Geotechnical Characterisation of Flysch-Derived Colluvial Soils from a Pre-Alpine Slope Affected by Recurrent Landslides
Abstract
:1. Introduction
2. Geology and Geomorphological Processes of the Study Area
- “Marne e arenarie di Savorgnano (SVO)” Formation: alternations of graded, fine-to-medium-grained marls and carbonate–siliciclastic sandstones, greyish–blueish marls and clayey marls;
- “Flysch del Grivò (GRIa)” Formation: interbedded shales and sandstones with calcirudites and calcarenites, sometimes in thick carbonate beds;
- “Calcari del Monte Cavallo (CMC)” Formation: whitish bioclastic limestones, massive, with abundant rudists, sometimes with interbedded micritic limestone;
- “Calcari del Cellina (CEL)” Formation: stratified whitish, greyish, and brownish limestones, with karst features, sometimes with the presence of breccias, residual clays, and stromatolites.
3. Methodology
3.1. Fieldwork and Sample Collection
3.2. Field Tests
3.3. Laboratory Investigations
- (i)
- The Casagrande direct shear box, for natural soil samples;
- (ii)
- The Bromhead ring shear machine, for reconstituted samples that only included the fine fraction (ASTM#40 sieve-passing material).
4. Stratigraphy of the Colluvial Deposit
- A 30–50 cm thick organic topsoil, with abundant roots and macro-voids, in some cases reworked for vineyard cultivation purposes;
- An upper colluvial soil of highly variable thickness with a prevailing loamy matrix (Colluvial soil 1 in Figure 5c);
- An underlying colluvial soil made up of abundant angular fragments of marl and sandstone with a scant amount of loamy matrix (Colluvial soil 2 in Figure 5c).
5. Geotechnical Characterisation of Flysch-Derived Colluvial Soils
5.1. Grain Size Distribution
5.2. Index Properties
5.3. Shear Strength
- (i)
- The values of the residual friction angle for reconstituted samples, which were evaluated in the torsional shear test, were 16° < ϕ’r < 29°, with a mean value of 23° (Table 3). In residual conditions, the soil cohesion was null;
- (ii)
- The peak shear strength properties of the undisturbed natural samples C0 and C1, which were collected at the base of the western and eastern scarps, respectively, were evaluated with the direct shear test. The values of the peak friction angle were 33° < ϕ’p < 38°, whereas the values of cohesion were 6 kPa < c’p < 11 kPa (Table 4 and Figure 8a,b). The peak conditions were reached for horizontal displacements (SH) of about 8–10 mm (Figure 8c,d), highlighting the plastic behaviour of the hardening type;
- (iii)
- When considering residual conditions on undisturbed natural samples, the residual friction angle of the two tested samples decreased by up to 31–33°, respectively (Table 4 and Figure 8a,b). The lower friction angle value related to sample C0 is possibly explained by the higher content of clay that characterised that sample (Table 1).
6. Hydraulic Properties of Flysch-Derived Colluvial Soils
6.1. Saturated Permeability
6.2. Moisture Condition
6.3. Soil–Water Characteristic Curve
7. Discussion
7.1. Grain Size Composition, Consistency and Plasticity
7.2. Residual Strength
- (i)
- (ii)
- (iii)
7.3. Permeability
- -
- For the top organic soil, the permeability varies in the range 7.0 × 10−5–1.2 × 10−4 m/s;
- -
- For the underlying colluvial layer, the permeability is in the range 7.7 × 10−6–7.8 × 10−5 m/s.
