39.6 38.3 35.7
Sm 5.78 5.97 5.93 6.02 5.87 4.39 6.55 5.80 5.97 5.79 5.28
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Table 4. Cont.

Sample JL-1H JL-2H JL-3H JL-4H JL-5H JL-6H JL-7H JL-8H JL-9H JL-10H JL-11H

Eu 1.05 1.07 1.11 1.09 1.13 0.90 1.19 0.99 1.11 1.06 1.00
Gd 3.54 3.64 3.83 3.59 3.72 2.80 3.50 3.39 3.43 3.42 3.13
Tb 0.51 0.49 0.53 0.49 0.50 0.43 0.51 0.50 0.48 0.45 0.44
Dy 2.91 2.76 3.05 2.74 2.97 2.57 2.83 2.83 2.57 2.58 2.44
Ho 0.51 0.48 0.54 0.48 0.51 0.45 0.48 0.50 0.46 0.45 0.41
Er 1.52 1.35 1.62 1.40 1.52 1.30 1.50 1.44 1.39 1.31 1.24

Tm 0.22 0.20 0.24 0.22 0.22 0.20 0.22 0.22 0.22 0.18 0.18
Yb 1.53 1.27 1.54 1.37 1.45 1.29 1.41 1.40 1.30 1.18 1.13
Lu 0.21 0.17 0.22 0.20 0.21 0.18 0.21 0.20 0.19 0.17 0.16
Hf 8.04 6.12 6.06 8.21 8.79 7.81 8.04 9.15 7.98 6.49 6.37
Ta 1.40 1.32 1.43 1.33 1.35 1.38 1.36 1.38 1.35 1.24 1.19
Pb 34.1 35.5 35.4 37.9 33.6 39.2 39.4 40.1 38.8 36.4 37.3
Th 45.0 49.8 44.6 50.3 44.9 51.5 47.8 47.3 44.9 52.0 48.1
U 6.47 5.34 7.63 6.41 5.56 10.4 6.23 7.05 8.33 6.20 5.76

∑REE 223.16 222.64 211.59 220.30 209.81 155.07 239.67 185.96 221.71 213.82 197.45
(La/Yb)N 19.58 23.72 17.69 21.04 18.16 15.87 22.40 15.12 22.62 23.58 22.82
Eu/Eu* 0.71 0.71 0.71 0.72 0.74 0.78 0.76 0.68 0.75 0.73 0.75

Eu/Eu* = EuN√
(SmN )×(GdN )

.
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Table 5. Zircon Hf isotopic in situ analysis results and related parameters.

Sample No. Age/Ma 176Yb/177Hf 2σ 176Lu/177Hf 2σ 176Hf/177Hf 2σ εHf(0) εHf(t) TDM(Ga) TDM
C (Ga) fLu/Hf

JL-U-01 423 0.0356 0.0010 0.001495 0.000038 0.282353 0.000024 −14.82 −5.94 1.29 1.78 −0.95
JL-U-02 431 0.0534 0.0006 0.002153 0.000027 0.282502 0.000014 −9.56 −0.69 1.09 1.46 −0.94
JL-U-03 421 0.0353 0.0003 0.001411 0.000021 0.282422 0.000019 −12.37 −3.50 1.19 1.63 −0.96
JL-U-04 432 0.0562 0.0006 0.002283 0.000024 0.282378 0.000013 −13.93 −5.08 1.28 1.74 −0.93
JL-U-05 428 0.0314 0.0005 0.001303 0.000021 0.282305 0.000014 −16.52 −7.48 1.35 1.89 −0.96
JL-U-06 424 0.0417 0.0006 0.001740 0.000021 0.282424 0.000015 −12.30 −3.46 1.19 1.63 −0.95
JL-U-07 423 0.0374 0.0006 0.001508 0.000026 0.282260 0.000015 −18.10 −9.22 1.42 1.99 −0.95
JL-U-08 429 0.0482 0.0007 0.001979 0.000024 0.282324 0.000018 −15.84 −6.96 1.34 1.85 −0.94
JL-U-09 425 0.0332 0.0006 0.001387 0.000025 0.282336 0.000022 −15.43 −6.48 1.31 1.82 −0.96
JL-U-10 429 0.0337 0.0022 0.001377 0.000088 0.282347 0.000015 −15.03 −5.98 1.29 1.79 −0.96
JL-U-11 420 0.0423 0.0007 0.001754 0.000023 0.282501 0.000017 −9.57 −0.81 1.08 1.46 −0.95
JL-U-12 422 0.0394 0.0015 0.001636 0.000059 0.282366 0.000017 −14.37 −5.55 1.27 1.76 −0.95
JL-U-13 417 0.0362 0.0010 0.001481 0.000038 0.282323 0.000014 −15.88 −7.12 1.33 1.85 −0.96
JL-U-14 432 0.0373 0.0011 0.001540 0.000041 0.282430 0.000015 −12.09 −3.03 1.18 1.61 −0.95
JL-U-15 424 0.0530 0.0021 0.002127 0.000089 0.282398 0.000016 −13.23 −4.50 1.24 1.69 −0.94
JL-U-16 431 0.0462 0.0006 0.001863 0.000022 0.282238 0.000034 −18.88 −9.94 1.46 2.04 −0.94
JL-U-17 432 0.0304 0.0007 0.001295 0.000029 0.282264 0.000016 −17.98 −8.85 1.41 1.98 −0.96
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5. Discussion
5.1. Genetic Type and Magma Source

