Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (31)

Search Parameters:
Keywords = lupus-prone mice

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 39698 KB  
Article
Anti-C1q Autoantibody-Binding Engineered scFv C1q-Mimicking Fragment Enhances Disease Progression in Lupus-Prone MRL/lpr Mice
by Silviya Bradyanova, Nikolina Mihaylova, Nikola Ralchev, Alexandra Kapogianni, Ginka Cholakova, Kalina Nikolova-Ganeva, Ivanka Tsacheva and Andrey Tchorbanov
Int. J. Mol. Sci. 2025, 26(15), 7048; https://doi.org/10.3390/ijms26157048 - 22 Jul 2025
Viewed by 329
Abstract
Systemic lupus erythematosus (SLE) is a chronic inflammatory autoimmune disease characterized by tissue damage in multiple organs caused by autoantibodies and the resulting immune complexes. One possible way for complement system contribution to onset of autoimmune disorder could be realized by the impairment [...] Read more.
Systemic lupus erythematosus (SLE) is a chronic inflammatory autoimmune disease characterized by tissue damage in multiple organs caused by autoantibodies and the resulting immune complexes. One possible way for complement system contribution to onset of autoimmune disorder could be realized by the impairment of C1q-mediated apoptotic clearance as part of human homeostasis. The capacity of C1q to bind early apoptotic cells could be decreased or even lost in the presence of anti-C1q antibodies. A monoclonal anti-idiotypic single-chain (scFv) antibody was selected from the phage library Griffin1” to recognize anti-C1q autoantibodies, purified from sera of lupus nephritis patients. Lupus-prone MRL/lpr mice were injected weekly with scFv A1 fragment-binding anti-C1q antibodies. The number of in vitro and ex vivo studies with collected cells, sera, and organs from the treated animals was performed. scFv treatment changed the percentage of different B-, T-, and NK-cell subpopulations as well as plasma cells and plasmablasts in the spleen and bone marrow. An increase in the levels of splenocyte proliferation, anti-C1q antibodies, and the number of plasma cells producing anti-dsDNA and anti-C1q antibodies were also observed in scFv-treated animals. High levels of proteinuria and hematuria combined with unstable levels of IL10 and IFNγ promote the development of severe lupus and shorten the survival of treated MRL/lpr mice. Therapy with the scFv A1 antibody resulted in BCR recognition on the surface of anti-C1q-specific B-cells and had a disease progression effect, enhancing lupus symptoms in the MRL/lpr mouse model of SLE. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

15 pages, 2569 KB  
Article
Rebamipide Attenuates Lupus Nephritis by Enhancing Antioxidative Defense in Podocytes: Evidence from a Lupus-Prone Mouse Model
by Young-Suk Song, Youngjae Park, Da-Som Kim, Se Gwang Jang and Seung-Ki Kwok
Int. J. Mol. Sci. 2025, 26(12), 5809; https://doi.org/10.3390/ijms26125809 - 17 Jun 2025
Viewed by 762
Abstract
Systemic lupus erythematosus (SLE) is a prototypical autoimmune disease that affects various organs, including the kidneys. Despite recent advancements, effective treatment options for renal involvement in SLE remain limited. Rebamipide, originally developed as a gastroprotective agent, has been reported to exert immunomodulatory effects [...] Read more.
Systemic lupus erythematosus (SLE) is a prototypical autoimmune disease that affects various organs, including the kidneys. Despite recent advancements, effective treatment options for renal involvement in SLE remain limited. Rebamipide, originally developed as a gastroprotective agent, has been reported to exert immunomodulatory effects in rheumatic diseases. Here, we aimed to evaluate the therapeutic potential of rebamipide in SLE using an animal model and to elucidate its mechanisms of action. We administered rebamipide or vehicle control to lupus-prone MRL/lpr mice and evaluated its efficacy on lupus-like phenotypes, including renal manifestations and immune cell profiles. Additionally, we investigated potential therapeutic mechanisms through in vitro treatment of murine immune cells and podocytes with rebamipide. Oral administration of rebamipide in lupus-prone mice significantly reduced kidney size, weight, and histopathological inflammation. Among circulating immune cell subsets, only regulatory T cells were significantly increased by rebamipide. In vivo treatment with rebamipide enhanced the expression of podocyte structural proteins, such as Synaptopodin, in kidney tissues, accompanied by the recovery of antioxidative factors, including nuclear factor erythroid 2-related factor 2 (Nrf2). Similarly, in vitro treatment of murine immune cells and podocytes with rebamipide replicated its immunoregulatory and antioxidative effects. Rebamipide is proposed as a potential therapeutic candidate for managing renal involvement in SLE through its antioxidative effects on podocytes. Full article
Show Figures

