Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (18)

Search Parameters:
Keywords = macrocrystalline

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 17522 KB  
Article
Well-Preserved Structure of Silicified Wood: A Case Study from Qitai Silicified Forest, NW China and Its Silicification Mechanisms
by Wenqing Liu, Guanghai Shi, Xinling Li, Xiaoyun Quan, Yuetong Li and Ye Yuan
Plants 2025, 14(22), 3468; https://doi.org/10.3390/plants14223468 - 13 Nov 2025
Viewed by 578
Abstract
The Qitai silicified wood from Xinjiang, NW China, provides an exceptional archive for investigating the mechanisms of wood silicification. This study applies microscopy, scanning electron microscopy (SEM), and X-ray diffraction (XRD) to characterize the microstructural and mineralogical features of these fossils. The results [...] Read more.
The Qitai silicified wood from Xinjiang, NW China, provides an exceptional archive for investigating the mechanisms of wood silicification. This study applies microscopy, scanning electron microscopy (SEM), and X-ray diffraction (XRD) to characterize the microstructural and mineralogical features of these fossils. The results show that the samples are primarily composed of microcrystalline–macrocrystalline α-quartz having anhedral–euhedral shapes, with minor occurrences of moganite. A well-preserved structure exhibits distinct anatomic details of cellular networks, such as growth rings and rays. Magnified observation revealed that the microcrystalline quartz within cell walls grew outward from the innermost layer of the wall, suggesting silica infiltration from lumina to walls. The opposite growth of elongated columnar quartz within adjacent cell walls terminated at the position of the middle lamellae. Cell lumen infilling exhibits greater variability on filling degree and phase type. The permeation silicification of cell walls and the oligoblastic to polyblastic structure inside cell frameworks contribute to high fidelity preservation. This interpretation helps us understand how the wood structure was perfectly preserved during the silicification, thus emphasizing its significance for wood identification through its preserved structure. Full article
(This article belongs to the Section Plant Development and Morphogenesis)
Show Figures

Figure 1

37 pages, 37822 KB  
Article
Mineralization of Fossil Wood with Macrocrystalline Quartz: A Microscopic Investigation
by George E. Mustoe
Minerals 2025, 15(3), 225; https://doi.org/10.3390/min15030225 - 25 Feb 2025
Cited by 3 | Viewed by 1945
Abstract
Optical microscopy and SEM imaging are powerful tools for evaluating the origins of quartz in fossil wood. Silicification is the most common mechanism for wood petrifaction, but this silica is commonly in cryptocrystalline or microcrystalline form (e.g., chalcedony or agate). Two essential requirements [...] Read more.
Optical microscopy and SEM imaging are powerful tools for evaluating the origins of quartz in fossil wood. Silicification is the most common mechanism for wood petrifaction, but this silica is commonly in cryptocrystalline or microcrystalline form (e.g., chalcedony or agate). Two essential requirements for the formation of macrocrystalline quartz is a concentration of dissolved silica low enough to allow the development of well-ordered lattices, and sufficient open space to allow euhedral or subhedral crystals to grow. Macrocrystalline quartz commonly occurs as a late-stage precipitate in open spaces that remained after initial mineralization had occurred. These spaces include vessels in angiosperm wood, and vugs and fractures in all types of wood. Exterior surfaces may also be suitable sites for quartz crystal growth. In some occurrences, crystalline quartz has directly encrusted or replaced wood cells. Diagenetic transformation of opal can produce cryptocrystalline or microcrystalline forms of quartz, but this process is not likely to produce macrocrystals. Full article
(This article belongs to the Special Issue Mineralogy and Geochemistry of Fossils)
Show Figures

