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Abstract: Petroleum-derived waxes are used in the food industry as additives to provide texture
and as coatings for foodstuffs such as fruits and cheeses. Therefore, food waxes are subject to strict
quality controls to comply with regulations. In this research, a combination of visible and near-
infrared (Vis-NIR) spectroscopy with machine learning was employed to effectively characterize two
commonly marketed petroleum waxes of food interest: macrocrystalline and microcrystalline. The
present study employed unsupervised machine learning algorithms like hierarchical cluster analysis
(HCA) and principal component analysis (PCA) to differentiate the wax samples based on their
chemical composition. Furthermore, nonparametric supervised machine learning algorithms, such as
support vector machines (SVMs) and random forest (RF), were applied to the spectroscopic data for
precise classification. Results from the HCA and PCA demonstrated a clear trend of grouping the wax
samples according to their chemical composition. In combination with five-fold cross-validation (CV),
the SVM models accurately classified all samples as either macrocrystalline or microcrystalline wax
during the test phase. Similar high-performance outcomes were observed with RF models along with
five-fold CV, enabling the identification of specific wavelengths that facilitate discrimination between
the wax types, which also made it possible to select the wavelengths that allow discrimination of
the samples to build the characteristic spectralprint of each type of petroleum wax. This research
underscores the effectiveness of the proposed analytical method in providing fast, environmentally
friendly, and cost-effective quality control for waxes. The approach offers a promising alternative to
existing techniques, making it a viable option for automated quality assessment of waxes in food
industrial applications.

Keywords: food waxes; petroleum-derived products; paraffins; visible–near-infrared spectroscopy;
machine learning; support vector machine; random forest; discrimination; spectralprint

1. Introduction

Petroleum waxes are a petroleum-derived product (PDP) with a wide spectrum of
industrial applications obtained from lubricating oils. Within the agri-food industry, waxes
are commonly used to make fruits, vegetables, and candy look shiny or as a food additive.
They provide a protective layer that helps to extend shelf life by reducing the loss of water,
thus slowing the dehydration process and keeping the product fresh for a longer period.
This application is particularly important for fruits and vegetables that have to be trans-
ported long distances. Moreover, the wax layer can also serve as a carrier for other food
additives, such as fungicides and antioxidants, further contributing to preserving the qual-
ity and safety of the produce. In chemical terms, waxes are complex mixtures composed
mainly of long chains of saturated hydrocarbons (n-paraffins, isoparaffins, and cycloparaf-
fins) and are therefore poorly reactive [1]. In addition to saturated hydrocarbons, other
minor components such as aromatic hydrocarbons and sulfur- and nitrogen-containing
compounds can also be included in their composition. However, due to their applications
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in food and cosmetic–pharmaceutical industries, waxes are subjected to a hydrotreating
process [2] involving catalytic hydrogenation reactions at high pressure and temperature
to remove any traces of these minor compounds to achieve the desired degree of purity,
improve color, eliminate odor, and thus satisfy the requirements established by the Food
and Drug Administration (FDA) [3,4] and the Pharmacopoeia of the European Union
(Ph. Eur.) [5]. Petroleum-derived waxes can be classified into macrocrystalline and micro-
crystalline. In this sense, macrocrystalline waxes are formed from fractions of petroleum
distilled under pressure and heat, and they are predominantly composed of long-chain
linear hydrocarbons, mainly alkanes, with a carbon number that typically varies between
20 and 50. Due to this linear structure, macrocrystalline waxes have a harder and more
brittle consistency. For its part, microcrystalline waxes are produced through the dewaxing
process of lubricating oil residues. As the name suggests, these waxes have smaller crystals
compared to macrocrystalline waxes since they are composed of a mixture of hydrocarbons,
including branched-chain hydrocarbons and cyclic hydrocarbons. The cyclic and branched
components disrupt the orderly arrangement of molecules, resulting in smaller crystals
and wax with higher plasticity and flexibility [6,7]. Such differences in chemical compo-
sition allow the physicochemical properties of each type of wax and their applications
to be slightly different. In this sense, macrocrystalline waxes, due to their hardness and
brittleness, are mainly used in the manufacture of candles, crayons, and waterproof paper.
In the agri-food industry, they find particular use as an additive in chewing gum, providing
structure and contributing to its texture. Another distinct application of macrocrystalline
waxes in the food industry is in the production of baked goods. They are used as release
agents on baking trays and molds to ensure that the baked items do not stick, simplifying
the removal process and maintaining the integrity of the products. They can also be found
in the production of fruit wax coatings that are designed to enhance the visual appeal of
fruits, providing a glossy appearance and serving as a barrier against moisture loss [6,8,9].
Meanwhile, microcrystalline waxes, owing to their higher plasticity and flexibility, are used
to stabilize the structure of some cosmetic products (e.g., lipsticks). In the agri-food indus-
try, they are used to coat fruits and cheeses but also uniquely contribute to the properties
of various other food items. For instance, microcrystalline waxes are commonly used as
a texture modifier in a variety of confectionery products, such as caramels and toffees,
preventing the crystallization of sugar, improving the mouthfeel, and providing a glossy
finish. Moreover, their adhesive properties are capitalized in the manufacture of cereal bars,
where they help bind the ingredients together [9,10].

