Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (35)

Search Parameters:
Keywords = low liquid limit clay

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 16743 KiB  
Article
Model Test and Numerical Analysis of Landslides in Layered Ion-Type Rare Earth Ore Under Rainfall and Mineral Leaching Conditions
by Zhongqun Guo, Yanshuo Liu, Qiqi Liu, Manqiu Zhong and Qiangqiang Liu
Water 2025, 17(10), 1469; https://doi.org/10.3390/w17101469 - 13 May 2025
Viewed by 464
Abstract
The South China region is characterized by diverse landforms and significant stratification of geological materials. The rock and soil layers in this area have obvious layering characteristics. The stability of layered slopes is a critical issue in the safe mining of southern ion-type [...] Read more.
The South China region is characterized by diverse landforms and significant stratification of geological materials. The rock and soil layers in this area have obvious layering characteristics. The stability of layered slopes is a critical issue in the safe mining of southern ion-type rare earth ores. This study investigates the morphological changes, pore water pressure, and moisture content variation of layered ion-type rare earth ore slopes under the combined effects of rainfall and liquid infiltration through indoor model tests. A numerical simulation was conducted to analyze the variations in pore water pressure, moisture content, slope displacement, and safety factor under different working conditions. As rainfall intensity increases, the interface between soil layers in sandy–silty clay slopes is more likely to form a saturated water retention zone, causing rapid pore water pressure buildup and a significant reduction in shear strength. For the silty–sand clay slopes, the low permeability of the upper silty clay layer limits the infiltration rate of water, resulting in significant interlayer water retention effects, which induce softening and an increased instability risk. The higher the initial moisture content, the longer the infiltration time, which reduces the matrix suction of the soil and significantly weakens the shear strength of the slope. When the initial moisture content and rainfall intensity are the same, the safety factor of the silty–sand clay slope is higher than that of the sandy–silty clay slope. When rainfall intensity increases from 10 mm/h to 30 mm/h, the safety factor of the sandy–silty clay slope decreases from 1.30 to 1.15, indicating that the slope is approaching a critical instability state. Full article
Show Figures

Figure 1

13 pages, 958 KiB  
Article
Geotechnical Experimental Study of Phosphogypsum for Use in Quarry Reclamation
by Alexandros I. Theocharis, George Gaidajis and Ioannis E. Zevgolis
Minerals 2025, 15(5), 477; https://doi.org/10.3390/min15050477 - 1 May 2025
Viewed by 416
Abstract
This study presents the geotechnical evaluation of phosphogypsum, a byproduct of phosphate fertilizer production. The objective is to assess the suitability of phosphogypsum or its mixtures with natural materials as a technically viable and environmentally responsible backfill material for the restoration of closed [...] Read more.
This study presents the geotechnical evaluation of phosphogypsum, a byproduct of phosphate fertilizer production. The objective is to assess the suitability of phosphogypsum or its mixtures with natural materials as a technically viable and environmentally responsible backfill material for the restoration of closed and abandoned quarries. This study adds to the scarce existing literature on the use of phosphogypsum for quarry reclamation and further investigates the behavior of phosphogypsum mixtures incorporating clay and marble dust. A comprehensive experimental program was conducted to evaluate typical geotechnical properties, i.e., grain size distribution, Atterberg limits, compaction characteristics, permeability, compressibility, and shear strength. The results indicate that phosphogypsum is fine grained, low in plasticity, and exhibits relatively high permeability and compressibility, which limits its application as a deep fill material. The addition of clay increased the liquid and plastic limits but had a limited positive effect on strength and compressibility. In contrast, mixtures with marble dust improved particle gradation, reduced permeability, and enhanced compaction behavior without significantly increasing plasticity or settlements. Notably, the most promising mixture of phosphogypsum with a modest proportion of marble dust demonstrates improved shear strength and reduced hydraulic conductivity, making it suitable for use in the upper layers of quarry fills. Full article
(This article belongs to the Section Environmental Mineralogy and Biogeochemistry)
Show Figures