7.4. SWCC
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Poole, F.G. Flysch deposits of Antler Foreland Basin, Western United States. AAPG Bull. 1973, 57, 800–801. [Google Scholar]
- Caron, C.; Homewood, P.; Wildi, W. The original Swiss flysch: A reappraisal of the type deposits in the Swiss prealps. Earth-Sci. Rev. 1989, 26, 1–45. [Google Scholar] [CrossRef]
- Benac, Č.; Arbanas, Ž.; Jurak, V.; Oštrić, M.; Ožanić, N. Complex landslide in the Rječina valley (Croatia): Origin and sliding mechanism. Bull. Eng. Geol. Environ. 2005, 64, 361–371. [Google Scholar] [CrossRef]
- Klimeš, J.; Baroň, I.; Pánek, T.; Kosačík, T.; Burda, J.; Kresta, F.; Hradecký, J. Investigation of recent catastrophic landslides in the flysch belt of outer Western Carpathians (Czech Republic): Progress towards better hazard assessment. Nat. Hazards Earth Syst. Sci. 2009, 9, 119–128. [Google Scholar] [CrossRef]
- Skrzypczak, I.; Kokoszka, W.; Zientek, D.; Tang, Y.; Kogut, J. Landslide Hazard assessment map as a n element supporting spatial planning: The Flysch Carpathians region study. Remote Sens. 2021, 13, 317. [Google Scholar] [CrossRef]
- García-Ruiz, J.M.; Beguería, S.; Alatorre, L.C.; Puigdefábregas, J. Land cover changes and shallow landsliding in the flysch sector of the Spanish Pyrenees. Geomorphology 2010, 124, 250–259. [Google Scholar] [CrossRef]
- Gong, D.-X.; Wu, C.-H.; Zou, H.; Zhou, X.; Zhou, Y.; Tan, H.-Q.; Yue, X.-Y. Provenance analysis of Late Triassic turbidites in the eastern Songpan–Ganzi Flysch Complex: Sedimentary record of tectonic evolution of the eastern Paleo-Tethys Ocean. Mar. Pet. Geol. 2021, 126, 104927. [Google Scholar] [CrossRef]
- Stumvoll, M.J.; Schmalz, E.M.; Kanta, R.; Roth, H.; Grall, B.; Luhn, J.; Flores-Orozco, A.; Glade, T. Exploring the dynamics of a complex, slow-moving landslide in the Austrian Flysch Zone with 4D surface and subsurface information. Catena 2022, 214, 106203. [Google Scholar] [CrossRef]
- d’Onofrio, A.; Picarelli, L.; Santo, A.; Urcioli, G. The Red Flysch Formation in Southern Apennines: Lithological and structural features and challenges in geotechnical characterization and modelling. Rock Mech. Rock Eng. 2023, 56, 8375–8393. [Google Scholar] [CrossRef]
- Reiβmüller, M. Geotechnische Eigenschaften verwitterter Kfssener Mergel. Diploma Thesis, Technical University of Munich, Munich, Germany, 1997. (In German). [Google Scholar]
- Cardoso, R.; Alonso, E.E. Degradation of compacted marls: A microstructural investigation. Soils Found. 2009, 49, 315–327. [Google Scholar] [CrossRef]
- Chandler, R.J. The effect of weathering on the shear strength properties of Keuper marl. Géotechnique 1969, 19, 321–334. [Google Scholar] [CrossRef]
- Brown, E.T. Rock Characterization, Testing and Monitoring ISRM Suggested Methods; Pergamon Press: Oxford, UK, 1981; 211p. [Google Scholar]
- Selby, M.J. Hillslope Materials and Processes, 2nd ed.; Oxford University Press: Oxford, UK, 1993; 451p. [Google Scholar]
- Chigira, M.; Oyama, T. Mechanism and effect of chemical weathering of sedimentary rocks. Dev. Geotech. Eng. 2000, 84, 267–278. [Google Scholar]
- Bhattarai, P.; Marui, H.; Tiwari, B.; Watanabe, N.; Tuladhar, G.; Aoyama, K. Influence of weathering on physical and mechanical properties of mudstone. In Disaster Mitigation of Debris Flows, Slope Failures and Landslides; Universal Academy Press, Inc.: Tokyo, Japan, 2006; Volume 2, pp. 467–479. [Google Scholar]
- Surian, N.; Pellegrini, G.B. Paraglacial sedimentation in the Piave Valley (Eastern Alps, Italy): An example of fluvial processes conditioned by glaciation. Geogr. Fis. Dinam. Quat. 2000, 23, 87–92. [Google Scholar]
- Colucci, R.R.; Monegato, G.; Žebre, M. Glacial and proglacial deposits of the Resia Valley (NE Italy): New insights on the onset and decay of the Last Alpine Glacial Maximum in the Julian Alps. Alp. Mediterr. Quat. 2014, 27, 85–104. [Google Scholar]
- Millar, S.W.S. Colluvial deposits. In Encyclopedia of Planetary Landforms; Hargitai, H., Kereszturi, Á., Eds.; Springer: New York, NY, USA, 2014; pp. 321–328. [Google Scholar]
- Cremaschi, M.; Trombino, L.; Zerboni, A. Palaeosoils and relict soils: A systematic review. In Interpretation of Micromorphological Features of Soils and Regoliths, 2nd ed.; Stoops, G., Marcelino, V., Mees, F., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 863–894. [Google Scholar]
- Mücher, H.; van Steijn, H.; Kwaad, F. Colluvial and mass wasting deposits. In Interpretation of Micromorphological Features of Soils and Regoliths, 2nd ed.; Stoops, G., Marcelino, V., Mees, F., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 21–36. [Google Scholar]
- Zádarová, T.; Penížek, V. Formation, morphology and classification of colluvial soils: A review. Eur. J. Soil Sci. 2018, 69, 577–591. [Google Scholar] [CrossRef]
- Fleming, R.W.; Johnson, A.M. Landslides in Colluvium; US Geological Survey Bulletin 2059-B; US Government Printing Office: Washington, UT, USA, 1994; 28p.