The quality control of waxes in the petrochemical industry is internationally reg-
ulated by the standards established by the American Society for Testing and Materials
(ASTM), which are mainly based on methods used to measure physicochemical properties
such as melting point (ASTM D87—Standard Test Method for Melting Point of Petroleum
Wax) [11], freezing point (ASTM D938—Standard Test Method for Congealing Point of
Petroleum Waxes, Including Petrolatum) [12], needle penetration (ASTM D1321—Standard
Test Method for Needle Penetration of Petroleum Waxes) [13], and oil content (ASTM
D721—Standard Test Method for Oil Content of Petroleum Waxes) [14]. In addition, as
waxes are used for different food purposes, they must be free from undesirable odors
and colors. To evaluate the odor and color, ASTM D1833—Standard Test Method for
Odor of Petroleum Wax [15] and ASTM D156—Standard Test Method for Saybolt Color of
Petroleum Products [16] are the protocols commonly used. However, the most accepted
classification for petroleum waxes is the one defined by ASTM-TAPPI (1963) [17], which
divides them based on their freezing point and their refractive index at 212 ◦F. In turn, gas
chromatography (GC), usually coupled to mass spectrometry (MS), has also been used as
a reference technique to carry out the individual identification of hydrocarbons in waxes
and other PDPs [1,18,19]. Nevertheless, the target-based identification procedure of this
analytical technique can be time-consuming. Therefore, considering that applications of
petroleum-derived waxes vary according to their properties, having fast analytical method-
ologies that can be used in-line to discriminate the type of wax during the production steps



Foods 2023, 12, 3362 3 of 16

becomes of great interest for the automation of the quality control process and to improve
the profit margin of this product. These analytical techniques reinforce the reliability of the
results as they enable the characterization of the chemical composition. Additionally, the
automation involved in these methodologies implies a reduced reliance on human inter-
vention, thus minimizing the risk of human errors. Within this framework, spectroscopic
techniques such as visible and near-infrared spectroscopy (Vis-NIR), infrared spectroscopy
(IR), or ultraviolet and visible spectroscopy (UV-Vis), used as screening and global profiling
methods, constitute fast, environment-friendly, and on-site operation technologies that can
provide an alternative to reference methods in the analysis of petroleum waxes with greater
precision and repeatability.

In particular, Vis-NIR spectroscopy has proven its effectiveness in industrial and
research laboratory applications over the years [20,21]. Nonetheless, the use of this spectro-
scopic technique generates a large amount of information in a limited period. Handling
this volume of data requires the application of machine learning algorithms to transform
the data into interpretable information as well as to generate predictive models that can be
used to build interactive applications to automate quality control processes at the industrial
level [22,23]. Thus, a suitable pretreatment of NIR spectra along with the appropriate choice
of the machine learning algorithm is of great importance to achieve this objective. Several
mathematical corrections (e.g., first derivative with the Savitzky–Golay method, standard
normal variation (SNV), or orthogonal signal correction (OSC)) have been used to improve
the quality of NIR spectra by minimizing the signal/noise and redundant contributions
that can affect the performance of the machine learning models [24,25]. Regarding ma-
chine learning algorithms, numerous unsupervised and supervised algorithms are widely
available. On the one hand, unsupervised machine learning techniques such as hierarchi-
cal cluster analysis (HCA) and principal component analysis (PCA) are mainly used for
pattern recognition within the dataset and therefore do not allow for future predictions.
Consequently, it is necessary to use supervised machine learning algorithms, such as linear
discriminant analysis (LDA), support vector machine (SVM), random forest (RF), or partial
least squares (PLS) to generate predictive classification and/or regression models [23,26]. In
this way, Vis-NIR spectroscopy has been successfully applied in the petrochemical research
sector in combination with supervised machine learning techniques, such as PLS, to quan-
tify the removable oil content through the dewaxing process using toluene and methyl ethyl
ketone (MEK) [1]. Likewise, it has been used for the quality control of lubricating oils in
combination with other supervised machine learning techniques such as PLS [27]. Further-
more, this spectroscopic technique was also successfully applied for the discrimination of
gasoline according to its research octane number (RON) in combination with unsupervised
machine learning algorithms such as HCA, parametric supervised algorithms such as LDA
and quadratic discriminant analysis (QDA), and nonparametric techniques such as SVM
and RF [28–30].