Figure 1

11 pages, 5167 KB  
Article
Unveiling the Bluish Green Chalcedony Aquaprase™—The Study of Its Microstructure and Mineralogy
by Sara Monico, Ilaria Adamo, Valeria Diella, Yianni Melas, Loredana Prosperi and Nicoletta Marinoni
Crystals 2024, 14(11), 1003; https://doi.org/10.3390/cryst14111003 - 19 Nov 2024
Cited by 1 | Viewed by 2017
Abstract
A bluish green chalcedony (a micro to crypto polycrystalline form of silica) from Africa has been marketed with the trademark AQUAPRASETM. A multimethodological approach, combining gemological analyses, thin section examination, scanning electron microscopy, X-ray powder diffraction, Raman spectroscopy, and trace elements [...] Read more.
A bluish green chalcedony (a micro to crypto polycrystalline form of silica) from Africa has been marketed with the trademark AQUAPRASETM. A multimethodological approach, combining gemological analyses, thin section examination, scanning electron microscopy, X-ray powder diffraction, Raman spectroscopy, and trace elements chemical analyses by LA–ICP–MS, was carried out to characterize this material from a gemological and mineralogical point of view. The chalcedony samples consist of a mixture of quartz and moganite, as shown by the X-ray powder diffraction analysis and Raman spectroscopy. “Aquaprase” showed a strong microstructural zoning in terms of grain size, from macrocrystalline to micro and crypto, and morphology. Trace element variations correlated well with the different colored areas of the samples. In particular, the main chromophore ion present in the bluish green areas of the “aquaprase” chalcedony was chromium, followed by iron and nickel, so this chalcedony could be included in the group of chromium-bearing chalcedony. Rayleigh light scattering contributed to the blue hue of the gems. Full article
Show Figures

Figure 1

25 pages, 14193 KB  
Article
Agates of the Lece Volcanic Complex (Serbia): Mineralogical and Geochemical Characteristics
by Zoran Miladinović, Vladimir Simić, Nenad Nikolić, Nataša Jović Orsini and Milena Rosić
Minerals 2024, 14(5), 511; https://doi.org/10.3390/min14050511 - 14 May 2024
Cited by 4 | Viewed by 3055
Abstract
Agate veins and nodules occur in the Lece Volcanic Complex (Oligocene-Miocene) situated in the south of Serbia and occupying an area of 700 km2. This volcanic complex is composed predominantly of andesites, with sporadic occurrences of andesite-basalts, dacites and latites, and [...] Read more.
Agate veins and nodules occur in the Lece Volcanic Complex (Oligocene-Miocene) situated in the south of Serbia and occupying an area of 700 km2. This volcanic complex is composed predominantly of andesites, with sporadic occurrences of andesite-basalts, dacites and latites, and features agate formations that have been very little investigated. This study focuses on five selected agate occurrences within the Lece Volcanic Complex, employing optical microscopy, scanning electron microscopy (SEM), X-ray powder diffraction analysis, inductively coupled plasma mass spectrometry (ICP-MS), and Fourier transform infrared spectroscopy (FTIR). In three localities (Rasovača, Mehane, and Ždraljevići), agate mineralization is directly related to distinct fault zones with strong local brecciation. In the other two localities (Vlasovo and Sokolov Vis), the agate is found in nodular form and does not show any connection with fracture zones. The silica phases of the Lece volcanic agates consist of cristobalite and tridymite, length-fast chalcedony, quartzine (length-slow chalcedony), and macrocrystalline quartz. Vein agates show a frequent alternation between length-fast chalcedony and quartz bands. Nodular agates consist primarily of length-fast chalcedony, occasionally containing notable quantities of opal-CT, absent in vein agates. Microtextures present in vein agates include crustiform, colloform, comb, mosaic, flamboyant, and pseudo-bladed. Jigsaw puzzle quartz microtexture supports the recrystallization of previously deposited silica in the form of opal or chalcedony from hydrothermal fluids. Growth lines in euhedral quartz (Bambauer quartz) point to agate formations in varying physicochemical conditions. These features indicate epithermal conditions during the formation of hydrothermal vein agates. Due to intense hydrothermal activity, vein agate host rocks are intensively silicified. Vein agates are also enriched with typical ore metallic elements (especially Pb, Co, As, Sb, and W), indicating genetic relation with the formation of polymetallic ore deposits of the Lece Volcanic Complex. In contrast, nodular agates have a higher content of major elements of host rocks (Al2O3, MgO, CaO, Na2O, and K2O), most probably mobilized from volcanic host rocks. Organic matter, present in both vein and nodular agate with filamentous forms found only in nodular agate, suggests formation in near-surface conditions. Full article
Show Figures