Figure 1

22 pages, 4320 KB  
Article
Characterization of Sex-Based Differences in Gut Microbiota That Correlate with Suppression of Lupus in Female BWF1 Mice
by James W. Harder, Jing Ma, James Collins, Pascale Alard, Venkatakrishna R. Jala, Haribabu Bodduluri and Michele M. Kosiewicz
Microorganisms 2025, 13(5), 1023; https://doi.org/10.3390/microorganisms13051023 - 29 Apr 2025
Viewed by 590
Abstract
Systemic lupus erythematosus (SLE) is more prevalent in female mice and humans and is associated with microbiota dysbiosis. We analyzed the fecal microbiota composition in female and male NZBxNZWF1 (BWF1) mice, a model of SLE, using 16S RNA gene sequencing. Composition of gut [...] Read more.
Systemic lupus erythematosus (SLE) is more prevalent in female mice and humans and is associated with microbiota dysbiosis. We analyzed the fecal microbiota composition in female and male NZBxNZWF1 (BWF1) mice, a model of SLE, using 16S RNA gene sequencing. Composition of gut microbiota differed between adult disease-prone female (pre-disease) and disease-resistant male mice. Transfer of male cecal contents by gavage into female mice suppressed kidney disease (decreased proteinuria) and improved survival. After our mouse colony was moved to a new barrier facility with similar housing, male cecal transplants failed to suppress disease in female recipients. After two years, the protective phenotype reemerged: male cecal transplants once again suppressed disease in female mice. We compared the gut microbiota composition in female and male BWF1 mice for the three different periods, during which the male microbiota either protected or failed to protect female recipients. In female vs. male mice and in female mice receiving male cecal transplants, we found Bacteroides was high, Clostridium was low (high Bacteroides/Clostridium ratio), and Alistipes was present during periods when male cecal transplants suppressed disease. These data suggest that specific bacterial populations may have opposing effects on disease suppression in a model of microbiota transplantation. Full article
(This article belongs to the Special Issue The Gut Microbiota and Autoimmune Disease)
Show Figures

Figure 1

14 pages, 4645 KB  
Article
Chronic Low-Level IFN-γ Expression Disrupts Mitochondrial Complex I Activity in Renal Macrophages: An Early Mechanistic Driver of Lupus Nephritis Pathogenesis
by Heekyong R. Bae, Su-Kyung Shin, Ji-Yoon Lee, Yeo Jin Ko, Suntae Kim, Howard A. Young and Eun-Young Kwon
Int. J. Mol. Sci. 2025, 26(1), 63; https://doi.org/10.3390/ijms26010063 - 25 Dec 2024
Viewed by 1389
Abstract
Mitochondrial dysfunction and macrophage dysregulation are well recognized as significant contributors to the pathogenesis of autoimmune diseases. However, the detailed mechanisms connecting these two factors remain poorly understood. This study hypothesizes that low but chronic interferon-gamma (IFN-γ) plays a critical role in these [...] Read more.
Mitochondrial dysfunction and macrophage dysregulation are well recognized as significant contributors to the pathogenesis of autoimmune diseases. However, the detailed mechanisms connecting these two factors remain poorly understood. This study hypothesizes that low but chronic interferon-gamma (IFN-γ) plays a critical role in these processes. To explore this, we utilized ARE-Del mice, a model characterized by sustained low-level IFN-γ expression and lupus nephritis (LN)-like symptoms. Age- and tissue-dependent gene expression analyses in ARE-Del mice revealed significant suppression of mitochondrial complex I components and activities, particularly in the kidneys. The genotype-dependent suppression of mitochondrial complex I indicates early disruption, which leads to macrophage dysfunction. Notably, remission restored gene expression of mitochondrial complex I and macrophage dysfunction in isolated renal macrophages from NZB/W lupus-prone mice. These findings suggest that chronic low-level IFN-γ disrupts mitochondrial complex I activity in macrophages, highlighting its role in the early pathogenesis of autoimmune diseases like lupus nephritis. This provides new insights into the molecular interactions underlying autoimmune pathogenesis and suggests potential targets for therapeutic intervention. Full article
(This article belongs to the Special Issue Cytokines in Inflammatory Signaling: 2nd Edition)
Show Figures