While Vis-NIR spectroscopy and machine learning may have individual precedents,
their combined application specifically for petroleum waxes, to the best of our knowledge,
has not been previously developed. The synergy of Vis-NIR spectroscopy with machine
learning delivers a novel analytical lens, empowering more efficient and automatic discrim-
ination based on chemical intricacies.

Thus, based on the abovementioned review, this study aims to evaluate the applicabil-
ity of a methodology based on Vis-NIR spectroscopy in combination with unsupervised
machine learning algorithms (HCA and PCA) for pattern recognition and nonparametric su-
pervised machine learning algorithms (SVM and RF) to generate predictive models for the
discrimination of food petroleum-derived waxes according to their chemical composition
(macrocrystalline and microcrystalline).
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2. Materials and Methods
2.1. Wax Samples

A total of 60 wax samples, 36 macrocrystalline and 24 microcrystalline, supplied by
Compañia Española de Petroleos, S.A.U., (CEPSA) San Roque refinery (Cadiz, Spain) and
taken from different years, were used. It should be highlighted that the samples were
taken from different years to increase the heterogeneity of the samples and thus enhance
the reality and robustness of the analytical methods being developed. By introducing this
temporal variability, the aim was to ensure that models do not overfit specific samples and
remain effective when applied to a broader range of samples, potentially from different
years. In Table 1, the physicochemical data provided by the manufacturer regarding the
samples used in the present study are presented.

Table 1. Physicochemical data provided by the manufacturer for macrocrystalline and microcrys-
talline waxes.

Saybolt Color Oil Content (%) Freezing Point
(◦C)

Needle
Penetration

Microcrystalline
waxes +10 (Minimum) 1.5 (Maximum) 71–75 25 (Maximum)

Macrocrystalline
Waxes +25 (Minimum) 1.0 (Maximum) 66–69 20 (Maximum)

2.2. Sample Preparation

Before analysis, waxes (0.4 g) were stored in sealed 10 mL vials (Agilent Crosslab,
Santa Clara, CA, USA) and melted in an oven at 80 ◦C for 10 min. Then, the samples
were solidified at room temperature (25 ◦C) inside the same vial to obtain a plane and
homogeneous solid surface that completely covers the bottom of the vial.

2.3. Vis-NIR Spectra Collection

The Vis-NIR spectra were recorded on a FOSS XDS Rapid Content™ analyzer with XDS
near-infrared technology (FOSS Analytical, Hilleroed, Denmark) using the routine analysis
software ISIscan version 6.6069.412 (FOSS Analytical). Measurements were performed
using the samples stored in the sealed 10 mL vials. Empty vials were used for blank
measurements. Wax samples were analyzed in the range of 400–2500 nm with a spectral
resolution of 0.5 nm. A total of 32 scans per sample were collected, using the mean spectrum
afterward. All samples were analyzed in duplicate. Finally, the Vis-NIR average spectrum
obtained for each wax sample was placed in a Dmxn data matrix where n is the number of
wax samples (n = 60) and m is the number of absorbance values (m = 4200).

2.4. Data Analysis
2.4.1. Preprocessing

During visual inspection (Section 3.1. Spectral Analysis), Multiplicative Scatter Correc-
tion (MSC) was applied to the raw spectra for better visualization and comparison. MSC
lowers the differences in the spectra produced by different light scattering and path lengths
during the analyses.

In order to develop the predictive machine learning models, spectral pretreatment was
carried out by obtaining the first derivative for each sample spectra using the
Savitzky–Golay method with a window of 11 moving points and a third-order polynomial.
The Savitzky–Golay method was chosen for its ability to preserve the heights and widths
of peaks in the data, introduce minimal distortion in signals, and provide an efficient
computational approach for both smoothing and differentiation. This made it an effec-
tive tool for enhancing sensitivity to spectral characteristics while eliminating noise and
unwanted variations.
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2.4.2. Unsupervised Machine Learning Algorithms

In the present work, two unsupervised machine learning algorithms, HCA and PCA,
were selected to conduct an exploratory study for finding patterns and grouping trends in
the preprocessed dataset.