Figure 1

35 pages, 37975 KB  
Article
Interactions between Clays and Carbonates in the Aptian Pre-Salt Reservoirs of Santos Basin, Eastern Brazilian Margin
by Argos Belmonte Silveira Schrank, Thisiane Dos Santos, Sabrina Danni Altenhofen, William Freitas, Elias Cembrani, Thiago Haubert, Felipe Dalla Vecchia, Rosalia Barili, Amanda Goulart Rodrigues, Anderson Maraschin and Luiz Fernando De Ros
Minerals 2024, 14(2), 191; https://doi.org/10.3390/min14020191 - 11 Feb 2024
Cited by 9 | Viewed by 4610
Abstract
The giant Pre-salt reservoirs represent most of the oil production in Brazil. The main Aptian sag reservoirs were deposited in a unique and highly complex hyper-alkaline lacustrine setting. These deposits are essentially constituted by fascicular and spherulitic calcite precipitated in a magnesian clay [...] Read more.
The giant Pre-salt reservoirs represent most of the oil production in Brazil. The main Aptian sag reservoirs were deposited in a unique and highly complex hyper-alkaline lacustrine setting. These deposits are essentially constituted by fascicular and spherulitic calcite precipitated in a magnesian clay matrix (stevensite, kerolite, and saponite/hectorite). Although vital for understanding the origin and main reservoir quality control, the genesis and interactions of clays and carbonates are still poorly constrained. The detailed petrographic description was focused on 812 thin sections from five wells drilled in the Santos Basin Aptian Barra Velha Formation, combined with cathodoluminescence, UV epifluorescence, and X-ray diffraction analyses. The main syngenetic processes were the deposition of finely laminated peloidal and ooidal Mg-clays, the formation of fascicular calcite crusts on the sediment–water interface, and the redeposition of these materials as intraclasts. Abundant clay peloids engulfed in syngenetic shrubs indicate that calcite and clay precipitation was concomitant, though with highly variable rates. Eodiagenetic phases include matrix-replacive and -displacive spherulites and fascicular shrubs; matrix-replacive blocky calcite and dolomite; lamellar carbonates filling matrix shrinkage pores; and microcrystalline calcite, dolomite, and silica replacing the Mg-clay matrix. The preferential dolomitization and calcitization of peloidal layers were most likely due to their higher permeability and larger specific surface. Matrix-replacive saddle dolomite, macrocrystalline calcite, and dawsonite are interpreted as mesodiagenetic or hydrothermal phases after significant matrix dissolution. Unraveling the processes of the formation and alteration of the carbonates and clays and their interactions in the Pre-salt deposits is essential for constraining the depositional and diagenetic conditions in their unique environments and their diagenetic overprinting and for decreasing the exploration risks and increasing the production of those extraordinary reservoirs. Full article
Show Figures

Figure 1

16 pages, 2274 KB  
Article
Rapid Classification of Petroleum Waxes: A Vis-NIR Spectroscopy and Machine Learning Approach
by Marta Barea-Sepúlveda, José Luis P. Calle, Marta Ferreiro-González and Miguel Palma
Foods 2023, 12(18), 3362; https://doi.org/10.3390/foods12183362 - 7 Sep 2023
Cited by 6 | Viewed by 3472
Abstract
Petroleum-derived waxes are used in the food industry as additives to provide texture and as coatings for foodstuffs such as fruits and cheeses. Therefore, food waxes are subject to strict quality controls to comply with regulations. In this research, a combination of visible [...] Read more.
Petroleum-derived waxes are used in the food industry as additives to provide texture and as coatings for foodstuffs such as fruits and cheeses. Therefore, food waxes are subject to strict quality controls to comply with regulations. In this research, a combination of visible and near-infrared (Vis-NIR) spectroscopy with machine learning was employed to effectively characterize two commonly marketed petroleum waxes of food interest: macrocrystalline and microcrystalline. The present study employed unsupervised machine learning algorithms like hierarchical cluster analysis (HCA) and principal component analysis (PCA) to differentiate the wax samples based on their chemical composition. Furthermore, nonparametric supervised machine learning algorithms, such as support vector machines (SVMs) and random forest (RF), were applied to the spectroscopic data for precise classification. Results from the HCA and PCA demonstrated a clear trend of grouping the wax samples according to their chemical composition. In combination with five-fold cross-validation (CV), the SVM models accurately classified all samples as either macrocrystalline or microcrystalline wax during the test phase. Similar high-performance outcomes were observed with RF models along with five-fold CV, enabling the identification of specific wavelengths that facilitate discrimination between the wax types, which also made it possible to select the wavelengths that allow discrimination of the samples to build the characteristic spectralprint of each type of petroleum wax. This research underscores the effectiveness of the proposed analytical method in providing fast, environmentally friendly, and cost-effective quality control for waxes. The approach offers a promising alternative to existing techniques, making it a viable option for automated quality assessment of waxes in food industrial applications. Full article
Show Figures