Figure 1

17 pages, 5778 KB  
Article
Characterization of Dendritic Cells and Myeloid-Derived Suppressor Cells Expressing Major Histocompatibility Complex Class II in Secondary Lymphoid Organs in Systemic Lupus Erythematosus-Prone Mice
by Felipe R. Uribe, Fabián González-Martínez, Sebastián A. Echeverría-Araya, Alison Sepúlveda-Pontigo, Karissa Chávez-Villacreses, Andrés Díaz-Bozo, Isabel Méndez-Pérez, Valentina P. I. González, Karen Bohmwald, Alexis M. Kalergis and Jorge A. Soto
Int. J. Mol. Sci. 2024, 25(24), 13604; https://doi.org/10.3390/ijms252413604 - 19 Dec 2024
Viewed by 1290
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by self-antibody production and widespread inflammation affecting various body tissues. This disease is driven by the breakdown of immune tolerance, which promotes the activation of autoreactive B and T cells. A key feature of [...] Read more.
Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by self-antibody production and widespread inflammation affecting various body tissues. This disease is driven by the breakdown of immune tolerance, which promotes the activation of autoreactive B and T cells. A key feature of SLE is dysregulation in antigen presentation, where antigen-presenting cells (APCs) play a central role in perpetuating immune responses. Dendritic cells (DCs) are highly specialized for antigen presentation among APCs. At the same time, myeloid-derived suppressor cells (MDSCs) can also express MHC-II molecules, although their role in SLE is less understood. Utilizing the SLE model, MRL/MpJ-Faslpr/J, we determined the presence of different phenotypes of DCs and MDSCs expressing MHC-II in secondary lymphoid organs, along with the gene expression of ICOSL, CD80 and CD86 in the spleen. Our study determined that the most abundant population of APCs in secondary lymphoid organs corresponds to cDC CD103CD11b+ MHC-II+ throughout SLE development. Additionally, ICOSL expression increased over time, becoming more preponderant in week 16 in the SLE model, which could indicate that it is a crucial pathway for the development and progression of the pathology. In week 16, we observed a positive correlation between M-MDSC MHC-II and IFN-γ-producing CD4+ T cells. Full article
Show Figures

Figure 1

20 pages, 2383 KB  
Review
The Role of Antioxidant Transcription Factor Nrf2 and Its Activating Compounds in Systemic Lupus Erythematosus
by Lu Liu, Karina de Leeuw, Harry van Goor and Johanna Westra
Antioxidants 2024, 13(10), 1224; https://doi.org/10.3390/antiox13101224 - 11 Oct 2024
Cited by 2 | Viewed by 2405
Abstract
Systemic lupus erythematosus (SLE) is a complex autoimmune disease in which kidney involvement, so-called lupus nephritis (LN), is common and one of the most severe manifestations. Oxidative stress (OS) may play a role in the pathogenesis of LN through the exacerbation of inflammation [...] Read more.
Systemic lupus erythematosus (SLE) is a complex autoimmune disease in which kidney involvement, so-called lupus nephritis (LN), is common and one of the most severe manifestations. Oxidative stress (OS) may play a role in the pathogenesis of LN through the exacerbation of inflammation and immune cell dysfunction/dysregulation. Nuclear factor erythroid 2-related factor 2 (Nrf2), also known as nuclear factor erythroid-derived 2-like 2, is a transcription factor that in humans is encoded by the NFE2L2 gene and is regarded as a central regulator of the antioxidative response. Nrf2-activating compounds have been shown to alleviate oxidative stress in cells and tissues of lupus-prone mice. Although the precise mechanisms of Nrf2 activation on the immune system in SLE remain to be elucidated, Nrf2-activating compounds are considered novel therapeutical options to suppress OS and thereby might alleviate disease activity in SLE, especially in LN. This review therefore summarizes the role of the Nrf2 signaling pathway in the pathogenesis of SLE with LN and describes compounds modulating this pathway as potential additional clinical interventions. Full article
(This article belongs to the Special Issue Oxidative Stress in Renal Health)
Show Figures