2.4.3. Classifiers

A total of four models based on SVM and RF classification algorithms were generated
and compared for the discrimination of waxes according to their chemical composition
(macrocrystalline and microcrystalline waxes). To build both classifiers, the preprocessed
dataset was randomly divided into a train set (split = 0.7) and a test set (split = 0.3). The
train set was used during the hyperparameter optimization and training process and the
test set for the validation of the generated models. On the other hand, five-fold cross-
validation (CV) was used during the hyperparameter optimization and training process to
minimize model overfitting. The performance of the models was carried out using accuracy
and kappa as metrics. Accuracy was calculated as the percentage of correctly classified
samples divided by the total number of classified samples, while kappa was computed as
the difference between observed accuracy minus expected accuracy divided by 1 minus
expected accuracy.

2.4.4. Software

All data analysis was performed with RStudio (version 4.1.2, Boston, MA, USA).
The first derivative for each sample spectrum using the Savitzky–Golay algorithm was
calculated with the savitzkyGolay function from the prospectr package (version 0.2.3). HCA
was performed using the hclust function of the stats package (version 4.1.2). Linkage
method selection for the HCA was established by computing the agglomerative coefficient
of different linkage methods (Average, Single, Complete, and Ward) using the agnes function
of the cluster package (version 2.1.2). The HCA results were represented in a dendrogram
using the fviz_dend function of the factoextra package (version 1.0.7). The PCA was carried
out using the prcomp function of the stats package (version 4.1.2). The fviz_eig function of
the factoextra package (version 1.0.7) was used to extract and visualize the result of the PCA.
The scores and loadings obtained in the PCA were plotted using the ggplot function of the
ggplot2 package (version 3.3.5). The SVM and RF models were developed using the caret
package (version 6.0-90). The contour plot for the SVM model was generated using the
filled.contour function of the graphics package (version 4.1.2). The one-way ANOVA for the
selected variables by the RF model was conducted with the aov function of the stats package
(version 4.1.2). The spectralprint radar chart was generated using the ggplot function of the
ggplot2 (version 3.3.5) and ggiraphExtra packages (version 0.3.0). The web application was
developed using the shiny package (version 1.7.1).

3. Results
3.1. Spectral Analysis

The typical Vis-NIR spectra (MSC correction; D4200×60) for the two types of waxes,
macrocrystalline and microcrystalline, are shown in Figure 1A. A similar profile curve was
detected for both wax types. However, understanding the nuances in spectral features can
offer insights into the distinct chemical structural differences. Therefore, a comprehensive
visual analysis of the spectra was undertaken.

Upon thorough examination of the spectra, variations in absorbance intensity were
identified in certain spectral regions. The distinct differences in absorbance intensity
in the visible region, particularly at 400 nm, suggest that macrocrystalline waxes might
contain specific chemical entities or configurations that differ from those in microcrystalline
waxes. These entities could be tied to the violet-blue light absorbance, possibly hinting
at variations in conjugated systems or distinct aromatic compounds. Furthermore, small
absorption intensity differences between 800 and 1680 nm are evident in the NIR region.
These NIR zones are associated with the first, second, and third overtone bands. The
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highest difference is found around 1200 nm and at 1375–1450 nm, which relate to the
C–H 2nd overtone and the 1st overtone of C–H combinations, respectively [31]. At the
spectral region around 1700 nm, the bands are characteristic of the C–H 1st overtone. Subtle
differences in these bands may serve as indicators of structural variations in hydrocarbon
chains, highlighting potential distinctions in saturation levels or molecular configurations
between the waxes. On the other hand, the band at 2200–2400 nm, indicative of the C–H
combination bands, signifies complex vibrational interactions of carbon and hydrogen, so
the differences are related to different chemical compositions in the waxes [32]. This spectral
behavior underscores the disparities in hydrocarbon chain lengths, levels of saturation, and
branching between the two waxes—a testament to their distinct chemical structures. The
spectral data acquired in this research aligns well with the study conducted by Palou et al.
(2014) [1] in which NIR spectroscopy was used to analyze fully refined wax samples for
evaluating MEK-removable oil. This comparison showed that in the NIR region, the spectra
for the samples studied here presented a similar profile to those studied by these authors
and were therefore in agreement with the literature.
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Figure 1B shows the first derivative spectra using the Savitzky–Golay method with
a window of 11 moving points and a third-order polynomial. The application of the
Savitzky–Golay filtering method implies a slight loss of data at the beginning and end of
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the data matrix. Thus, it was reduced to D4190×60. The description of the first derivative
Vis-NIR absorption spectra shows some prominent peaks in the NIR region.

Spectral analysis has uncovered some chemical differences between macrocrystalline
and microcrystalline waxes. However, these differences are not easily distinguishable
through mere visual inspection, making it difficult to differentiate between the two types
of waxes. To enhance the accuracy of discrimination and aim for more automated interpre-
tations, there is a need to integrate machine learning techniques with the spectral data.