- Zádarová, T.; Penížek, V.; Koubová, M.; Lisá, L.; Pavlů, L.; Tejnecký, V.; Žižala, D.; Drábek, O.; Němeček, K.; Vaněk, A.; et al. Formation of Colluvisols in different soil regions and slope positions (Czechia): Post-sedimentary pedogenesis in colluvial material. Catena 2023, 229, 107233. [Google Scholar] [CrossRef]
- Paronuzzi, P.; Fedrigo, D.; Bolla, A. Rainfall infiltration through stratified colluvial deposits: Analytical approach vs. numerical modelling. Geosciences 2024, 14, 53. [Google Scholar] [CrossRef]
- Paronuzzi, P.; Bolla, A. Rainfall infiltration and slope stability of alpine colluvial terraces subject to storms (NE Italy). Eng. Geol. 2023, 323, 107199. [Google Scholar] [CrossRef]
- Paronuzzi, P.; Del Fabbro, M.; Bolla, A. Soil moisture profiles of unsaturated colluvial slopes susceptible to rainfall-induced landslides. Geosciences 2022, 12, 12010006. [Google Scholar] [CrossRef]
- Turner, A.K. Colluvium and talus. In Landslides: Investigation and Mitigation; Turner, A.K., Schuster, R.L., Eds.; Transportation Research Board Special Report 247; National Research Council: Washington, UT, USA, 1996; pp. 525–554. [Google Scholar]
- Borradaile, G. Geological maps and some basic terminology. In Understanding Geology Through Maps; Borradaile, G., Ed.; Elsevier: Amsterdam, The Netherlands, 2014; pp. 1–14. [Google Scholar]
- Meisina, C.; Scarabelli, S. A comparative analysis of terrain stability models for predicting shallow landslides in colluvial soils. Geomorphology 2007, 87, 207–223. [Google Scholar] [CrossRef]
- Ellen, S.D.; Fleming, R.W. Mobilization of debris flows from soil slips, San Francisco Bayregion, California. In Debris Flows/Avalanches: Process, Recognition, and Mitigation; Costa, J.E., Wieczorek, G.F., Eds.; Geological Society of America: Boulder, CO, USA, 1987; pp. 31–40. [Google Scholar]
- Montrasio, L. Stability analysis of soil-slip. In Risk Analysis II; Brebbia, C.A., Ed.; Wit Press: Southampton, UK, 2000; pp. 357–366. [Google Scholar]
- D’Amato Avanzi, G.; Falaschi, F.; Giannecchini, R.; Puccinelli, A. Soil slip susceptibility assessment using mechanical-hydrological approach and GIS techniques: An application in the Apuan Alps (Italy). Nat. Hazards 2009, 50, 591–603. [Google Scholar] [CrossRef]
- Varnes, D.J. Slope Movement Types and Processes. In Landslides: Analysis and Control; Schuster, R.L., Krizek, R.J., Eds.; TRB, National Research Council: Washington, UT, USA, 1978; pp. 11–33. [Google Scholar]
- Hungr, O.; Leroueil, S.; Picarelli, L. The Varnes classification of landslide types, an update. Landslides 2014, 11, 167–194. [Google Scholar] [CrossRef]
- Zhang, M.; Yin, Y.; Hu, R.; Wu, S.; Zhang, Y. Ring shear test for transform mechanism of slide–debris flow. Eng. Geol. 2011, 118, 55–62. [Google Scholar] [CrossRef]
- Rahardjo, H.; Ong, T.H.; Rezaur, R.B.; Leong, E.C.; Fredlund, D.G. Response parameters for characterization of infiltration. Environ. Earth Sci. 2010, 60, 1369–1380. [Google Scholar] [CrossRef]
- Sun, P.; Wang, H.; Wang, G.; Li, R.; Zhang, Z.; Huo, X. Field model experiments and numerical analysis of rainfall-induced shallow loess landslides. Eng. Geol. 2021, 295, 106411. [Google Scholar] [CrossRef]