Figure 1

33 pages, 16726 KiB  
Article
Geophysical-Geotechnical Characterization of Mud Volcanoes in Cartagena Colombia
by Guilliam Barboza-Miranda, Andrea Carolina Lopez Macías, Jisseth Valdez-Vargas, Meiker Pérez-Barón, Yamid E. Nuñez de la Rosa, Gustavo Eliecer Florez de Diego, Juan José Carrascal and Jair Arrieta Baldovino
Geosciences 2025, 15(3), 111; https://doi.org/10.3390/geosciences15030111 - 19 Mar 2025
Viewed by 846
Abstract
In this research, the mud diapirism phenomenon in the Membrillal sector in Cartagena is characterized to analyze its spatiotemporal evolution. The goal is to geomorphologically, geotechnically, and geologically characterize the area to zone regions with the greatest susceptibility to geological hazards and provide [...] Read more.
In this research, the mud diapirism phenomenon in the Membrillal sector in Cartagena is characterized to analyze its spatiotemporal evolution. The goal is to geomorphologically, geotechnically, and geologically characterize the area to zone regions with the greatest susceptibility to geological hazards and provide an updated diagnosis of the phenomenon. This study is conducted due to the risks that mud diapirism poses to infrastructure and the safety of local communities. Understanding the behavior of these structures is essential for designing effective mitigation measures and optimizing urban planning in areas affected by this phenomenon. The methodology used includes collecting secondary data and implementing geophysical, geotechnical, and laboratory tests. Among the techniques employed are the Standard Penetration Test (SPT), the excavation of test pits, and electrical resistivity tomography, which revealed mud deposits at different depths. Laboratory studies also evaluated the physical and mechanical properties of the soil, such as Atterberg limits, grain size distribution, moisture content, and expansion tests, in addition to physic-chemical analyses. Among the most relevant findings is the presence of four active mud vents and four mud ears, representing an increase compared to the previous study that only recorded three mud vents. The tests revealed mud deposits at 1.30 m and 10 m depths, consistent with the geotechnical results. Laboratory tests revealed highly plastic soils, with Liquid Limits (LL) ranging from 44% to 93% and Plastic Limits (PL) ranging from 14% to 46%. Soil classification showed various low- and high-plasticity clays (CL and CH) and silty clays (MH), presenting challenges for structural stability and foundation design. Additionally, natural moisture content varied between 15.8% and 89%, and specific gravity ranged from 1.72 to 2.75, reflecting significant differences in water retention and soil density. It is concluded that diapirism has increased in the region, with constant monitoring recommended, and the Territorial Planning Plan (POT) has been updated to include regulations that mitigate the risks associated with urban development in affected areas. Full article
Show Figures

Figure 1

15 pages, 5354 KiB  
Article
Study on the Influence of Clay Content on the Freeze–Thaw Characteristics and Mechanisms of Solidified Low-Liquid-Limit Clay
by Ruifan Lu, Junjie Yang and Yalei Wu
Appl. Sci. 2025, 15(6), 3005; https://doi.org/10.3390/app15063005 - 10 Mar 2025
Viewed by 715
Abstract
This study investigates the effects of clay content on the strength and microstructural mechanisms of artificially prepared low-liquid-limit clay solidified with SSGM binder, composed of salt sludge (SAS), steel slag (SS), ground granulated blast-furnace slag (GGBS), and light magnesium oxide (MgO), and the [...] Read more.
This study investigates the effects of clay content on the strength and microstructural mechanisms of artificially prepared low-liquid-limit clay solidified with SSGM binder, composed of salt sludge (SAS), steel slag (SS), ground granulated blast-furnace slag (GGBS), and light magnesium oxide (MgO), and the law of influence of viscous particles content on the strength of the solidified low-liquid-limit clay and its microscopic mechanism were investigated through a freeze–thaw cycle test and microscopic test. The results indicate that, under freeze–thaw cycles, both the mass and unconfined compressive strength of the solidified soil decrease with increasing cycle number. At the same number of cycles, samples with lower clay content exhibit smaller mass loss rates and unconfined compressive strength loss rates. Microstructural tests reveal that the hydration products of the binder, including C-S-H, C-A-S-H, C-A-H, and AFt, not only cement soil particles and fill internal pores but also interconnect to form a mesh-like structure, enhancing internal stability. However, as freeze–thaw cycles progress, the structure of the solidified soil deteriorates, with an increase in large pores and the formation of penetrating cracks and voids, leading to reduced strength. The SSGM binder demonstrates excellent freeze–thaw resistance for solidifying low-liquid-limit clay and improves the utilization rate of industrial waste, showing promising application potential in permafrost regions. Full article
Show Figures