3.2. Exploratory Study

First, an HCA was carried out to corroborate the tendency of wax samples to group
according to their chemical composition. HCA is one of the most popular clustering
methods in data science and constitutes an unsupervised machine learning technique that
allows grouping a set of data into subsets or clusters based on their similarity, merging the
two closest clusters into a larger one [33,34]. This unsupervised machine learning technique
was applied to the preprocessed dataset (D4190×60).

For this analysis, Euclidean distance was selected as the distance measure and Ward’s
method as the linkage method. The choice of the linkage method was determined based on
a comparison of the agglomerative coefficient of different methods (Average, Complete,
Single, and Ward). Agglomerative coefficients close to 1 would indicate a stronger clustering
structure. In this case, the Ward method presented the highest agglomerative coefficient
(0.95) among the linkage methods evaluated. The results obtained through HCA are plotted
in the dendrogram shown in Figure 2. According to the results, it can be observed that the
samples tend to group into two main clusters: on the one hand, the cluster with a light blue
color is completely formed by all of the microcrystalline wax samples; on the other hand,
all of the macrocrystalline wax samples constitute the cluster with light red color. Thus,
the results indicate that there is a strong tendency to group the waxes according to their
chemical composition.

A PCA was performed to obtain additional information about the spectroscopic ranges
producing the previous results. PCA is another unsupervised technique used in machine
learning as part of the exploratory analysis of the data. This technique reduces dimen-
sionality by losing the least amount of information possible. In this sense, it represents
the variance of the data using a smaller number of uncorrelated variables, referred to
as principal components (PCs), which are calculated as linear combinations of the orig-
inal variables [35,36]. This unsupervised machine learning technique was also applied
to the preprocessed dataset (D4190x60). Figure 3A shows a plot of the scores obtained by
all samples (n = 60) for the first two PCs (PC1 and PC2), and Figure 3B represents the
loadings obtained for PC1 and PC2. Both PC1 and PC2 explained 56.8% and 26.7% of
the variance of the data, respectively, resulting in a cumulative variance of 83.5%. In this
case, both PCs were responsible for the separation of the wax samples according to their
chemical composition, obtaining two main groups. It can be observed (Figure 3A) that the
microcrystalline wax samples (light blue) are separated from the macrocrystalline samples
(red light), with the former having positive scores for PC1 and the latter having negative
scores for this PC. The observed grouping trend was in concordance with that obtained
through HCA. On the other hand, according to the loadings plot in Figure 3B for PC1 (light
green), it is possible to obtain information about the spectroscopic ranges responsible for
this separation. Based on the results, certain spectral regions that seem to be important
can be appreciated, highlighting the highest loadings in PC1 at several wavelengths in the
range of 1700 nm, associated with the C–H 1st overtone, which, as seen by visual inspection
of the first derivative spectra in Figure 1A, suggests the presence of certain hydrocarbon
configurations but also underscores disparities in hydrocarbon chain lengths, saturation
levels, and branching between wax types.
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The HCA and PCA analyses were both successful in achieving a complete distribution
of petroleum wax samples according to their chemical composition. Nevertheless, these un-
supervised techniques do not allow for predicting future observations. From an industrial
point of view, being able to rely on predictive models is of great interest for data handling
process automation. Therefore, SVM and RF algorithms were selected as nonparametric
techniques to generate predictive models for the discrimination of macrocrystalline and
microcrystalline waxes.

3.3. Support Vector Machine Classifiers

SVM is a nonparametric supervised machine learning algorithm that can handle both
linearly and nonlinearly separable data. Over the years, it has proven to be one of the
best classifiers for a wide range of situations, becoming a benchmark in this artificial
intelligence discipline. However, in support vector regression (SVR), its application also
extends to regression problems. When it comes to classification, the main idea of the
linear SVM algorithm is to find the optimal hyperplane (decision boundary) so that the
distance (margin) between it and the support vectors (data points of each class closest to
the hyperplane) is maximum. In contrast, when nonlinear boundaries between classes are
encountered, SVM can be extended to nonlinear classification by using kernel functions.
The kernel function can be defined as a function that quantifies the similarity between
two classes in a new dimensional space. Among all of the existing ones, the Gaussian
kernel is the most used since almost any boundary shape can be obtained, and, in general,
good performance is achieved [37–39]. In this study, SVM was used with the linear and
Gaussian kernel implementation. Therefore, the optimization of the hyperparameters
C (regularization parameter in linear and Gaussian kernel SVM) and σ (Gaussian kernel
parameter) is an important step to consider during the construction of the SVM models since
the former controls the balance of the error penalty and the latter controls the curvature of
the decision boundary (Equation (1)) [40]. To carry out this optimization, there are different
methods, such as the grid search or the gradient descent algorithm, usually based on the
CV classification rate, to evaluate the performance of the model and minimize the risk of
overfitting [41].