Figure 1

20 pages, 3630 KB  
Article
Tissue Kallikrein-1 Suppresses Type I Interferon Responses and Reduces Depressive-Like Behavior in the MRL/lpr Lupus-Prone Mouse Model
by Priyanka S. Bhoj, Cassandra Nocito, Namdev S. Togre, Malika Winfield, Cody Lubinsky, Sabeeya Khan, Nikhita Mogadala, Alecia Seliga, Ellen M. Unterwald, Yuri Persidsky and Uma Sriram
Int. J. Mol. Sci. 2024, 25(18), 10080; https://doi.org/10.3390/ijms251810080 - 19 Sep 2024
Cited by 1 | Viewed by 2178
Abstract
Excessive production and response to Type I interferons (IFNs) is a hallmark of systemic lupus erythematosus (SLE). Neuropsychiatric lupus (NPSLE) is a common manifestation of human SLE, with major depression as the most common presentation. Clinical studies have demonstrated that IFNα can cause [...] Read more.
Excessive production and response to Type I interferons (IFNs) is a hallmark of systemic lupus erythematosus (SLE). Neuropsychiatric lupus (NPSLE) is a common manifestation of human SLE, with major depression as the most common presentation. Clinical studies have demonstrated that IFNα can cause depressive symptoms. We have shown that the kallikrein–kinin system (KKS) [comprised of kallikreins (Klks) and bradykinins] and angiotensin-converting enzyme inhibitors suppressed Type I IFN responses in dendritic cells from lupus-prone mice and human peripheral blood mononuclear cells. Tissue Klk genes are decreased in patients with lupus, and giving exogenous Klk1 ameliorated kidney pathology in mice. We retro-orbitally administered mouse klk1 gene-carrying adenovirus in the Murphy Roths Large lymphoproliferative (MRL/lpr) lupus-prone mice at early disease onset and analyzed immune responses and depressive-like behavior. Klk1 improved depressive-like behavior, suppressed interferon-responsive genes and neuroinflammation, and reduced plasma IFNα levels and proinflammatory cytokines. Klk1 also reduced IFNAR1 and JAK1 protein expression, important upstream molecules in Type I IFN signaling. Klk1 reduced bradykinin B1 receptor expression, which is known to induce proinflammatory response. Together, these findings suggest that Klk1 may be a potential therapeutic candidate to control IFNα production/responses and other inflammatory responses in SLE and NPSLE. Full article
(This article belongs to the Topic Inflammation: The Cause of all Diseases 2.0)
Show Figures

Figure 1

17 pages, 1589 KB  
Article
Effect of Spermidine on Endothelial Function in Systemic Lupus Erythematosus Mice
by Hyoseon Kim and Michael P. Massett
Int. J. Mol. Sci. 2024, 25(18), 9920; https://doi.org/10.3390/ijms25189920 - 14 Sep 2024
Cited by 3 | Viewed by 2027
Abstract
Endothelial dysfunction is common in Systemic Lupus Erythematosus (SLE), even in the absence of cardiovascular disease. Evidence suggests that impaired mitophagy contributes to SLE. Mitochondrial dysfunction is also associated with impaired endothelial function. Spermidine, a natural polyamine, stimulates mitophagy by the PINK1–parkin pathway [...] Read more.
Endothelial dysfunction is common in Systemic Lupus Erythematosus (SLE), even in the absence of cardiovascular disease. Evidence suggests that impaired mitophagy contributes to SLE. Mitochondrial dysfunction is also associated with impaired endothelial function. Spermidine, a natural polyamine, stimulates mitophagy by the PINK1–parkin pathway and counters age-associated endothelial dysfunction. However, the effect of spermidine on mitophagy and vascular function in SLE has not been explored. To address this gap, 9-week-old female lupus-prone (MRL/lpr) and healthy control (MRL/MpJ) mice were randomly assigned to spermidine treatment (lpr_Spermidine and MpJ_Spermidine) for 8 weeks or as control (lpr_Control and MpJ_Control). lpr_Control mice exhibited impaired endothelial function (e.g., decreased relaxation to acetylcholine), increased markers of inflammation, and lower protein content of parkin, a mitophagy marker, in the thoracic aorta. Spermidine treatment prevented endothelial dysfunction in MRL-lpr mice. Furthermore, aortas from lpr_Spermidine mice had lower levels of inflammatory markers and higher levels of parkin. Lupus phenotypes were not affected by spermidine. Collectively, these results demonstrate the beneficial effects of spermidine treatment on endothelial function, inflammation, and mitophagy in SLE mice. These results support future studies of the beneficial effects of spermidine on endothelial dysfunction and cardiovascular disease risk in SLE. Full article
Show Figures