Granite’s genesis and geodynamic mechanisms are closely related to rock types [72].
Whalen, et al. [73] proposed that A, I, S, and M-type granites can be distinguished according
to rocks’ geochemical characteristics, such as FeO*/MgO and the Y vs. 10,000 × Ga/Al
discriminant diagram. In the discrimination diagram, all samples fall into I, S, and M
regions, indicating that they are not A-type granites (Figure 6a,b). I-type granites are
generally calcium-rich and aluminum-poor, with a high Na2O/K2O ratio, and are mostly
meta-aluminous (A/CNK < 1.1). I-type granites’ dark minerals mostly contain clinopy-
roxene or amphibole. S-type granites are rich in aluminum but low in calcium, with a
low Na2O/K2O ratio. They are peraluminous (A/CNK > 1.1), and contain metamorphic
minerals such as sillimanite, cordierite, garnet, and andalusite [74]. Jilongjie plutonic rocks
are meta-aluminous to weakly peraluminous (A/CNK = 0.80–1.04) and contain amphiboles
(Figure 2), which are similar to I-type granites. Moreover, the Jilongjie pluton falls into the
I-type granite region in the Rb/Zr vs. SiO2 plot (Figure 6c), as well as the I-type granite
trend in the P2O5 vs. SiO2 plot (Figure 6d). Therefore, its petrological and petrochemical
characteristics indicate that Jilongjie granite is an I-type granite.
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5.2. Magma Source

Generally, the following models could account for the generation of I-type granite:
(1) partial melting of metamorphic intermediate-mafic volcanic rocks [78–80]; (2) fraction-
ation from the mantle-derived mafic magma [81,82]; (3) partial melting of juvenile crust
induced by asthenosphere underplating [83,84]; and (4) mixing between mantle-derived
mafic- and crust-derived felsic magma [85–88].

I-type granites generated by the fractional crystallization of mantle–derived mafic
magma ordinarily have the following characteristics [81,82,89]: (1) massive ultramafic and
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mafic lavas exposed around the study area; (2) samples with obvious negative Eu and Sr
anomalies, indicating that magma formation was the result of the fractional crystalliza-
tion of plagioclase from ultramafic and mafic melts; (3) the occurrence of mafic enclaves;
and (4) enrichment with Sr-Nd-Pb isotopic features. The geological and geochemical
characteristics of the Jilongjie pluton rule out fractional crystallization of mantle-derived
mafic magma.