Gaussian kernel: K(x, u) = exp(−σ ||x − u||2) (1)

First, for the construction of the SVM classifier with the Gaussian kernel implementa-
tion, the optimization of the hyperparameters (C and σ) was performed using the train set.
Thus, the grid search method with the exponential growth of C and σ was selected. In this
case, log2C and log2σ were in the range of –10 to 10 in intervals of 0.5. Each combination
of parameter choices was tested using a five-fold CV, and the smallest parameters that
presented the best five-fold CV accuracy were selected. The smallest parameters are se-
lected since when using the caret package in R to optimize hyperparameters, the objective
is to identify parameter values that result in the best average performance on test datasets
using a five-fold CV. In cases where different hyperparameter combinations produce equal
performance, caret defaults to selecting the simplest model with lower hyperparameter
values. Simpler models are preferred because they are less prone to overfitting, which
occurs when a model is too complex and performs well on training data but poorly on
new data. By selecting the simplest model with the best cross-validation score, we aim
to achieve better generalization on new data. Furthermore, simpler models require fewer
computational resources for training and prediction, offering advantages such as reduced
computation time, lower memory usage, and minimized power consumption. This is
especially beneficial in resource-constrained environments.

Figure 4 shows the contour plot for the search of the values of C and σ that provided
the best five-fold CV accuracy. It can be observed that as the log2C, and hence C, increased,
the five-fold CV accuracy was higher (Figure 4). A larger value of C means a smaller width
of the margin and, therefore, fewer observations will violate it. As this hyperparameter
controls the balance between bias and variance, a higher value of C will imply a classifier
with a lower bias but a higher variance. For this reason, the optimal value of C was set
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to 0.7071 (log2C = −0.5), as it was the minimum value that allowed for a maximum of
five-fold CV accuracy. In this way, an excellent performance (lower bias) was obtained, and
overfitting was avoided (lower variance), corroborating the robustness of the generated
Gaussian kernel SVM classifier. Moreover, the number of SVs was set to 40. On the other
hand, as can be seen in Figure 4, the five-fold CV accuracy increases as the value of log2σ,
and consequently of σ, decreases. The value of σ controls the behavior of the kernel and,
as its value increases, so does the flexibility of the model. In this case, the optimal σ value
was set to 9.766 × 10−4 (log2σ = −10). It should be highlighted that the best results were
obtained with the lowest σ values, suggesting a more linear boundary [42]. After the
hyperparameter tuning, a model was trained with the optimal values of C and σ obtained
using the training set and applying a five-fold CV, obtaining a five-fold CV accuracy of
97.8% and a five-fold CV kappa of 0.95. Finally, the performance of the generated Gaussian
kernel SVM classifier was evaluated using the test set. The test set showed 100% accuracy
and a kappa of 1, confirming the excellent performance of the model for discriminating
waxes according to their chemical composition.
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The Gaussian kernel SVM model obtained reliable performance and precision for the
classification of petroleum waxes. However, since the σ value suggested a linear separation
of the classes, the implementation of a linear SVM model was explored to evaluate its
performance in the discrimination of macrocrystalline and microcrystalline waxes, as the
training time of a linear SVM model is smaller compared to the Gaussian kernel SVM one,
a fact that is interesting from a model implementation point of view. In this sense, when a
linear SVM is applied, the only hyperparameter to be optimized is the value of C. Therefore,
the optimization of this hyperparameter was carried out using the grid search method with
the exponential growth of C. Here, log2C ranged from −10 to 10 in intervals of 0.5. As in
the previous case, each combination of C parameter options was checked using a five-fold
CV, and the one with the best accuracy was selected. The lowest value of C allowing us
to achieve the maximum five-fold CV accuracy value was 9.766 × 10−4 (log2C = −10).
Moreover, the number of SVs was set to 9. The optimized hyperparameter was then used
for training the linear SVM model, obtaining 100% five-fold CV accuracy and a five-fold
CV kappa value equal to 1. The evaluation of the developed linear SVM model was carried
out using the test set, resulting in 100% accuracy and a kappa value of 1. Thus, the linear
SVM model developed demonstrated its robustness and good performance. These results
indicate a slight improvement in the model’s performance during training using the SVM
algorithm with linear implementation, so it would confirm the separability of the classes
linearly. However, similar results were obtained for the performance of the model using the
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test set. Accordingly, the SVM algorithm with both implementations proved to be suitable
for petroleum wax discrimination.