- Rahardjo, H.; Krisdani, H.; Leong, E.C.; Ng, Y.S.; Foo, M.D.; Wang, C.L. Capillary barrier as slope cover. In Common Ground Proceedings of 10th Australia New Zealand Conference on Geomechanics; Hilton Hotel: Brisbane, Australia, 2007; pp. 698–703. [Google Scholar]
- Cho, S.E. Prediction of shallow landslide by surficial stability analysis considering rainfall infiltration. Eng. Geol. 2017, 231, 126–138. [Google Scholar] [CrossRef]
- Segoni, S.; Piciullo, L.; Gariano, S.R. A review of the recent literature on rainfall thresholds for landslide occurrence. Landslides 2018, 15, 1483–1501. [Google Scholar] [CrossRef]
- Vannocci, P.; Segoni, S.; Masi, E.B.; Cardi, F.; Nocentini, N.; Rosi, A.; Bicocchi, G.; D’Ambrosio, M.; Nocentini, M.; Lombardi, L.; et al. Towards a national-scale dataset of geotechnical and hydrological soil parameters for shallow landslide modelling. Data 2022, 7, 37. [Google Scholar] [CrossRef]
- Haque, U.; da Silva, P.F.; Devoli, G.; Pilz, G.; Zhao, B.; Khaloua, A.; Wilipo, W.; Andersen, P.; Lu, P.; Lee, J.; et al. The human cost of global warming: Deadly landslides and their triggers (1995–2014). Sci. Total Environ. 2019, 682, 673–684. [Google Scholar] [CrossRef]
- Peranić, J.; Mihalić Arbanas, S.; Arbanas, Ž. Importance of the unsaturated zone in landslide reactivation on flysch slopes: Observations from Valići Landslide, Croatia. Landslides 2021, 18, 3737–3751. [Google Scholar] [CrossRef]
- Ma, T.; Li, C.; Lu, Z.; Bao, Q. Rainfall intensity–duration thresholds for the initiation of landslides in Zhejiang Province, China. Geomorphology 2015, 245, 193–206. [Google Scholar] [CrossRef]
- Marin, R.J.; Velásquez, M.F.; García, E.F.; Alvioli, M.; Aristizábal, E. Assessing two methods of defining rainfall intensity and duration thresholds for shallow landslides in data-scarce catchments of the Colombian Andean Mountains. Catena 2021, 206, 105563. [Google Scholar] [CrossRef]
- Min, D.-H.; Kim, Y.S.; Kim, S.; Yoon, H.-K. Strategy of oversampling geotechnical parameters through geostatistical, SMOTE, and CTGAN methods for assessing susceptibility of landslide. Landlisdes 2023, 21, 291–307. [Google Scholar] [CrossRef]
- Wei, X.; Gardoni, P.; Zhang, L.; Tan, L.; Liu, D.; Du, C.; Li, H. Improving pixel-based regional landslide susceptibility mapping. Geosci. Front. 2024, 15, 101782. [Google Scholar] [CrossRef]
- Uyeturk, C.E.; Huvaj, N.; Bayraktaroglu, H.; Huseyinpasaoglu, M. Geotechnical characteristics of residual soils in rainfall-triggered landslides in Rize, Turkey. Eng. Geol. 2020, 264, 105318. [Google Scholar] [CrossRef]
- Cerato, A.B.; Lutenegger, A.J. Specimen size and scale effects of direct shear box tests of sands. Geotech. Test. J. 2006, 29, 507–516. [Google Scholar] [CrossRef]
- Cho, G.-C.; Dodds, J.; Santamarina, J.C. Particole shape effects on packing density, stiffness, and strength: Natural and crushed sands. J. Geotech. Geoenviron. Eng. 2006, 132, 591. [Google Scholar] [CrossRef]
- Iverson, N.R.; Mann, J.E.; Iverson, R.M. Effects of soil aggregates on debris-flow mobilization: Results from ring-shear experiments. Eng. Geol. 2010, 114, 84–92. [Google Scholar] [CrossRef]
- Li, S.; Wang, T.; Wang, H.; Jiang, M.; Zhu, J. Experimental studies of scale effect on the shear strength of coarse-grained soil. Appl. Sci. 2022, 12, 447. [Google Scholar] [CrossRef]