Figure 1

29 pages, 12203 KiB  
Article
Features of the Reinforcement–Soil Interfacial Effect in Fiber-Reinforced Soil Based on Pullout Tests
by Dingkan Xiao, Jun Zhang, Wei Xu, Jiang Wang, Nianyuan Qiu, Juan Wu, Huiyan Ling, Bo Qu and Zhihua Yao
Constr. Mater. 2024, 4(4), 810-838; https://doi.org/10.3390/constrmater4040044 - 16 Dec 2024
Cited by 1 | Viewed by 750
Abstract
To investigate the reinforcement–soil interfacial effects in fiber-reinforced soil, this study developed a novel horizontal pullout tester and conducted pullout tests on coarse polypropylene fibers in plain soil, cemented soil, and fine fiber-reinforced cemented soil. Three soil types were analyzed: low liquid limit [...] Read more.
To investigate the reinforcement–soil interfacial effects in fiber-reinforced soil, this study developed a novel horizontal pullout tester and conducted pullout tests on coarse polypropylene fibers in plain soil, cemented soil, and fine fiber-reinforced cemented soil. Three soil types were analyzed: low liquid limit clay, high liquid limit clay, and clay sand. The pullout tester proved to be both scientifically robust and efficient. Depending on the soil properties, coarse polypropylene fibers were pulled out intact or fractured. The pullout curves displayed distinct multi-peak patterns, with wavelengths closely linked to the fiber’s intrinsic characteristics. The pullout curve wavelength for plain soil matched the fiber’s intrinsic wavelength, while it was slightly greater in cemented soils. The peak pullout force increased with extended curing periods, higher cement content, more excellent compaction, and the addition of fine polypropylene fibers. Among these factors, compaction had the most significant impact on enhancing the soil–fiber interfacial effect. Friction, cohesion, and fiber interweaving created interlocking effects, inhibiting fiber sliding. Cement hydration processes further deformed the fiber, increasing its friction coefficient and sliding resistance. Hydration products also fill soil voids, improving soil compactness, enlarging the fiber–soil contact area, and enhancing frictional and occlusal forces at the interface. Full article
Show Figures