3.4. Random Forest Classifiers

RF is a bagging-type ensemble algorithm included in the supervised machine learning
algorithms that have been widely used in classification and regression problems in various
sectors. The algorithm works by concurrently training several decision trees on several
random subsets generated by bootstrapping followed by an aggregation (jointly called
bagging). Bootstrapping means that, randomly, 67% of the original data is used to train the
model (in-bag set), and the remaining 33% (out-of-bag set) is used for internal CV, evaluating
the performance of the RF model through the out-of-bag (OOB) error. In practice, the RF
classifier has few hyperparameters to optimize. In this case, the hyperparameter mtry
(number of predictors randomly selected before the cutting of each tree) must be optimized.
For classification, the square root of the total number of predictors is generally used as the
optimal value of mtry. Furthermore, a specific number of decision trees in the RF model
needs to be set [40]. First, the optimal hyperparameter values were established to build
the RF model. The square root of the total number of predictors was used as the optimum
value of mtry and equaled 64.73 (4200 predictors). On the other hand, in RF, the number of
decision trees is not a critical hyperparameter since adding more decision trees does not
imply overfitting risks and improves the performance of the model. However, its value
must be determined in advance to stabilize the error and minimize the computational
resource loss. To determine the number of decision trees to use, the values of ntree in this
study were set from 2 to 100 with an interval of 2 trees, and five-fold CV accuracy was
considered as an evaluation criterion. The results are shown graphically in Figure 5. As
can be seen, the accuracy rate tends to stabilize at 22 decision trees and is maintained up
to 100 decision trees. In this sense, the number of decision trees was set at 100 as it is a
high enough number to stabilize the error without involving significant computational
costs. The optimal values established for mtry and the number of decision trees were then
used to train the RF model with the training set applying a five-fold CV. Great results were
obtained for the five-fold CV with an accuracy of 97.8% and a kappa of 0.95. In addition,
the OOB estimate of error rate equaled 2.33%. Subsequently, the performance of the model
was evaluated using the test set, obtaining 100% accuracy and a kappa of 1. This confirmed
that a reliable and accurate RF model was obtained for the discrimination of petroleum
waxes in terms of their chemical composition.
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Besides having reliable predictive models, one of the goals pursued when applying
global profiling techniques for quality control process automation is finding a reduced set
of signals that characterize the samples and allow them to be easily differentiated. The SVM,
due to the nature of the algorithm itself, does not allow for establishing the most relevant
wavelengths directly related to the discrimination of macrocrystalline and microcrystalline
waxes. However, the RF enables this task to be performed. Here, the varImp function
of the caret package was used to estimate each variable’s contribution to the model. In
the case of RF, this function calculates the prediction accuracy in each tree’s out-of-bag
portion of the data. Subsequently, the same is performed after permuting each predictor
variable. The difference between the two accuracies is finally averaged across all trees
and normalized by the standard error [43]. Specifically, seven wavelengths (1174.5 nm,
1751.0 nm, 1810.5 nm, 1928.5 nm, 2041.0 nm, 2117.00 nm, and 2189.5 nm) with a relative
importance of more than 70% (Supplementary Figure S1) were selected for the construction
of the spectralprint. Among the variables selected by the RF model, the wavelength of
1751.00 nm was found, which, in the PCA, presented a greater weight in the loadings. To
delve deeper into the relationship between spectral and structural differences, we examined
these wavelengths in more detail. The band found around 1200 nm could be linked to
C-H stretching in longer-chain hydrocarbons found in the waxes, hinting at the differences
in chain lengths between the two waxes. The band around 1600–18,000 nm is related to
variations in branching in the hydrocarbon chains, therefore showing different kinds of
hydrocarbon chains. The differences in the signals in the 2200–2400 nm range could be
related also to differences in the hydrocarbon chains, as they are related to the vibrational
interaction of the C-H chemical bonds.

A one-way ANOVA was performed for each of the variables selected by the RF model,
and all of them were statistically significant at a 95% confidence level. Aiming to assess the
feasibility of developing a spectralprint, the stability of the RF algorithm was studied when
using the training and test sets reduced to these seven wavelengths. For this purpose, a
new RF model was developed using only these selected variables. Here, the mtry value
was set to 2.646 and the number of decision trees to 100. The result showed 100% accuracy
and a kappa of 1 for the five-fold CV set, with an OOB error rate of 0%. Furthermore, the
performance of the model was evaluated using the variable-reduced test set, obtaining
100% accuracy and a kappa of 1. The slight improvement in five-fold CV accuracy and
kappa and OOB error rate should be highlighted. This improvement could be explained
by the reduction in redundant information and noise in the dataset when performing
the extraction of the selected variables. Nevertheless, since the difference between the
performance is relatively minimal, both models—using 4200 and 7 wavelengths—were
considered stable. Therefore, the seven selected wavelengths were used for the construction
of the characteristic spectralprint of both types of waxes.