- Anis, Z.; Wissem, G.; Riheb, H.; Biswajeet, P.; Essghaier, G.M. Effects of clay properties in the landslides genesis in flysch massif: Case study of Aïn Draham, North Western Tunisia. J. Afr. Earth Sci. 2019, 151, 146–152. [Google Scholar] [CrossRef]
- Bicocchi, G.; Tofani, V.; D’Ambrosio, M.; Tacconi-Stefanelli, C.; Vannocci, P.; Casagli, N.; Lavorini, G.; Trevisani, M.; Catani, F. Geotechnical and hydrological characterization of hillslope deposits for regional landslide prediction modeling. Bull. Eng. Geol. Environ. 2019, 78, 4875–4891. [Google Scholar] [CrossRef]
- Peranić, J.; Moscariello, M.; Cuomo, S.; Arbanas, Ž. Hydro-mechanical properties of unsaturated residual soil from a flysch rock mass. Eng. Geol. 2020, 269, 105546. [Google Scholar] [CrossRef]
- Bosellini, A.; Sarti, M. Geologia del Gruppo M. Cuar-M. Covria (Alpi Carniche). Giorn. Geol. 1978, 43, 47–88. [Google Scholar]
- Carulli, G.B. Carta Geologica del Friuli Venezia Giulia–Scale 1:150,000 with Illustrative Notes; Tabacco: Tavagnacco, Italy, 2006; 44p. [Google Scholar]
- Zanferrari, A.; Avigliano, R.; Monegato, G.; Paiero, G.; Poli, M.E. Note Illustrative della Carta Geologica d’Italia alla Scala 1:50,000; Foglio 066 Udine; Graphic Linea: Tavagnacco, Italy, 2008; 176p. [Google Scholar]
- Poli, M.E. La carta geologica del massiccio della Bernadia (Prealpi Giulie meridionali, Friuli, Italia NE). Rend. Online Soc. Geol. It 2009, 5, 168–171. [Google Scholar]
- Servizio Geologico d’Italia. Carta Geologica d’Italia alla Scala 1:50,000; Foglio 049 Gemona (Progetto CARG); ISPRA: Rome, Italy, 2013. [Google Scholar]
- Associazione Geotecnica Italiana. Raccomandazioni Sulla Programmazione ed Esecuzione delle Indagini Geotecniche; AGI: Rome, Italy, 1977; pp. 51–63. [Google Scholar]
- UNI EN ISO 22282-2; Geotechnical Investigation and Testing–Geohydraulic Testing–Part 2: Water Permeability Tests in a Borehole Using Open Systems. ISO: Geneva, Switzerland, 2012; 12p.
- Fredlund, D.G.; Xing, A. Equations for the soil-water characteristic curve. Can. Geotech. J. 1994, 31, 521–532. [Google Scholar] [CrossRef]
- Logar, J.; Fifer Bizjak, K.; Kŏcevar, M.; Mikŏs, M.; Ribĭcĭc, M.; Majes, B. History and present state of the Slano Blato landslide. Nat. Hazards Earth Syst. Sci. 2005, 5, 447–457. [Google Scholar] [CrossRef]
- Fifer Bizjak, K.; Zupančič, A. Site and laboratory investigation of the Slano blato landslide. Eng. Geol. 2009, 105, 171–185. [Google Scholar] [CrossRef]
- Petkovšek, A.; Maček, M.; Mikoš, M.; Majes, B. Mechanisms of Active Landslides in Flysch. In Landslides: Global Risk Preparedness; Sassa, K., Rouhban, B., Briceño, S., McSaveney, M., He, B., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 149–165. [Google Scholar]
- Carrubba, P.; Del Fabbro, M. Resistenza residua alla riattivazione del Flysch di Cormons. Riv. Ital. Geotec. 2006, 1, 28–52. [Google Scholar]
- Carrubba, P.; Del Fabbro, M. Laboratory Investigation on Reactivated Residual Strength. J. Geotech. Geoenvironmental Eng. 2008, 134, 302–315. [Google Scholar] [CrossRef]
- Skempton, A.W. Long-term stability of clay slopes. Géotechnique 1964, 14, 77–102. [Google Scholar] [CrossRef]