Graphical abstract

24 pages, 9247 KB  
Article
Mineralogy of Agates with Amethyst from the Tevinskoye Deposit (Northern Kamchatka, Russia)
by Evgeniya N. Svetova, Galina A. Palyanova, Andrey A. Borovikov, Viktor F. Posokhov and Tatyana N. Moroz
Minerals 2023, 13(8), 1051; https://doi.org/10.3390/min13081051 - 9 Aug 2023
Cited by 8 | Viewed by 4669
Abstract
The Tevinskoye agate deposit is located in the North of the Kamchatka peninsula (Russia) and represented by agate-bearing Eocene basaltic and andesitic rocks of the Kinkilsk complex. Agate mineralization occurs in lavas and tuffs as amygdales, geodes, lenses and veins, which are the [...] Read more.
The Tevinskoye agate deposit is located in the North of the Kamchatka peninsula (Russia) and represented by agate-bearing Eocene basaltic and andesitic rocks of the Kinkilsk complex. Agate mineralization occurs in lavas and tuffs as amygdales, geodes, lenses and veins, which are the main sources of the resupply of coastal agate placers. The present study aimed to perform a comprehensive mineralogical, geochemical, and O-isotope investigation of amethyst-bearing agates, and to evaluate data concerning the origin of mineralization and the conditions for amethyst formation. Agates exhibit spectacular textures, with variation in the sequence of silica filling of amygdales and geodes. The mineral composition of the agates is mainly represented by micro- and macro-crystalline quartz, amethyst, length-fast and zebraic chalcedony, moganite, goethite, and clinoptilolite. Carbonate forms individual bands in the outer zones of some agates. The presence of small amounts of native copper, covellite, chalcopyrite and pyrite is a feature of these agates. Copper and iron mineralization are probably typomorphic features related to the host rock composition. The measured values of crystallite size (525–560 Å) and the high moganite content (up to 50%) of agate with amethyst are evidenced by the young age (~45 Ma) of agate-hosting rocks. Agate formation temperatures (21–229 °C) were calculated from the O-isotope composition of chalcedony (+19.6 to +25.5‰), quartz (+18.1 to +22.3‰), and amethyst (+18.2 to +21.5‰). The cold-water monophase fluid inclusions revealed in amethyst crystals suggest that the mineralizing fluids have low temperatures (<100 °C) and low salinity. Magnetite grains in host rock, together with goethite inclusions identified within the amethyst crystals, point to a change in redox conditions and the presence of iron in the agate-forming fluids, which entered the quartz lattice during crystallization and influenced the formation of the violet color. Full article
(This article belongs to the Special Issue Gem Characterisation)
Show Figures