Figure 1

16 pages, 7610 KiB  
Article
Experimental Study on the Shear Characteristics of the Interface between Marine Soft Clay and Jacked Pile
by Chaoliang Ye, Fengxu Cao, Hao Sun, Zhenxu Wu, Tao Zhang and Tiecheng Sun
J. Mar. Sci. Eng. 2024, 12(9), 1549; https://doi.org/10.3390/jmse12091549 - 4 Sep 2024
Cited by 1 | Viewed by 1455
Abstract
Marine soft clay is widely distributed in coastal areas. Aiming at the characteristics of low strength and stress level of marine soft clay, the effects of normal stress, water content, and resting time on the pile–soil interface shear characteristics of marine soft clay–jacked [...] Read more.
Marine soft clay is widely distributed in coastal areas. Aiming at the characteristics of low strength and stress level of marine soft clay, the effects of normal stress, water content, and resting time on the pile–soil interface shear characteristics of marine soft clay–jacked piles were investigated using improved direct shear test equipment. On this basis, a practical interface shear strength prediction model considering the above factors is proposed. The test results show that the relationship between shear stress and shear displacement at the pile–soil interface can be divided into three stages—initial, transitional, and stable—and the relationship is in accordance with the hyperbolic model. Under the same water content and resting time, the interface peak shear stress increases linearly with the increase in normal stress. The interface peak shear displacement decreased with the increase in normal stress. Under different water content conditions, the peak shear stress decreases with increasing water content, while the corresponding peak shear displacement increases. The internal friction angle and adhesion at the pile–soil interface decreased rapidly and exponentially with increasing water content of the soil around the pile. The interfacial adhesion varies in the range of 1.07–13.76 kPa and the internal friction angle in the range of 1.8–6.1°. The change in water content when the water content of marine soft clay is less than the liquid limit has a great influence on the interface shear strength. The peak shear stress increases with increasing resting time, while the corresponding peak shear displacement decreases for different resting times. The Internal friction angle and adhesion at the pile–soil interface increases exponentially with the resting time. Interfacial adhesion changes in the range of 1.8–4.9 kP, and the internal friction angle is 2.8–4.7°. The strength of the pile–soil interface grows with the advancement of the resting time, and the bearing performance of the jacked pile is improved, with the most significant effect in 14 days. Based on multiple linear regression analyses, the effects of normal stress and water content on interfacial shear strength are comparable and the effect of normal stress on the shear strength is more significant compared with the resting time. The test results provide valuable reference for the design and construction of jacked piles in marine soft ground. Full article
(This article belongs to the Section Coastal Engineering)
Show Figures

Figure 1

10 pages, 1771 KiB  
Article
Treatments Technology and Mechanisms of East Asia Black Cotton Soil
by Xin Shang, Jiansheng Wang, Haolei Chang and Weiguang Zhang
Buildings 2024, 14(9), 2679; https://doi.org/10.3390/buildings14092679 - 28 Aug 2024
Viewed by 848
Abstract
The East Asia black cotton soil (BCS) cannot be used as embankment filling directly due to its high clay content, liquid limit, plasticity index, and low CBR strength (CBR < 3%). This study evaluates the effects of treating East Asia BCS with lime, [...] Read more.
The East Asia black cotton soil (BCS) cannot be used as embankment filling directly due to its high clay content, liquid limit, plasticity index, and low CBR strength (CBR < 3%). This study evaluates the effects of treating East Asia BCS with lime, volcanic ash, or a combination of both on its engineering properties. Experiments were conducted to analyze the basic physical properties, swelling characteristics, and mechanical properties of the treated soil. Results indicate that lime addition significantly reduces the free swelling rate, improves limit moisture content, increases optimum moisture content, decreases maximum dry density, and enhances CBR value. Although volcanic ash also improves BCS performance, its effects are less pronounced than those of lime. The combined treatment with lime and volcanic ash exhibits superior performance, greatly reducing expansion potential and significantly increasing soil strength. Specifically, a mixture of 3% lime and 15% volcanic ash optimizes the liquid limit, plasticity index, and CBR value to 49.2%, 23.8, and 24.7%, respectively, meeting the JTG D30-2015 requirements and reducing construction costs. The treatment mechanisms involve hydration exothermic reactions, volcanic ash reactions, and semipermeable membrane effects, which collectively enhance the soil’s properties by producing dense, high-strength compounds. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