Figure 1

22 pages, 943 KB  
Review
Emerging Molecular and Synaptic Targets for the Management of Chronic Pain Caused by Systemic Lupus Erythematosus
by Han-Rong Weng
Int. J. Mol. Sci. 2024, 25(7), 3602; https://doi.org/10.3390/ijms25073602 - 22 Mar 2024
Cited by 2 | Viewed by 2807
Abstract
Patients with systemic lupus erythematosus (SLE) frequently experience chronic pain due to the limited effectiveness and safety profiles of current analgesics. Understanding the molecular and synaptic mechanisms underlying abnormal neuronal activation along the pain signaling pathway is essential for developing new analgesics to [...] Read more.
Patients with systemic lupus erythematosus (SLE) frequently experience chronic pain due to the limited effectiveness and safety profiles of current analgesics. Understanding the molecular and synaptic mechanisms underlying abnormal neuronal activation along the pain signaling pathway is essential for developing new analgesics to address SLE-induced chronic pain. Recent studies, including those conducted by our team and others using the SLE animal model (MRL/lpr lupus-prone mice), have unveiled heightened excitability in nociceptive primary sensory neurons within the dorsal root ganglia and increased glutamatergic synaptic activity in spinal dorsal horn neurons, contributing to the development of chronic pain in mice with SLE. Nociceptive primary sensory neurons in lupus animals exhibit elevated resting membrane potentials, and reduced thresholds and rheobases of action potentials. These changes coincide with the elevated production of TNFα and IL-1β, as well as increased ERK activity in the dorsal root ganglion, coupled with decreased AMPK activity in the same region. Dysregulated AMPK activity is linked to heightened excitability in nociceptive sensory neurons in lupus animals. Additionally, the increased glutamatergic synaptic activity in the spinal dorsal horn in lupus mice with chronic pain is characterized by enhanced presynaptic glutamate release and postsynaptic AMPA receptor activation, alongside the reduced activity of glial glutamate transporters. These alterations are caused by the elevated activities of IL-1β, IL-18, CSF-1, and thrombin, and reduced AMPK activities in the dorsal horn. Furthermore, the pharmacological activation of spinal GPR109A receptors in microglia in lupus mice suppresses chronic pain by inhibiting p38 MAPK activity and the production of both IL-1β and IL-18, as well as reducing glutamatergic synaptic activity in the spinal dorsal horn. These findings collectively unveil crucial signaling molecular and synaptic targets for modulating abnormal neuronal activation in both the periphery and spinal dorsal horn, offering insights into the development of analgesics for managing SLE-induced chronic pain. Full article
Show Figures

Figure 1

16 pages, 4774 KB  
Article
Benzo[a]pyrene Exposure Reduces Cell-Type Diversity and Stimulates Sex-Biased Damage Pathways in End Organs of Lupus-Prone Mice
by Runqi Zhu, Kameron Kennicott and Yun Liang
Int. J. Mol. Sci. 2023, 24(7), 6163; https://doi.org/10.3390/ijms24076163 - 24 Mar 2023
Cited by 1 | Viewed by 2872
Abstract
Studies indicate that genetic factors only account for approximately thirty percent of all autoimmune diseases, while the rest of autoimmune pathogenesis is attributed to environmental factors including toxic chemicals. To understand if and how environmental pollutants trigger autoimmunity, we investigated the effect of [...] Read more.
Studies indicate that genetic factors only account for approximately thirty percent of all autoimmune diseases, while the rest of autoimmune pathogenesis is attributed to environmental factors including toxic chemicals. To understand if and how environmental pollutants trigger autoimmunity, we investigated the effect of benzo[a]pyrene (BaP) exposure on the development of autoimmune phenotypes in the lupus-prone MRL strain. The exposure of MRL mice to BaP over the course of 8 weeks before lupus onset resulted in total body weight loss in males, while marginal changes in anti-dsDNA levels occurred. Multi-organ analyses of BaP-treated and control MRL mice suggested that the kidney is a major organ directly affected by the metabolism of benzene-containing compounds, with increased expression of BaP-target genes including Cyp4b1 and Hao2. Intriguingly, spatial transcriptomic data showed that BaP caused a drastic reduction in cell-type diversity in both the kidneys and spleen of MRL mice. Further analysis of the molecular pathways affected suggested a sex-biased effect of BaP treatment, with the upregulated expression of angiogenesis genes in the lungs and an increased deposition of C3 in the kidneys of male mice. While SLE is more common in women, the disease is more severe in male patients, with an increased risk of disease progression to renal failure and lung cancer. Our results reveal sex-biased molecular pathways stimulated by BaP which may help explain the increased likelihood of end organ damage in males with lupus. Full article
Show Figures