Figure 1

21 pages, 15055 KB  
Article
On the Influence of Heat Input on Ni-WC GMAW Hardfaced Coating Properties
by Jan Pawlik, Michał Bembenek, Tomasz Góral, Jacek Cieślik, Janusz Krawczyk, Aneta Łukaszek-Sołek, Tomasz Śleboda and Łukasz Frocisz
Materials 2023, 16(11), 3960; https://doi.org/10.3390/ma16113960 - 25 May 2023
Cited by 9 | Viewed by 2292
Abstract
Hardfacing is one of the techniques used for part lifecycle elongation. Despite being used for over 100 years, there still is much to discover, as modern metallurgy provides more and more sophisticated alloys, which then have to be studied to find the best [...] Read more.
Hardfacing is one of the techniques used for part lifecycle elongation. Despite being used for over 100 years, there still is much to discover, as modern metallurgy provides more and more sophisticated alloys, which then have to be studied to find the best technological parameters in order to fully utilize complex material properties. One of the most efficient and versatile hardfacing approaches is Gas Metal Arc Welding technology (GMAW) and its cored-wire equivalent, known as FCAW (Flux-Cored/Cored Arc Welding). In this paper, the authors study the influence of heat input on the geometrical properties and hardness of stringer weld beads fabricated from cored wire consisting of macrocrystalline tungsten carbides in a nickel matrix. The aim is to establish a set of parameters which allow to manufacture wear-resistant overlays with high deposition rates, preserving all possible benefits of this heterogenic material. This study shows, that for a given diameter of the Ni-WC wire, there exists an upper limit of heat input beyond which the tungsten carbide crystals may exhibit undesired segregation at the root. Full article
Show Figures

Figure 1

12 pages, 3000 KB  
Article
Morphological and Physicochemical Properties of Macrocrystalline Talc from Argentine
by Silvia E. Barbosa and Luciana A. Castillo
Minerals 2023, 13(5), 683; https://doi.org/10.3390/min13050683 - 17 May 2023
Cited by 7 | Viewed by 4194
Abstract
A detailed petrographical, mineralogical, morphological, geochemical and physicochemical characterization of talc from an Argentinean ore is presented. This deposit is located in the San Juan province at the foothills of the Andes. Characterization was performed on rock and milled talc using different techniques [...] Read more.
A detailed petrographical, mineralogical, morphological, geochemical and physicochemical characterization of talc from an Argentinean ore is presented. This deposit is located in the San Juan province at the foothills of the Andes. Characterization was performed on rock and milled talc using different techniques including polarized light microscopy, transmission electron and scanning microscopy with energy dispersive spectroscopy (SEM/EDX), chemical analyses, X-ray diffraction (XRD), X-ray fluorescence, Fourier transform infrared spectroscopy (FTIR), particle size determination by laser diffraction, thermogravimetry analysis, and colorimetry. A mineral sample contains approximately 80 wt% talc. Associated minerals such as carbonates as veins and chlorite interlaminated with talc were detected. Carbonates are calcite, dolomite and magnesite, as was corroborated by FTIR. Morphology and crystallinity were assessed by XRD data, obtaining a morphological index of 0.79 which indicates the macrocrystalline character. Crystalline habits of associated minerals were recognized by SEM, detecting their constitutive elements by EDX. Talc color parameters are L* = 82.76, a* = −1.50, and b* = 5.38. The slight yellowing could be attributed to chlorite or traces of Fe oxides. Although the whiteness index (62.12) impedes its commercialization as a high-priced mineral, this kind of talc can be used as an additive for polymers, since it would offer a high reinforcing effect (improvement of mechanical properties). Full article
Show Figures

Figure 1

26 pages, 15235 KB  
Article
Agates from Mesoproterozoic Volcanics (Pasha–Ladoga Basin, NW Russia): Characteristics and Proposed Origin
by Evgeniya N. Svetova and Sergei A. Svetov
Minerals 2023, 13(1), 62; https://doi.org/10.3390/min13010062 - 30 Dec 2022
Cited by 8 | Viewed by 3182
Abstract
Agate gemstones occurring in the Mesoproterozoic volcanic rocks of the Priozersk Formation (PrF) within the Pasha–Ladoga Basin (Fennoscandian Shield, NW Russia) were investigated to characterize the mineral and geochemical composition of the agates and provide new information concerning their origin. Optical and scanning [...] Read more.
Agate gemstones occurring in the Mesoproterozoic volcanic rocks of the Priozersk Formation (PrF) within the Pasha–Ladoga Basin (Fennoscandian Shield, NW Russia) were investigated to characterize the mineral and geochemical composition of the agates and provide new information concerning their origin. Optical and scanning electron microscopy, EDS microanalysis, X-ray powder diffraction, X-ray fluorescence spectrometry, Raman spectroscopy, inductively coupled plasma mass spectrometry (ICP-MS), and C-O isotope analysis were used for the study. Agate mineralization appears mostly as an infill of fissures, cavities, gas vesicles in massive and vesicular basalts, lava-breccias. The mineral composition of agates is dominated by alpha-quartz (fibrous chalcedony, microcrystalline and macrocrystalline quartz), but it also displays abundances of calcite. The characteristic red-brownish agate’s coloration is caused by multiple hematite inclusions distributed in an agate matrix. The study revealed the two phases of agate formation in the PrF volcanics, which are most likely controlled by two distinctly different fluids and/or their mixture. At first, agates appeared due to post-magmatic iron-rich fluids. The late hydrothermal activity was probably triggered by intrusion of gabbro-dolerite sill and resulted in the second phase of agate formation. We suggest that the late hydrothermal fluids remobilized the iron compounds from the crust of weathering underlying the PrF volcanics, which led to additional formation of vein agates and filling of gas vesicles with hematite-rich calcite/silica matter. Full article
(This article belongs to the Special Issue Gem Characterisation)
Show Figures