- Lupini, J.F.; Skinner, A.E.; Vaughan, P.R. The drained residual strength of cohesive soils. Géotechnique 1981, 31, 181–213. [Google Scholar] [CrossRef]
- Marchetti, S.; Totani, G. Parametri geotecnici ed indagini geognostiche. In Atti 1° Seminario Problemi Geotecnici Nella Edificazione su Pendio; CNR-GNDCI: Montesilvano, Italy, 1992; 41p. [Google Scholar]
- Ng, C.W.W.; Shi, Q. A numerical investigation of the stability of unsaturated soil slopes subjected to transient seepage. Comput. Geotech. 1998, 22, 1–28. [Google Scholar] [CrossRef]
- Dai, F.C.; Lee, C.F.; Wang, S. Analysis of rainstorm-induced slide-debris flows on natural terrain of Lantau Island, Hong Kong. Eng. Geol. 1999, 51, 279–290. [Google Scholar]
- Gasmo, J.M.; Rahardjo, H.; Leong, E.C. Infiltration effects on stability of a residual soil slope. Comput. Geotech. 2000, 26, 145–165. [Google Scholar] [CrossRef]
- Rahimi, A.; Rahardjo, H.; Leong, E.-C. Effect of antecedent rainfall patterns on rainfall-induced slope failure. J. Geotech. Geoenviron. Eng. 2011, 137, 483–491. [Google Scholar] [CrossRef]
- Cuomo, S.; Della Sala, M. Rainfall-induced infiltration, runoff and failure in steep unsaturated shallow soil deposits. Eng. Geol. 2013, 162, 118–127. [Google Scholar] [CrossRef]
- Balzano, B.; Tarantino, A.; Ridley, A. Preliminary analysis on the impacts of the rhizosphere on occurrence of rainfall-induced shallow landslides. Landslides 2019, 16, 1885–1901. [Google Scholar] [CrossRef]
- Amorosi, D.; Sollazzo, R. Misure di permeabilità in sito ed in laboratorio su terreni sabbiosi. Riv. Ital. Geotec. 1966, 3, 58–65. [Google Scholar]
- Olson, R.E.; Daniel, D.E. Measurement of the hydraulic conductivity of fine-grained soils. In Permeability and Groundwater Contaminant Transport; Zimmie, T.F., Riggs, C.O., Eds.; ASTM International: West Conshohocken, PA, USA, 1981; pp. 18–64. [Google Scholar]
- Daniel, D.E. In situ hydraulic conductivity tests for compacted clay. J. Geotech. Eng. 1989, 115, 1205–1226. [Google Scholar] [CrossRef]
- Lim, T.T.; Rahardjo, H.; Chang, M.F.; Fredlund, D.G. Effects of rainfall on matric suctions in a residual soil slope. Can. Geotech. J. 1996, 33, 618–628. [Google Scholar] [CrossRef]
- Faybishenko, B. Comparison of laboratory and field methods for determining the quasi-saturated hydraulic conductivity of soils. In Riverside International Workshop on Soil Hydraulic Properties; Lawrence Berkeley National Laboratory: Berkeley, CA, USA, 1997; pp. 279–292. [Google Scholar]
- Damiano, E.; Greco, R.; Guida, A.; Olivares, L.; Picarelli, L. Investigation on rainwater infiltration into layered shallow covers in pyroclastic soils and its effect on slope stability. Eng. Geol. 2017, 220, 208–218. [Google Scholar] [CrossRef]
- Nam, S.; Gutierrez, M.; Diplas, P.; Petrie, J. Laboratory and in situ determination of hydraulic conductivity and their validity in transient seepage analysis. Water 2021, 13, 1131. [Google Scholar] [CrossRef]
- Meriggi, R. Misura delle proprietà idrauliche e meccaniche dei terreni colluviali in condizione di parziale saturazione. In Sviluppi Nell’esecuzione e Nell’impiego delle Indagini Geotecniche; XX Convegno Nazionale di Geotecnica; AGI: Parma, Italy; Pàtron Editore: Bologna, Italy, 1999; pp. 177–184. [Google Scholar]