15 pages, 4111 KiB  
Article
Utilizing Magnesium Carbonate Induced by CO2 to Modify the Performance of Plastic Clay
by Hadi Mohamadzadeh Romiani, Hamed Abdeh Keykha, Saeed Chegini, Afshin Asadi and Satoru Kawasaki
Minerals 2024, 14(9), 876; https://doi.org/10.3390/min14090876 - 28 Aug 2024
Viewed by 1401
Abstract
Highly plastic clays pose significant challenges in engineering projects. Various techniques have been employed to enhance their properties, though many face difficulties related to implementation and environmental impact. This study examines the effect of CO2-induced magnesium carbonate on improving the geotechnical [...] Read more.
Highly plastic clays pose significant challenges in engineering projects. Various techniques have been employed to enhance their properties, though many face difficulties related to implementation and environmental impact. This study examines the effect of CO2-induced magnesium carbonate on improving the geotechnical behavior of plastic clay. CO2-induced magnesium carbonate was produced via mineral carbonation and used to improve the behavior of highly plastic natural clay. CO2 gas was injected into a sodium hydroxide solution to produce carbonate ions (CO32−). Magnesium carbonate was precipitated on a laboratory scale by adding magnesium sulfate solution to the carbonate ion solution. Clayey soil samples were obtained from test pits in the Meyghan Plain near Arak, Iran. The clay samples were treated with different percentages of the produced magnesium carbonate. Various parameters of the treated and untreated samples, including index properties, unconfined compressive strength, consolidation behavior, and swelling potential, were studied. It was found that the liquid limit and plasticity index of the treated clay decreased as the magnesium carbonate content increased. The soil classification changed from high plastic clay (CH) to low plastic silt (ML) with the addition of 15% magnesium carbonate to the highly plastic clay. The unconfined compressive strength of the treated clay increased. Additionally, the consolidation behavior and swelling index of the treated clay improved as the magnesium carbonate content increased. This study confirms that CO2-induced magnesium carbonate is a promising material for improving the behavior of highly plastic clays, offering a sustainable approach to environmental management. Full article
(This article belongs to the Special Issue Clay Minerals and CO2 Capture, Utilization and Storage)
Show Figures

Figure 1

22 pages, 7039 KiB  
Article
Mineralogical and Engineering Properties of Soils Derived from In Situ Weathering of Tuff in Central Java, Indonesia
by I Gde Budi Indrawan, Daniel Tamado, Mifthahul Abrar and I Wayan Warmada
Geosciences 2024, 14(8), 213; https://doi.org/10.3390/geosciences14080213 - 10 Aug 2024
Cited by 1 | Viewed by 2178
Abstract
This paper presents the results of borehole investigations and laboratory tests carried out to characterize the soils derived from in situ weathering of tuff in Central Java, Indonesia. The 70 m thick weathering profile of the Quaternary tuff consisted of residual soil and [...] Read more.
This paper presents the results of borehole investigations and laboratory tests carried out to characterize the soils derived from in situ weathering of tuff in Central Java, Indonesia. The 70 m thick weathering profile of the Quaternary tuff consisted of residual soil and completely to highly decomposed rocks. The relatively low dry unit weight and cohesion but high water content, porosity, plastic and liquid limits, and angle of internal friction of the soils in the present study were related to the dominance of halloysite clay minerals. The established relationships to predict soil shear strength parameters from the soil plasticity index and standard penetration test (SPT) N-values were examined, and linear and non-linear relationships for soils derived from in situ weathering of tuff were proposed. Full article
(This article belongs to the Special Issue Soil-Structure Interactions in Underground Construction)
Show Figures