Zircon grains from Jilongjie granite samples had negative εHf(t) values ranging from
−9.9 to −0.7 (Figure 7); this rules out partial melting of metamorphic intermediate-mafic
volcanic rocks and fractionation from mantle-derived mafic magma (Figure 7). Based on
these negative εHf(t) values and the model age of 1.04–1.46 Ga, the most direct explanation
is that they originated from the anatexis or remelting of ancient crustal materials [90]. How-
ever, zircon Hf isotope data show obvious inhomogeneity (its variation range was several ε
units); this required an open system to cause remarkable changes in the 176Hf/177Hf ratio
in the melt (Figure 7) [91]. As zircon Hf isotope ratios hardly change with partial melting
or fractional crystallization, the heterogeneity of zircon Hf isotopes likely indicates the in-
teraction of mantle- and crust-derived magmas [92]. Therefore, similar to the heterogeneity
of zircon Hf isotopes observed in other parts of the world, the Jilongjie pluton with similar
characteristics is also interpreted as the result of the mixing of mantle- and crust-derived
magmas [77,91–94]. Previous studies indicated that igneous rock with a high transition
metal content are generally interpreted as direct melting from mantle peridotite or mixed
melting from crust and mantle materials [95,96]. The high content of transition metals in
Jilongjie granite was most likely derived from the mixed melting of crustal and mantle
materials (Table 4). Moreover, in the (La/Yb)N diagram, the Jilongjie pluton falls into a
mixed mantle and crust region (Figure 7c).
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However, it is difficult to explain the whole-rock major and trace geochemical charac-
teristics of Jilongjie pluton based solely on the mixing of mantle- and crust-derived material.
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The depletion of Ba, Nb, Ta, Sr, and Ti indicate that its parent magma has undergone
significant fractional crystallization (Figure 5). For example, the depletion of Nb, Ta, and
Ti indicates the fractional crystallization of titanium-rich mineral phases (such as ilmenite
and/or rutile) and Ca-amphibole, and the strong depletion of Sr and Ba indicates the
fractional crystallization of plagioclase and potassium feldspar. Moreover, the Rb vs. Sr
and Ba vs. Sr diagrams also suggest fractional crystallization of plagioclase and potassium
feldspar (Figure 8a,b). Fractional crystallization of zircon and K-feldspar are also indicated
in Zr vs. SiO2 and Ba vs. SiO2 diagrams, respectively (Figure 8c,d).
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Mantle material may have played an important role in the SCB’s Triassic magmatism,
including the Shangmushui, Daning, and Wanyangshan plutons [45–47]. The geochemical
characteristics of Jilongjie granite are similar to those of the above plutons (Figures 4 and 5).
Therefore, based on geological, major and trace element geochemical, and Hf isotope data,
we suggest that the parent magma of Jilongjie granite originated from mixed crust-derived
felsic and mantle-derived mafic magmas, followed by fractional crystallization during its
ascent or in the emplacement level.

5.3. Tectonic Implications

According to previous studies, granites and granitic gneisses dated from the Late
Ordovician to the Early Devonian are considered the significant products of early Paleozoic
magmatism in the SCB [37–39,44,100–102]. The early Paleozoic Wuyi–Yunkai orogeny
in the SCB was the first extensive tectonothermal event since the Neoproterozoic break-
up of the Rodinia supercontinent, roughly synchronized with the Caledonian orogeny
in Europe [1,103,104]. However, the tectonic–magmatic evolution of the early Paleozoic
remains controversial. Some scholars suggest that the Wuyi–Yunkai orogeny was the
result of continental collisions or arc collisions caused by the subduction and closure of
the Huanan Ocean between the Cathaysian and Yangtze blocks during the Caledonian
period [105–107]. Others argue that the Yangtze and Cathaysian blocks were still continuous
in the early Paleozoic, and thus the Wuyi–Yukai orogeny represents an intracontinental
collision [7,14,37,108–110]. The following petrological and sedimentary geological features
indicate that the Wuyi–Yunkai orogeny was more likely an intraplate orogeny rather
than a subduction-related orogenic event: (1) Using statistics from previous research, we
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found that massive granites are widely distributed, which is inconsistent with the linear
distribution of magmatic rocks in the subduction mode (Figure 1a; [6]). (2) Early Paleozoic
ophiolitic suites, arc andesites, and calc-alkaline volcanic rocks related to the closure of
the Huanan Ocean (mentioned above) are absent [12,14,109]. (3) The paleoecological
and biostratigraphical evolution in the Cathaysia and Yangtze blocks are related and
continuous [111]. (4) The age spectra of detrital zircon from lower Paleozoic sandstones of
the Cathaysia and Yangtze blocks have similar characteristics [109,112].

Although the Jilongjie pluton is a significant distance from the Wuyi–Yunkai orogeny’s
core area, according to its temporal and spatial distribution characteristics, it is likely to
be the westward extension of the orogenic belt or the product of early Paleozoic granitic
magmatism [31,113]. Therefore, it should have been generated in the same tectonic setting.
However, it is controversial whether the tectonic setting of the early Paleozoic magmatic
rocks (especially 460–400 Ma) in the South China Plate was syn-collisional [43,113] or
post-collisional [26,27,37,39,44,100,101]. As shown in Figure 9, Jilongjie granites plot in the
field of syn-collisional to post-collisional granites.

Minerals 2023, 13, x FOR PEER REVIEW 19 of 26 
 

 

 
Figure 9. (a) Y vs. Nb and (b) (Y+Nb) vs. Rb [114]. The data source is the same as Figure 4. 