- Peranić, J.; Arbanas, Ž.; Cuomo, S.; Maček, M. Soil-water characteristic curve of residual soil from a flysch rock mass. Geofluids 2018, 2018, 6297819. [Google Scholar] [CrossRef]
Eastern Scarp Sample | Depth (m) | Gravel (%) | Sand (%) | Silt (%) | Clay (%) | Silt/Clay |
C6 | 0.50 | 4.2 | 17.5 | 43.2 | 35.1 | 1.2 |
C5 | 1.70 | 3.8 | 18.8 | 39.6 | 37.8 | 1.0 |
C4 | 1.88 | 21.1 | 26.5 | 26.3 | 26.1 | 1.0 |
C3 | 2.16 | 16.9 | 19.7 | 32.2 | 31.2 | 1.0 |
C2 | 2.76 | 34.9 | 12.3 | 26.5 | 26.3 | 1.0 |
C1 | 3.72 | 30.8 | 19.0 | 28.1 | 22.0 | 1.3 |
Average | 18.6 | 19.0 | 32.7 | 29.8 | 1.1 | |
St. Dev. | 13.0 | 4.6 | 7.2 | 6.0 | ||
Var. coeff. | 70.0 | 24.0 | 22.0 | 20.2 | ||
Western Scarp Sample | Depth (m) | Gravel (%) | Sand (%) | Silt (%) | Clay (%) | Silt/Clay |
C10 | 2.65 | 32.5 | 21.7 | 24.1 | 21.7 | 1.1 |
C8 | 3.65 | 30.6 | 16.4 | 28.5 | 24.6 | 1.2 |
C6 | 4.65 | 43.0 | 16.7 | 22.1 | 18.2 | 1.2 |
C4 | 5.55 | 27.1 | 19.1 | 28.0 | 25.8 | 1.1 |
C2 | 6.30 | 38.3 | 15.7 | 22.8 | 23.2 | 1.0 |
C0 | 7.10 | 32.3 | 16.2 | 25.0 | 26.5 | 0.9 |
Average | 34.0 | 17.6 | 25.1 | 23.3 | 1.1 | |
St. Dev. | 5.7 | 2.3 | 2.7 | 3.1 | ||
Var. coeff. | 16.9 | 13.1 | 10.6 | 13.1 | ||
Borehole S7 Sample | Depth (m) | Gravel (%) | Sand (%) | Silt (%) | Clay (%) | Silt/Clay |
C1 | 1.88 | 4.9 | 40.9 | 25.9 | 28.3 | 0.9 |
C2 | 2.53 | 6.4 | 31.0 | 31.0 | 31.6 | 1.0 |
C3 | 3.70 | 17.6 | 18.0 | 32.5 | 31.9 | 1.0 |
C4 | 4.28 | 39.1 | 18.1 | 30.0 | 12.8 | 2.3 |
C5 | 8.10 | 49.5 | 25.8 | 18.7 | 6.0 | 3.1 |
Average | 23.5 | 26.8 | 27.6 | 22.1 | 1.7 | |
St. Dev. | 20.0 | 9.6 | 5.6 | 11.9 | ||
Var. coeff. | 84.9 | 36.0 | 20.1 | 54.0 |
Eastern Scarp Sample | Depth (m) | Void Index (–) | Porosity (–) | Water Content (%) | Specific Gravity (–) | Bulk Density (nat.) (kN/m3) | Bulk Density (dry) (kN/m3) |
C6 | 0.50 | 0.75 | 0.43 | 19 | 2.65 | 18.40 | 15.41 |
C5 | 1.70 | 0.74 | 0.44 | 28 | 2.74 | 19.36 | 15.15 |
C4 | 1.88 | 0.77 | 0.47 | 27 | 2.69 | 19.62 | 15.46 |
C3 | 2.16 | 0.92 | 0.52 | 28 | 2.71 | 18.65 | 14.61 |
C2 | 2.76 | 0.89 | 0.51 | 26 | 2.70 | 18.95 | 14.98 |
C1 | 3.72 | 0.66 | 0.41 | 22 | 2.69 | 20.40 | 16.75 |
Average | 0.79 | 0.46 | 25 | 2.70 | 19.23 | 15.39 | |
St. Dev. | 0.10 | 0.04 | 3.5 | 0.03 | 0.73 | 0.73 | |
Var. coeff. | 12.2 | 9.4 | 14.0 | 1.2 | 3.8 | 4.8 | |
Western scarp Sample | Depth (m) | Void index (–) | Porosity (–) | Water content (%) | Specific Gravity (–) | Bulk density (nat.) (kN/m3) | Bulk density (dry) (kN/m3) |
C10 | 2.65 | 0.71 | 0.43 | 24 | 2.62 | 20.21 | 16.33 |
C8 | 3.65 | 0.78 | 0.45 | 26 | 2.74 | 19.61 | 15.61 |
C6 | 4.65 | 0.59 | 0.38 | 22 | 2.69 | 21.17 | 17.37 |
C4 | 5.55 | 0.70 | 0.43 | 23 | 2.70 | 20.76 | 16.47 |
C2 | 6.30 | 0.75 | 0.43 | 28 | 2.73 | 19.78 | 15.50 |
C0 | 7.10 | 0.69 | 0.42 | 26 | 2.75 | 20.37 | 16.21 |
Average | 0.70 | 0.42 | 25 | 2.70 | 20.32 | 16.25 | |
St. Dev. | 0.07 | 0.02 | 2.1 | 0.05 | 0.59 | 0.68 | |
Var. coeff. | 9.2 | 5.7 | 8.4 | 1.9 | 2.9 | 4.2 |
E Scarp Sample | Depth (m) | Distance from Bedrock (m) | Clay Fraction CF * (%) | Plasticity Index PI (%) | Residual Friction Angle ϕ’r (°) |
---|---|---|---|---|---|
C6 | 0.50 | 3.22 | 37.8 | 18.7 | 29 |
C5 | 1.70 | 2.02 | 40.1 | 22.3 | 25 |
C4 | 1.88 | 1.84 | 34.0 | 17.6 | 29 |