Figure 1

20 pages, 5082 KiB  
Article
Stabilization of Pavement Subgrade Clay Soil Using Sugarcane Ash and Lime
by Abrar Ahmed, Magdi El-Emam, Naveed Ahmad and Mousa Attom
Geosciences 2024, 14(6), 151; https://doi.org/10.3390/geosciences14060151 - 2 Jun 2024
Cited by 8 | Viewed by 4879
Abstract
Soft to medium clay soil possesses major sources of damages to the pavement layers overlying them because of their potential failure under moisture changes and external heavy traffic load. In such situations, soil stabilization methods can be used to improve the soil properties [...] Read more.
Soft to medium clay soil possesses major sources of damages to the pavement layers overlying them because of their potential failure under moisture changes and external heavy traffic load. In such situations, soil stabilization methods can be used to improve the soil properties and satisfy the desired engineering requirements. This study presents the use of sugarcane bagasse ash (SBA) and lime as chemical stabilizers for a clay soil subbase. Sugarcane bagasse ash and lime are used individually and as mixtures at varying percentages to stabilize a clay soil from Taxila, Pakistan. Various geotechnical laboratory tests such as Atterberg limits, compaction test, and California Bearing Ratio (CBR) are carried out on both pure and stabilized soils. These tests are performed at 2.5%, 5%, and 7.5% of either SBA or lime by weight of dry soil. In addition, mixtures of lime and SBA in ratios of 1:1, 2:1, 3:1, 1:2, and 1:3 are used in 5%, 7.5%, and 10% of dry soil weight, respectively. Results indicate that soil improved with 7.5% SBA showed a 28% increase in the liquid limit, while soil mixed with 2.5% lime in combination with 7.5% SBA showed an increase of 40% in the plastic limit. For the plasticity index, the soil mixed with 7.5% SBA showed an increase of 42%. Moreover, 2.5% lime in combination with 2.5% SBA showed the best improvement in soil consistency as this mixture reduced the soil plasticity from high to low according to the plasticity chart. Furthermore, 2.5% SBA in combination with 5% lime demonstrated the largest improvement on the CBR value, which is about a 69% increase above that of the pure soil. Finally, the cost analysis indicates a promising improvement method that reduces pavement cost, increases design life, and mitigates issues of energy consumption and pollution related to SBA as a solid waste material. Full article
(This article belongs to the Collection New Advances in Geotechnical Engineering)
Show Figures

Figure 1

26 pages, 14585 KiB  
Article
Geotechnical Characterisation of Flysch-Derived Colluvial Soils from a Pre-Alpine Slope Affected by Recurrent Landslides
by Marco Del Fabbro, Paolo Paronuzzi and Alberto Bolla
Geosciences 2024, 14(5), 115; https://doi.org/10.3390/geosciences14050115 - 24 Apr 2024
Cited by 2 | Viewed by 2447
Abstract
Heterogeneous rock masses that include rhythmic alternations of marl, shale, marly limestone, sandstone, siltstone, and argillite, such as Flysch, are particularly prone to generating colluvial deposits on gentle slopes, which are often subject to failures triggered by heavy rainfall. Flysch-derived colluvial soils are [...] Read more.
Heterogeneous rock masses that include rhythmic alternations of marl, shale, marly limestone, sandstone, siltstone, and argillite, such as Flysch, are particularly prone to generating colluvial deposits on gentle slopes, which are often subject to failures triggered by heavy rainfall. Flysch-derived colluvial soils are made up of highly heterogeneous sediments ranging from clayey loam to rock fragments, and they have been studied more rarely than homogeneous soils. In this work, we present a geotechnical and hydraulic characterisation performed both in situ and in the laboratory on flysch-derived colluvial soils that were involved in a channelised landslide in the pre-alpine area of the Friuli Venezia Giulia region (NE Italy). The investigated soils were characterised by the average values of the grain size composition of about 25% gravel, 20% sand, 30% silt, and 25% clay. The loamy matrix presented low-to-medium values of the liquid and plastic limits, as well as of the plasticity index (LL = 40%, PL = 23%, and PI = 17%, respectively). The values of the peak friction angle for natural intact samples were 33° < ϕp < 38°, whereas the residual friction angle fell to 23–24° at great depths and high vertical stresses, for a prevailing silty–clayey matrix. Variable head permeability tests were performed both in situ and in the laboratory, showing that the values of the vertical and horizontal permeability were very close and in the range 1 × 10−4–1 × 10−6 m/s. The soil permeability measured in the field was generally higher than the hydraulic conductivity calculated on laboratory samples. The proposed geotechnical and hydrological characterisation of flysch-derived colluvial soils can be of fundamental importance before the use of more thorough analyses/models aimed at forecasting the possible occurrence of slope failures and evaluating the related landslide hazard. The reported geotechnical and hydraulic parameters of flysch-derived colluvial materials can represent a useful reference for rainfall infiltration modelling and slope stability analyses of colluvial covers that are subject to intense and/or prolonged precipitation. However, when facing engineering problems involving colluvial soils, particularly those coming from flysch rock masses, the intrinsic variability in their grain size composition, consistency, and plasticity characteristics is a key feature and attention should be paid to the proper assumption of the corresponding geotechnical and hydraulic parameters. Full article
Show Figures