Figure 1

15 pages, 2729 KB  
Article
Characterization of Ly108-H1 Signaling Reveals Ly108-3 Expression and Additional Strain-Specific Differences in Lupus Prone Mice
by Svend Rietdijk, Marton Keszei, Wilson Castro, Cox Terhorst and Ana C. Abadía-Molina
Int. J. Mol. Sci. 2023, 24(5), 5024; https://doi.org/10.3390/ijms24055024 - 6 Mar 2023
Viewed by 2548
Abstract
Ly108 (SLAMF6) is a homophilic cell surface molecule that binds SLAM-associated protein (SAP), an intracellular adapter protein that modulates humoral immune responses. Furthermore, Ly108 is crucial for the development of natural killer T (NKT) cells and CTL cytotoxicity. Significant attention has been paid [...] Read more.
Ly108 (SLAMF6) is a homophilic cell surface molecule that binds SLAM-associated protein (SAP), an intracellular adapter protein that modulates humoral immune responses. Furthermore, Ly108 is crucial for the development of natural killer T (NKT) cells and CTL cytotoxicity. Significant attention has been paid towards expression and function of Ly108 since multiple isoforms were identified, i.e., Ly108-1, Ly108-2, Ly108-3, and Ly108-H1, some of which are differentially expressed in several mouse strains. Surprisingly, Ly108-H1 appeared to protect against disease in a congenic mouse model of Lupus. Here, we use cell lines to further define Ly108-H1 function in comparison with other isoforms. We show that Ly108-H1 inhibits IL-2 production while having little effect upon cell death. With a refined method, we could detect phosphorylation of Ly108-H1 and show that SAP binding is retained. We propose that Ly108-H1 may regulate signaling at two levels by retaining the capability to bind its extracellular as well as intracellular ligands, possibly inhibiting downstream pathways. In addition, we detected Ly108-3 in primary cells and show that this isoform is also differentially expressed between mouse strains. The presence of additional binding motifs and a non-synonymous SNP in Ly108-3 further extends the diversity between murine strains. This work highlights the importance of isoform awareness, as inherent homology can present a challenge when interpreting mRNA and protein expression data, especially as alternatively splicing potentially affects function. Full article
(This article belongs to the Special Issue Immune Factors, Immune Cells and Inflammatory Diseases)
Show Figures