The radar charts for the spectralprints of macrocrystalline and microcrystalline waxes
are shown in Figure 6. The mean values of the seven variables in each group were normal-
ized to the maximum first derivative values. According to the results obtained, a similar
spectralprint shape can be observed. However, differences in terms of absorbance can be
detected for both types of petroleum waxes. On the one hand, macrocrystalline waxes
showed their maximum absorbance at a wavelength of 2189.5 nm, whereas the absorbance
percentage for this wavelength in microcrystalline wax is 0.7 (70% of the absorbance
maximum). In turn, it was possible to appreciate that there were other wavelengths for
macrocrystalline wax equal to or above 50% of the maximum absorbance, specifically at
1174.5 nm, 1751.0 nm, and 1810.5 nm. The remaining wavelengths were below 0.5 (50% of
the maximum absorbance). On the other hand, for microcrystalline waxes, the maximum
absorbance was reached at the wavelength of 1751.0 nm, while the absorbance percentage
for this wavelength in macrocrystalline waxes is 0.7. In addition, other wavelengths whose
intensities were found to be above 50% of the maximum absorbance could be observed
for microcrystalline wax, with these being at 1174.5 nm and 2189.5 nm. The remaining
wavelengths had a lower contribution (<50% of the maximum absorbance) in terms of
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intensity in the spectralprint of the microcrystalline waxes, highlighting the wavelengths at
1810.5 nm, 1928.5 nm, and 2041.00, which were above 0.5 for macrocrystalline waxes. As
the intensities and the ratios of the signals are different for each type of wax, thus giving
different fingerprints, these can be used for the discrimination of the different waxes based
on their chemical composition in a fast and easy way.
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Considering the excellent results obtained for the models developed and to make
them available to users, a web application has been designed in Shiny with the RF model.
The availability of web applications that support these models facilitates the processing of
the data and saves time and effort in its interpretation. Access to this demo application is
available through the link available in the Supplementary Materials.

3.5. Repeatability and Intermediate Precision

The analytical properties of the Vis-NIR-pretreated spectra, namely repeatability and
intermediate precision, were established. A total of 18 analyses were performed using
a macrocrystalline wax sample. Repeatability was studied by performing nine analyses
on the same day, and intermediate precision was evaluated by performing three analyses
per day over three consecutive days. The intra-day and inter-day coefficient of variation
(C.V.) of the analysis was calculated. For this purpose, the mean of the C.V. obtained in the
whole set of spectra was calculated. The obtained C.V. for repeatability was 2.43% and for
intermediate precision was 2.89%.

4. Conclusions

Vis-NIR combined with machine learning tools proved to be a suitable practical
methodology for the characterization and discrimination of petroleum waxes of agri-food
interest based on their chemical composition, offering a fast, reliable, and environmentally
friendly alternative to the established official methods. The results obtained through the ap-
plication of unsupervised machine learning algorithms, such as HCA and PCA, suggested
a strong tendency to distribute samples according to whether they were macrocrystalline or
microcrystalline waxes. Supervised machine learning models were applied using the SVM
with the linear and Gaussian kernel implementation and the RF algorithms. The models
developed based on both algorithms have proven their effectiveness and robustness for
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the discrimination of the two common commercialized petroleum waxes, obtaining an
excellent performance (100% accuracy on the test set). In turn, the RF model allowed the
extraction of the seven most relevant wavelengths in this discrimination. Therefore, the
characteristic spectralprint for each type was constructed. Accordingly, these spectralprints
can be used as a suitable routine method for the rapid, accurate, and straightforward
identification of petroleum wax types. Furthermore, website applications with support for
computers and tablets from the generated models could be built (i.e., with Shiny), thus
simplifying and automatizing the data analysis within the production chain. This, along
with the portability of the analytical technique and its user-friendliness, would enable even
simpler and more automated quality control of this PDP.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/foods12183362/s1, Figure S1: Graphical display of the 20 most
important RF model features and their relative importance. Link to access the demo application for
the automatic characterization of waxes: https://marta-barea.shinyapps.io/waxes_types_app/. To
begin working with the application, the Vis-NIR spectra data file must be uploaded. Both .csv/txt
and .xlsx/xls formats are accepted by the program. On the “Download” button, a test dataset has been
attached to perform a trial run. Once the file is uploaded in the “Browse” tab, a window will appear
just below indicating the status. After the loading is complete, it is possible to make predictions on
the dataset by clicking on the “Submit” button. The software will directly perform the first derivative
and the Savitzky–Golay filter to predict the wax type by using the RF model.
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