Figure 1

17 pages, 3974 KiB  
Article
Influence Mechanism of Water Content and Compaction Degree on Shear Strength of Red Clay with High Liquid Limit
by Xuemao Feng, Jidong Teng and Hongwei Wang
Materials 2024, 17(1), 162; https://doi.org/10.3390/ma17010162 - 28 Dec 2023
Cited by 5 | Viewed by 1960
Abstract
To investigate the influencing factors and mechanisms of shear strength of red clay with a high liquid limit, which was selected at different milepost locations based on the Nanning Bobai Nabu Section Project of the Nanning Zhanjiang Expressway, the basic physical properties of [...] Read more.
To investigate the influencing factors and mechanisms of shear strength of red clay with a high liquid limit, which was selected at different milepost locations based on the Nanning Bobai Nabu Section Project of the Nanning Zhanjiang Expressway, the basic physical properties of red clay were determined using a liquid plastic limit test, compaction test, inductively coupled plasma optical emission spectrometer (ICP-OES), and X-ray fully automatic diffractometer (XRD). Red clay with a high liquid limit was selected. Furthermore, the direct shear test was used to study the effect of different water contents and compaction degrees on the shear strength. The experimental results demonstrate that under the same compaction degree, the shear stress of the soil sample increases significantly with an increase in normal stress, and the greater the water content, the smaller the shear stress of the soil sample. At 200 kPa, the shear strength of soil samples with 24% water content is 57%, 46%, and 35% of the shear strength of soil samples with 15% water content under different compaction degrees(K) of 86%, 90%, and 93%, respectively. Under the same moisture content, the shear stress of the soil sample shows an increasing trend with an increase in the degree of compaction, and the greater the compaction degrees, the greater the shear stress of the soil sample. The cohesion c and internal friction angle φ of soil samples increase with an increase in the compaction degree, but the increase in cohesion c is also affected by the water content. Under the condition of low water content, the cohesion c of soil samples can be increased by 1.06 times when the water content is 15% and by 0.47 times when the water content is 18%. Under the condition of high water content, the cohesion c of soil samples with 21% water content only increases by 0.3 times, and that with 24% water content only increases by 0.35 times. Full article
(This article belongs to the Special Issue Rock-Like Material Characterization and Engineering Properties)
Show Figures

Figure 1

13 pages, 3539 KiB  
Article
Effects of Lime Content on Road Performance of Low Liquid Limit Clay
by Jinli Zhang, Hai Li, Junhui Peng and Zhe Zhang
Appl. Sci. 2023, 13(14), 8377; https://doi.org/10.3390/app13148377 - 20 Jul 2023
Cited by 3 | Viewed by 2363
Abstract
Low liquid limit clay has a low plastic index, displays poor strength, and is sensitive to water, and its mechanical qualities decline as the water content changes, making it difficult to employ directly in the construction process. Adding lime is a fantastic way [...] Read more.
Low liquid limit clay has a low plastic index, displays poor strength, and is sensitive to water, and its mechanical qualities decline as the water content changes, making it difficult to employ directly in the construction process. Adding lime is a fantastic way to improve it. The influence of lime concentration on the road performance of low liquid limit clay is investigated in this research using a limit water content test, compaction test, and California bearing ratio test. The results show that the original plain soil does not meet the requirements of highway subgrade filling, and the basic properties of subgrade soil are improved to varying degrees after adding lime, resolving the problem regarding the original well-cultivated soil’s inability to meet the requirements of construction. The plastic limit of the improved soil increased by roughly 3% as the lime content increased, but the maximum dry density decreased dramatically by 9.03%, 5.71%, and 5.98%, respectively. With an increase of 57.3% in lime content and compaction times, the California bearing ratio increases dramatically. The ideal moisture content rises as the lime content rises. The optimal dosage is 6%, according to a rigorous study of several performance metrics. Full article
Show Figures