Figure 1

25 pages, 6655 KB  
Article
Optimization of the Preformulation and Formulation Parameters in the Development of New Extended-Release Tablets Containing Felodipine
by Anca Lucia Pop, Adina Magdalena Musuc, Anca Cecilia Nicoară, Emma Adriana Ozon, Simona Crisan, Ovidiu Nicolae Penes, Bogdana Adriana Nasui, Dumitru Lupuliasa and Ana Andreea Secăreanu
Appl. Sci. 2022, 12(11), 5333; https://doi.org/10.3390/app12115333 - 25 May 2022
Cited by 5 | Viewed by 5112
Abstract
Herein, new extended-release tablets containing felodipine were developed. For the orally administered formulations, optimization of the preformulation and formulation parameters was performed to assess the performance of the dosage form. Initially, the morphological and physical characterization of two forms of felodipine (microcrystalline and [...] Read more.
Herein, new extended-release tablets containing felodipine were developed. For the orally administered formulations, optimization of the preformulation and formulation parameters was performed to assess the performance of the dosage form. Initially, the morphological and physical characterization of two forms of felodipine (microcrystalline and macrocrystalline) using Fourier transform infrared spectroscopy, differential scanning calorimetry and optical microscopy was performed. The pharmaco-technical properties of the two felodipine forms were also determined. Subsequently, formulation studies for felodipine extended-release tablets were performed. Mathematical modelling of release kinetics of felodipine from developed formulations using a power law model was also performed. Based on the influence of formulation factors on the in vitro availability of felodipine in experimental tablets, a new extended-release tablet formulation was established. Full article
Show Figures

Figure 1

32 pages, 18344 KB  
Article
Mineralogy of Miocene Petrified Wood from Central Washington State, USA
by George E. Mustoe and Thomas A. Dillhoff
Minerals 2022, 12(2), 131; https://doi.org/10.3390/min12020131 - 23 Jan 2022
Cited by 10 | Viewed by 9199
Abstract
Silicified wood occurs abundantly in Middle Miocene flows and sedimentary interbeds of the Columbia River Basalt Group (CRBG) in central Washington State, USA. These fossil localities are well-dated based on radiometric ages determined for the host lava. Paleoenvironments include wood transported by lahars [...] Read more.
Silicified wood occurs abundantly in Middle Miocene flows and sedimentary interbeds of the Columbia River Basalt Group (CRBG) in central Washington State, USA. These fossil localities are well-dated based on radiometric ages determined for the host lava. Paleoenvironments include wood transported by lahars (Ginkgo Petrified Forest State Park), fluvial and palludal environments (Saddle Mountain and Yakima Canyon fossil localities), and standing forests engulfed by advancing lava (Yakima Ridge fossil forest). At all of these localities, the mineralogy of fossil wood is diverse, with silica minerals that include opal-A, opal-CT, chalcedony, and macrocrystalline quartz. Some specimens are composed of only a single form of silica; more commonly, specimens contain multiple phases. Opal-A and Opal-CT often coexist. Some woods are mineralized only with chalcedony; however, chalcedony and macrocrystalline quartz are common as minor constituents in opal wood. In these specimens, crystalline silica filling fractures, rot pockets, and cell lumen may occur. These occurrences are evidence that silicification occurred as a sequential process, where changes in the geochemical environment or anatomical structures affected the precipitation of silica. Fossilization typically began with precipitation of amorphous silica within cell walls, leaving cell lumen and conductive vessels open. Diagenetic transformation of opal-A to opal-CT in fossil wood has long been a widely accepted hypothesis; however, in opaline CRBG specimens, the two silica polymorphs usually appear to have formed independently, e.g., woods in which cell walls are mineralized with opal-A but in which lumen contain opal-CT. Similarly, opal-CT has been inferred to sometimes transform to chalcedony; however, in CRBG, these mixed assemblages commonly resulted from multiple mineralization episodes. Full article
(This article belongs to the Special Issue Geochemical Archives in Trace Fossils)
Show Figures