C3 | 2.16 | 1.56 | 41.0 | 13.9 | 23 |
C2 | 2.76 | 0.96 | 43.4 | 18.9 | 19 |
C1 | 3.72 | 0.00 | 36.1 | 16.4 | 17 |
Average | 38.7 | 18.0 | 24 | ||
St. Dev. | 3.4 | 2.8 | 5 | ||
Var. coeff. | 8.9 | 15.6 | 21 | ||
Western Scarp Sample | |||||
C10 | 2.65 | 4.45 | 38.0 | 20.9 | 26 |
C8 | 3.65 | 3.45 | 40.4 | 16.8 | 23 |
C6 | 4.65 | 2.45 | 38.2 | 18.5 | 19 |
C4 | 5.55 | 1.55 | 41.3 | 15.4 | 16 |
C2 | 6.30 | 0.80 | 44.9 | 15.6 | 16 |
C0 | 7.10 | 0.00 | 47.0 | 17.4 | 17 |
Average | 41.6 | 17.4 | 20 | ||
St. Dev. | 3.6 | 2.1 | 4 | ||
Var. coeff. | 8.7 | 11.8 | 21 | ||
Borehole S7 Sample | |||||
C1 | 1.88 | 14.10 | 32.4 | 15.6 | 28 |
C2 | 2.53 | 13.50 | 36.2 | 19.6 | 24 |
C3 | 3.70 | 12.30 | 41.5 | 19.1 | 24 |
C4 | 4.28 | 11.70 | 24.8 | 14.9 | 23 |
C5 | 8.10 | 7.90 | 14.2 | 13.8 | 30 |
Average | 29.8 | 16.6 | 26 | ||
St. Dev. | 10.6 | 2.6 | 3 | ||
Var. coeff. | 35.7 | 15.6 | 12 |
Sample | Depth (m) | Peak Friction Angle ϕ’P (°) | Peak Cohesion c’P (kPa) | Residual Friction Angle ϕ’r (°) | Residual Cohesion c’r (kPa) |
---|---|---|---|---|---|
Eastern scarp—C1 | 3.72 | 38 | 6 | 33 | 0 |
Western scarp—C0 | 7.10 | 33 | 11 | 31 | 0 |
2014 Scarp Sample | Depth (m) | Vertical Pressure σV (kPa) | Vertical Permeability KV (m/s) | Horizontal Permeability KH (m/s) |
---|---|---|---|---|
0 | 0.5 | 13 | - | 2.7 × 10−6 |
0 | 0.5 | 25 | - | 1.9 × 10−6 |
0 | 0.5 | 50 | - | 1.1 × 10−6 |
1 | 1.5 | 13 | 4.5 × 10−6 | - |
1 | 1.5 | 25 | 4.1 × 10−6 | - |
1 | 1.5 | 50 | 3.0 × 10−6 | - |
3 | 1.8 | 13 | 1.1 × 10−5 | 7.0 × 10−6 |
3 | 1.8 | 25 | 9.7 × 10−6 | 6.3 × 10−6 |
3 | 1.8 | 50 | 8.5 × 10−6 | 4.9 × 10−6 |
7 | 3.8 | 25 | - | 5.1 × 10−6 |
7 | 3.8 | 50 | - | 3.4 × 10−6 |
7 | 3.8 | 100 | - | 9.6 × 10−7 |
8 | 3.8 | 25 | 8.0 × 10−6 | 8.5 × 10−6 |
8 | 3.8 | 50 | 5.7 × 10−6 | 5.1 × 10−6 |
8 | 3.8 | 75 | 3.6 × 10−6 | 3.4 × 10−6 |
2014 Scarp Sample | Depth (m) | Vertical Pressure σV (kPa) | Vertical Permeability KV (m/s) | Type of Test | Method |
---|---|---|---|---|---|
9 | 0.5 | 2 | 1.2 × 10−4 | In situ | variable head |
9 | 0.5 | 2 | 7.0 × 10−5 | Laboratory | constant head |
8 | 3.8 | 2 | 7.8 × 10−5 | In situ | variable head |
8 | 3.8 | 2 | 7.7 × 10−6 | Laboratory | variable head |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Del Fabbro, M.; Paronuzzi, P.; Bolla, A. Geotechnical Characterisation of Flysch-Derived Colluvial Soils from a Pre-Alpine Slope Affected by Recurrent Landslides. Geosciences 2024, 14, 115. https://doi.org/10.3390/geosciences14050115
Del Fabbro M, Paronuzzi P, Bolla A. Geotechnical Characterisation of Flysch-Derived Colluvial Soils from a Pre-Alpine Slope Affected by Recurrent Landslides. Geosciences. 2024; 14(5):115. https://doi.org/10.3390/geosciences14050115
Chicago/Turabian StyleDel Fabbro, Marco, Paolo Paronuzzi, and Alberto Bolla. 2024. "Geotechnical Characterisation of Flysch-Derived Colluvial Soils from a Pre-Alpine Slope Affected by Recurrent Landslides" Geosciences 14, no. 5: 115. https://doi.org/10.3390/geosciences14050115
APA StyleDel Fabbro, M., Paronuzzi, P., & Bolla, A. (2024). Geotechnical Characterisation of Flysch-Derived Colluvial Soils from a Pre-Alpine Slope Affected by Recurrent Landslides. Geosciences, 14(5), 115. https://doi.org/10.3390/geosciences14050115