Figure 1

20 pages, 7911 KiB  
Article
Effects of Freeze-Thaw Cycles on Permeability Behavior and Desiccation Cracking of Dalian Red Clay in China Considering Saline Intrusion
by Chen Chen, Chaozhe Zhang, Xiao Liu, Xiaona Pan, Yenan Pan and Pengjiao Jia
Sustainability 2023, 15(4), 3858; https://doi.org/10.3390/su15043858 - 20 Feb 2023
Cited by 8 | Viewed by 2783
Abstract
Red clay with features of high liquid (plastic) limit, low permeability, medium-low compressibility and high strength is widely used in anti-seepage projects including roadbed, earth dam, tailings and landfill cover. This study investigates the hydraulic conductivity and propagation of desiccation cracks of compacted [...] Read more.
Red clay with features of high liquid (plastic) limit, low permeability, medium-low compressibility and high strength is widely used in anti-seepage projects including roadbed, earth dam, tailings and landfill cover. This study investigates the hydraulic conductivity and propagation of desiccation cracks of compacted red clay in Dalian, China, considering the effect of freeze-thaw (F-T) cycles and saline intrusion. A series of compacted specimens were subjected to different F-T cycles at various controlled salt concentration of 0.2% and 4%. The surface cracking initiation and propagation process of compacted specimens under wetting-drying (W-D) cycles were monitored by Digital Image Correlation technique. The results indicated that permeability coefficient of compacted specimens increased significantly after the first F-T cycle regardless of specimens with variable dry density and salt concentration. The relationship between the number of F-D cycles and permeability coefficient can be expressed as the exponential function for Dalin red clay. Dry density and Saline inhibits the desiccation cracks of compacted specimens under W-D cycles. However, the F-T cycles have a modest promoting effect on crack propagation on the surface of saturated red clay. This study analyzes the underlying formation mechanisms of desiccation cracking-inducing geohazards and provides some guidance for the long-term performance of infrastructures upon saline intrusion and F-T cycles for red clay. Full article
(This article belongs to the Special Issue Analysis and Modeling for Sustainable Geotechnical Engineering)
Show Figures

Figure 1

22 pages, 7734 KiB  
Review
Low-Energy Clay–Cement Slurries Find Application as Waterproofing Membranes for Limiting the Migration of Contaminants—Case Studies in Poland
by Agata Stempkowska, Łukasz Wójcik, Krzysztof Adam Ostrowski and Tomasz Gawenda
Energies 2023, 16(1), 230; https://doi.org/10.3390/en16010230 - 25 Dec 2022
Cited by 5 | Viewed by 2307
Abstract
The purpose of this review was to present clay–cement suspensions that are mainly used in the construction and renovation of hydrotechnical facilities and flood protection. We present the characteristics of clay–cement slurries that are used in waterproofing barriers. One of their significant components [...] Read more.
The purpose of this review was to present clay–cement suspensions that are mainly used in the construction and renovation of hydrotechnical facilities and flood protection. We present the characteristics of clay–cement slurries that are used in waterproofing barriers. One of their significant components are clays of different types and origins. Examples of kaolin-type and smectite-type clays, which are associated minerals, as balanced components of suspensions are presented. As mentioned, before the hydration process, barriers are suspended, and the main test methods are rheometric measurements. Their rheological parameters, extremely important from the point of view of injection mechanics, are shown. The higher the flow limit and faster the reconstruction of thixotropic structures, the higher the energy input of the injection processes. After the hydration process, it is important to form agglomerates and seal the barrier; therefore, we present a summary of the strength results, filtration coefficients and microscopic images of the resulting structures. Additional properties of such barriers in terms of limiting contaminant migration are indicated. One of the aspects affecting the use of liquid slurries is their application methods; thus, a summary of low-energy slurry injection methods is also presented. Full article
Show Figures

Figure 1

Back to TopTop