Figure 1

13 pages, 2599 KB  
Article
Intraperitoneally Delivered Umbilical Cord Lining Mesenchymal Stromal Cells Improve Survival and Kidney Function in Murine Lupus via Myeloid Pathway Targeting
by Alvin Wen Choong Chua, Dianyang Guo, Jia Chi Tan, Frances Ting Wei Lim, Chee Tian Ong, Jeyakumar Masilamani, Tony Kiat Hon Lim, William Ying Khee Hwang, Ivor Jiun Lim, Jinmiao Chen, Toan Thang Phan and Xiubo Fan
Int. J. Mol. Sci. 2023, 24(1), 365; https://doi.org/10.3390/ijms24010365 - 26 Dec 2022
Cited by 5 | Viewed by 2990 | Correction
Abstract
To determine the therapeutic efficacy of human umbilical cord lining mesenchymal stromal cells (CL-MSCs) (US Patent number 9,737,568) in lupus-prone MRL/lpr (Faslpr) mice and elucidate its working mechanisms. A total of 4 doses of (20–25) × 106 cells/kg of CL-MSCs [...] Read more.
To determine the therapeutic efficacy of human umbilical cord lining mesenchymal stromal cells (CL-MSCs) (US Patent number 9,737,568) in lupus-prone MRL/lpr (Faslpr) mice and elucidate its working mechanisms. A total of 4 doses of (20–25) × 106 cells/kg of CL-MSCs was given to 16-week-old female Faslpr mice by intraperitoneal injection. Three subsequent doses were given on 17 weeks, 18 weeks, and 22 weeks, respectively. Six-week-old Faslpr mice were used as disease pre-onset controls. Mice were monitored for 10 weeks. Mouse kidney function was evaluated by examining complement component 3 (C3) deposition, urinary albumin-to-creatinine ratio (ACR), and lupus nephritis (LN) activity and chronicity. Working mechanisms were elucidated by flow cytometry, Luminex/ELISA (detection of anti-dsDNA and isotype antibodies), and RNA sequencing. CL-MSCs improved mice survival and kidney function by reducing LN activity and chronicity and lymphocyte infiltration over 10 weeks. CL-MSCs also reduced urinary ACR, renal complement C3 deposition, anti-dsDNA, and isotype antibodies that include IgA, IgG1, IgG2a, IgG2b, and IgM. Immune and cytokine profiling demonstrated that CL-MSCs dampened inflammation by suppressing splenic neutrophils and monocytes/macrophages, reducing plasma IL-6, IL-12, and CXCL1 and stabilizing plasma interferon-γ and TNF-α. RNA sequencing further showed that CL-MSCs mediated immunomodulation via concerted action of pro-proinflammatory cytokine-induced chemokines and production of nitric oxide in macrophages. CL-MSCs may provide a novel myeloid (neutrophils and monocytes/macrophages)-targeting therapy for SLE. Full article
Show Figures

Figure 1

18 pages, 3257 KB  
Article
Lipidomics Revealed Aberrant Lipid Metabolism Caused by Inflammation in Cardiac Tissue in the Early Stage of Systemic Lupus Erythematosus in a Murine Model
by Jida Zhang, Lu Lu, Xiaoyu Tian, Kaili Wang, Guanqun Xie, Haichang Li, Chengping Wen and Changfeng Hu
Metabolites 2022, 12(5), 415; https://doi.org/10.3390/metabo12050415 - 5 May 2022
Cited by 12 | Viewed by 2414
Abstract
Cardiac involvement, displayed as premature cardiovascular disease (CVD), is one of common clinical symptoms of patients with systemic lupus erythematosus (SLE), contributing to mortality of the disease. The precise underlying pathological mechanism(s) for the cardiac involvement in lupus remains poorly understood. Lipids and [...] Read more.
Cardiac involvement, displayed as premature cardiovascular disease (CVD), is one of common clinical symptoms of patients with systemic lupus erythematosus (SLE), contributing to mortality of the disease. The precise underlying pathological mechanism(s) for the cardiac involvement in lupus remains poorly understood. Lipids and their metabolites are directly involved in atherosclerosis development, oxidative stress, and inflammation, which are closely related to the development of CVD. In the study, shotgun lipidomics was exploited to quantitatively analyze cellular lipidomes in the cardiac tissue of MRL/lpr mice at two different time points (i.e., pre-lupus and lupus state) with/without treatment with glucocorticoids (GCs). Urine protein, spleen index, and renal histopathological evaluation of the mice were also performed for assessment of SLE onset and/or outcome. Lipidomics analysis revealed that the deposition of cholesterol and the aberrant metabolism of lipids caused by the increased energy metabolism and the enhanced activation of phospholipases, both of which were originally induced by inflammation, were already present in cardiac tissues from lupus-prone mice even at pre-lupus state. These lipid alterations could further induce inflammation and autoimmune responses, accelerating the process of CVD. In addition, the present study also demonstrated that GCs therapy could not only delay the progression of SLE, but also partially corrected these alterations of lipid species in cardiac tissue due to their anti-inflammatory effect. Thus, the medications with better anti-inflammatory effect might be a useful therapeutic method for premature CVD of SLE. Full article
Show Figures