Figure 1

24 pages, 7185 KB  
Article
Black Agates from Paleoproterozoic Pillow Lavas (Onega Basin, Karelian Craton, NW Russia): Mineralogy and Proposed Origin
by Evgeniya N. Svetova, Svetlana Y. Chazhengina, Alexandra V. Stepanova and Sergei A. Svetov
Minerals 2021, 11(9), 918; https://doi.org/10.3390/min11090918 - 25 Aug 2021
Cited by 11 | Viewed by 4059
Abstract
The present study provides the first detailed investigation of black agates occurring in volcanic rocks of the Zaonega Formation within the Onega Basin (Karelian Craton, Fennoscandian Shield). Three characteristic texture types of black agates were identified: monocentric concentrically zoning agates, polycentric spherulitic agates, [...] Read more.
The present study provides the first detailed investigation of black agates occurring in volcanic rocks of the Zaonega Formation within the Onega Basin (Karelian Craton, Fennoscandian Shield). Three characteristic texture types of black agates were identified: monocentric concentrically zoning agates, polycentric spherulitic agates, and moss agates. The silica matrix of black agates is only composed of length-fast and zebraic chalcedony, micro- and macro-crystalline quartz, and quartzine. In addition to silica minerals, calcite, chlorite, feldspar, sulphides, and carbonaceous matter were also recognised. The black colour of agates is related to the presence of disseminated carbonaceous matter (CM) with a bulk content of less than 1 wt.%. Raman spectroscopy revealed that CM from black agates might be attributed to poorly ordered CM. The metamorphic temperature for CM from moss and spherulitic agates was determined to be close to 330 °C, whereas CM from concentrically zoning agates is characterised by a lower temperature, 264 °C. The potential source of CM in moss and spherulitic agates is associated with the hydrothermal fluids enriched in CM incorporated from underlaying carbon-bearing shungite rocks. The concentrically zoning agates contained heterogeneous CM originated both from the inter-pillow matrix and/or hydrothermal fluids. Full article
(This article belongs to the Special Issue Agates: Types, Mineralogy, Deposits, Host Rocks, Ages and Genesis)
Show Figures