Increasing evidence indicates that extensional mechanisms related to the post-colli-
sion stage were responsible for the generation of magmatic rocks in the SCB after 435 Ma, 
as follows: (1) Massive granites are widely distributed in the SCB, which is inconsistent 
with the characteristics of a small amount of migmatite and leucogranite generated in the 
syn-collisional orogenic stage [115]. (2) The high-magnesium basalt in the Wuyi–Yunkai 
orogenic belt indicates that the potential temperature of mantle melting at that time ex-
ceeded 1300 °C, which is significantly different from the syn-collision extrusion regime 
[42]. (3) The mafic intrusive rocks and contemporaneous granitic rocks generated by the 
decompression melting of the mantle in the SBC due to lithospheric extension are charac-
terized by a bimodal pattern, which is consistent with post-collision extensional magma-
tism rather than a compression regime [26,101]. (4) Recent studies of deformation and ad-
vanced metamorphism indicate a prograde metamorphism associated with synorogenic 
crustal thickening and a retrograde metamorphism with postorogenic rapid exhumation 
at 460–435 and 435–400 Ma, respectively [26,27,100]. 

In summary, we suggest that the tectonic–magmatic evolution model of the Early 
Paleozoic (460–400 Ma) in the SCB can be summarized as follows: (1) During the syn-
collision period (460–435 Ma), the crust was significantly shortened and thickened, caus-
ing high-temperature crustal anatexis and generating granitic rocks, accompanied by 
thickening of the lithospheric root (Figure 10a) [7,26,37,39]; (2) between 435 and 400 Ma, 
as the lithosphere was denser than the underlying asthenosphere, delamination caused 
part of the lithosphere root to be removed [116]. The subsequent upwelling of the asthen-
osphere provided heat to melt the lithospheric mantle [117]. The partial melting of the 
depleted lithosphere produced mafic magma, which intruded into the middle and upper 
crust, forming a huge magma chamber [118]. The intrusive mafic magma promoted mas-
sive crustal melting and generated granitic melts [117]. Subsequently, the depleted man-
tle-derived material mixed with the granitic parent magma, generating intermediate gran-
ites, including the Jilongjie pluton (Figure 10b). 

Figure 9. (a) Y vs. Nb and (b) (Y + Nb) vs. Rb [114]. The data source is the same as Figure 4.

Increasing evidence indicates that extensional mechanisms related to the post-collision
stage were responsible for the generation of magmatic rocks in the SCB after 435 Ma, as
follows: (1) Massive granites are widely distributed in the SCB, which is inconsistent
with the characteristics of a small amount of migmatite and leucogranite generated in the
syn-collisional orogenic stage [115]. (2) The high-magnesium basalt in the Wuyi–Yunkai
orogenic belt indicates that the potential temperature of mantle melting at that time ex-
ceeded 1300 ◦C, which is significantly different from the syn-collision extrusion regime [42].
(3) The mafic intrusive rocks and contemporaneous granitic rocks generated by the decom-
pression melting of the mantle in the SBC due to lithospheric extension are characterized
by a bimodal pattern, which is consistent with post-collision extensional magmatism rather
than a compression regime [26,101]. (4) Recent studies of deformation and advanced
metamorphism indicate a prograde metamorphism associated with synorogenic crustal
thickening and a retrograde metamorphism with postorogenic rapid exhumation at 460–435
and 435–400 Ma, respectively [26,27,100].

In summary, we suggest that the tectonic–magmatic evolution model of the Early Pale-
ozoic (460–400 Ma) in the SCB can be summarized as follows: (1) During the syn-collision
period (460–435 Ma), the crust was significantly shortened and thickened, causing high-
temperature crustal anatexis and generating granitic rocks, accompanied by thickening of
the lithospheric root (Figure 10a) [7,26,37,39]; (2) between 435 and 400 Ma, as the lithosphere
was denser than the underlying asthenosphere, delamination caused part of the lithosphere
root to be removed [116]. The subsequent upwelling of the asthenosphere provided heat
to melt the lithospheric mantle [117]. The partial melting of the depleted lithosphere pro-
duced mafic magma, which intruded into the middle and upper crust, forming a huge
magma chamber [118]. The intrusive mafic magma promoted massive crustal melting and
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generated granitic melts [117]. Subsequently, the depleted mantle-derived material mixed
with the granitic parent magma, generating intermediate granites, including the Jilongjie
pluton (Figure 10b).
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batholiths [37,39,119].

6. Conclusions

(1) The Jilongjie pluton was emplaced at ~426 Ma and displays shoshonite and metalumi-
nous characteristics.

(2) Jilongjie granites’ parent magma originated from a mixing of crust-derived felsic and
mantle-derived mafic magmas, and then underwent fractional crystallization during
its ascent and/or emplacement.

(3) The post-collisional extensional mechanism associated with the delamination of the
thickened lithosphere was responsible for post-435 Ma igneous rock (including the
Jilongjie pluton) in the SCB.
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