Figure 1

13 pages, 2454 KB  
Article
Spontaneous CD4+ T Cell Activation and Differentiation in Lupus-Prone B6.Nba2 Mice Is IFNAR-Independent
by Emma J. Keller, Nina Dvorina and Trine N. Jørgensen
Int. J. Mol. Sci. 2022, 23(2), 874; https://doi.org/10.3390/ijms23020874 - 14 Jan 2022
Cited by 3 | Viewed by 3013
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disorder characterized by dysregulated T and B lymphocytes. Type I interferons (IFN-I) have been shown to play important pathogenic roles in both SLE patients and mouse models of lupus. Recent studies have shown that B cell [...] Read more.
Systemic lupus erythematosus (SLE) is an autoimmune disorder characterized by dysregulated T and B lymphocytes. Type I interferons (IFN-I) have been shown to play important pathogenic roles in both SLE patients and mouse models of lupus. Recent studies have shown that B cell intrinsic responses to IFN-I are enough to drive B cell differentiation into autoantibody-secreting memory B cells and plasma cells, although lower levels of residual auto-reactive cells remain present. We speculated that IFN-I stimulation of T cells would similarly drive specific T-cell associated lupus phenotypes including the upregulation of T follicular helper cells and Th17, thereby affecting autoantibody production and the development of glomerulonephritis. Using the B6.Nba2 mouse model of lupus, we evaluated disease parameters in T cell specific IFN-I receptor (IFNAR)-deficient mice (cKO). Surprisingly, all measured CD4+ T cell abnormalities and associated intra-splenic cytokine levels (IFNγ, IL-6, IL-10, IL-17, IL-21) were unchanged and thus independent of IFN-I. In contrast B6.Nba2 cKO mice displayed reduced levels of effector CD8+ T cells and increased levels of Foxp3+ CD8+ regulatory T cells, suggesting that IFN-I induced signaling specifically affecting CD8+ T cells. These data suggest a role for both pathogenic and immunosuppressive CD8+ T cells in Nba2-driven autoimmunity, providing a model to further evaluate the role of these cell subsets during lupus-like disease development in vivo. Full article
(This article belongs to the Special Issue Interferons in Lupus)
Show Figures

Graphical abstract

13 pages, 14814 KB  
Article
CD38 Correlates with an Immunosuppressive Treg Phenotype in Lupus-Prone Mice
by Jocelyn C. Pérez-Lara, Enrique Espinosa, Leopoldo Santos-Argumedo, Héctor Romero-Ramírez, Gabriela López-Herrera, Fabio García-García, Claudia Sandoval-Montes, Vianney Ortiz-Navarrete, Mónica Flores-Muñoz and Juan C. Rodríguez-Alba
Int. J. Mol. Sci. 2021, 22(21), 11977; https://doi.org/10.3390/ijms222111977 - 5 Nov 2021
Cited by 8 | Viewed by 4372
Abstract
CD38 is a transmembrane glycoprotein expressed by T-cells. It has been reported that patients with systemic lupus erythematosus (SLE) showed increased CD38+CD25+ T-cells correlating with immune activation and clinical signs. Contrariwise, CD38 deficiency in murine models has shown enhanced autoimmunity [...] Read more.
CD38 is a transmembrane glycoprotein expressed by T-cells. It has been reported that patients with systemic lupus erythematosus (SLE) showed increased CD38+CD25+ T-cells correlating with immune activation and clinical signs. Contrariwise, CD38 deficiency in murine models has shown enhanced autoimmunity development. Recent studies have suggested that CD38+ regulatory T-cells are more suppressive than CD38 regulatory T-cells. Thus, we have suggested that CD38 overexpression in SLE patients could play a role in regulating immune activation cells instead of enhancing it. This study found a correlation between CD38 with FoxP3 expression and immunosuppressive molecules (CD69, IL-10, CTLA-4, and PD-1) in T-cells from lupus-prone mice (B6.MRL-Faslpr/J). Additionally, B6.MRL-Faslpr/J mice showed a decreased proportion of CD38+ Treg cells regarding wild-type mice (WT). Furthermore, Regulatory T-Cells (Treg cells) from CD38-/- mice showed impairment in expressing immunosuppressive molecules and proliferation after stimulation through the T-cell receptor (TCR). Finally, we demonstrated an increased ratio of IFN-γ/IL-10 secretion in CD38-/- splenocytes stimulated with anti-CD3 compared with the WT. Altogether, our data suggest that CD38 represents an element in maintaining activated and proliferative Treg cells. Consequently, CD38 could have a crucial role in immune tolerance, preventing SLE development through Treg cells. Full article
(This article belongs to the Special Issue Immunophenotyping in Autoimmune Diseases and Cancer 2.0)
Show Figures

Figure 1

Back to TopTop