Figure 1

25 pages, 6656 KB  
Article
Preparation, Characterization, and Evaluation of Macrocrystalline and Nanocrystalline Cellulose as Potential Corrosion Inhibitors for SS316 Alloy during Acid Pickling Process: Experimental and Computational Methods
by Arafat Toghan, Mohamed Gouda, Kamal Shalabi and Hany M. Abd El-Lateef
Polymers 2021, 13(14), 2275; https://doi.org/10.3390/polym13142275 - 12 Jul 2021
Cited by 42 | Viewed by 3548
Abstract
Converting low-cost bio-plant residuals into high-value reusable nanomaterials such as microcrystalline cellulose is an important technological and environmental challenge. In this report, nanocrystalline cellulose (NCC) was prepared by acid hydrolysis of macrocrystalline cellulose (CEL). The newly synthesized nanomaterials were fully characterized using spectroscopic [...] Read more.
Converting low-cost bio-plant residuals into high-value reusable nanomaterials such as microcrystalline cellulose is an important technological and environmental challenge. In this report, nanocrystalline cellulose (NCC) was prepared by acid hydrolysis of macrocrystalline cellulose (CEL). The newly synthesized nanomaterials were fully characterized using spectroscopic and microscopic techniques including FE-SEM, FT-IR, TEM, Raman spectroscopy, and BET surface area. Morphological portrayal showed the rod-shaped structure for NCC with an average diameter of 10–25 nm in thickness as well as length 100–200 nm. The BET surface area of pure CEL and NCC was found to be 10.41 and 27 m2/g, respectively. The comparative protection capacity of natural polymers CEL and NCC towards improving the SS316 alloy corrosion resistance has been assessed during the acid pickling process by electrochemical (OCP, PDP, and EIS), and weight loss (WL) measurements. The outcomes attained from the various empirical methods were matched and exhibited that the protective efficacy of these polymers augmented with the upsurge in dose in this order CEL (93.1%) < NCC (96.3%). The examined polymers display mixed-corrosion inhibition type features by hindering the active centers on the metal interface, and their adsorption followed the Langmuir isotherm model. Surface morphology analyses by SEM reinforced the adsorption of polymers on the metal substrate. The Density Functional Theory (DFT) parameters were intended and exhibited the anti-corrosive characteristics of CEL and NCC polymers. A Monte Carlo (MC) simulation study revealed that CEL and NCC polymers are resolutely adsorbed on the SS316 alloy surface and forming a powerful adsorbed protective layer. Full article
Show Figures

Graphical abstract

51 pages, 19219 KB  
Review
Mineralogy, Geochemistry and Genesis of Agate—A Review
by Jens Götze, Robert Möckel and Yuanming Pan
Minerals 2020, 10(11), 1037; https://doi.org/10.3390/min10111037 - 20 Nov 2020
Cited by 67 | Viewed by 27002
Abstract
Agate—a spectacular form of SiO2 and a famous gemstone—is commonly characterized as banded chalcedony. In detail, chalcedony layers in agates can be intergrown or intercalated with macrocrystalline quartz, quartzine, opal-A, opal-CT, cristobalite and/or moganite. In addition, agates often contain considerable amounts of [...] Read more.
Agate—a spectacular form of SiO2 and a famous gemstone—is commonly characterized as banded chalcedony. In detail, chalcedony layers in agates can be intergrown or intercalated with macrocrystalline quartz, quartzine, opal-A, opal-CT, cristobalite and/or moganite. In addition, agates often contain considerable amounts of mineral inclusions and water as both interstitial molecular H2O and silanol groups. Most agate occurrences worldwide are related to SiO2-rich (rhyolites, rhyodacites) and SiO2-poor (andesites, basalts) volcanic rocks, but can also be formed as hydrothermal vein varieties or as silica accumulation during diagenesis in sedimentary rocks. It is assumed that the supply of silica for agate formation is often associated with late- or post-volcanic alteration of the volcanic host rocks. Evidence can be found in association with typical secondary minerals such as clay minerals, zeolites or iron oxides/hydroxides, frequent pseudomorphs (e.g., after carbonates or sulfates) as well as the chemical composition of the agates. For instance, elements of the volcanic rock matrix (Al, Ca, Fe, Na, K) are enriched, but extraordinary high contents of Ge (>90 ppm), B (>40 ppm) and U (>20 ppm) have also been detected. Calculations based on fluid inclusion and oxygen isotope studies point to a range between 20 and 230 °C for agate formation temperatures. The accumulation and condensation of silicic acid result in the formation of silica sols and proposed amorphous silica as precursors for the development of the typical agate micro-structure. The process of crystallisation often starts with spherulitic growth of chalcedony continuing into chalcedony fibers. High concentrations of lattice defects (oxygen and silicon vacancies, silanol groups) detected by cathodoluminescence (CL) and electron paramagnetic resonance (EPR) spectroscopy indicate a rapid crystallisation via an amorphous silica precursor under non-equilibrium conditions. It is assumed that the formation of the typical agate microstructure is governed by processes of self-organization. The resulting differences in crystallite size, porosity, kind of silica phase and incorporated color pigments finally cause the characteristic agate banding and colors. Full article
(This article belongs to the Special Issue Agates: Types, Mineralogy, Deposits, Host Rocks, Ages and Genesis)
Show Figures

Figure 1

Back to TopTop