Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = longitudinal Gaussian pulses

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 511 KiB  
Article
Changes in Emission Properties Associated with the Emission Shifts in PSR J0344−0901
by Rai Yuen and Habtamu M. Tedila
Universe 2025, 11(5), 165; https://doi.org/10.3390/universe11050165 - 21 May 2025
Viewed by 223
Abstract
We investigate changes in the emission properties in association with the emission shifts observed in PSR J0344−0901 and their implications for the underlying emission mechanism. By decomposing the averaged pulse profile into multiple Gaussian components, the observed emission shift can be modeled through [...] Read more.
We investigate changes in the emission properties in association with the emission shifts observed in PSR J0344−0901 and their implications for the underlying emission mechanism. By decomposing the averaged pulse profile into multiple Gaussian components, the observed emission shift can be modeled through the variation in the peak phase of each component in relation to the plasma flow in a pulsar magnetosphere of multiple emission states based on the model by Melrose and Yuen. From the arrangements of the Gaussian components to fit the two averaged profiles, we show that the emission shift is due to (i) shifting of the Gaussian components toward later longitudinal phases and (ii) an increase in the plasma density. We show that the plasma flow is not uniform, which may be the reason for the irregular drifting subpulses observed. In addition, the change in the plasma density can either positively or negatively affect the pulse amplitude, depending on the amount of change. We demonstrate that an emission shift should be more prominent when it occurs at a lower emission height, where the plasma density is higher. This suggests that this phenomenon should be common, but it is more likely detected in pulsars with small impact parameters. Full article
(This article belongs to the Section Compact Objects)
Show Figures

Figure 1

19 pages, 5298 KiB  
Article
Efficient Generation of Transversely and Longitudinally Truncated Chirped Gaussian Laser Pulses for Application in High-Brightness Photoinjectors
by Andreas Hoffmann, Sumaira Zeeshan, James Good, Matthias Gross, Mikhail Krasilnikov and Frank Stephan
Photonics 2025, 12(5), 460; https://doi.org/10.3390/photonics12050460 - 9 May 2025
Viewed by 431
Abstract
The optimization of photoinjector brightness is crucial for achieving the highest performance at X-ray free-electron lasers. To this end, photocathode laser pulse shaping has been identified as a key technology for enhancing photon flux and lasing efficiency at short wavelengths. Supported by beam [...] Read more.
The optimization of photoinjector brightness is crucial for achieving the highest performance at X-ray free-electron lasers. To this end, photocathode laser pulse shaping has been identified as a key technology for enhancing photon flux and lasing efficiency at short wavelengths. Supported by beam dynamics simulations, we identify transversely and longitudinally truncated Gaussian electron bunches as a beneficial bunch shape in terms of the projected emittance and 5D brightness. The realization of such pulses from chirped Gaussian pulses is studied for 514 nm and 257 nm wavelengths by inserting an amplitude mask in the symmetry plane of the pulse stretcher to achieve longitudinal shaping and an aperture for transverse beam shaping. Using this scheme, transversely and longitudinally truncated Gaussian pulses can be generated and later used for the production of up to 3 nC electron bunches in the photoinjector. The 3D pulse shape at a wavelength of 514 nm is characterized via imaging spectroscopy, and second-harmonic generation frequency-resolved optical gating (SHG FROG) measurements are also performed to analyze the shaping scheme’s efficacy. Furthermore, this pulse-shaping scheme is transferred to a UV stretcher, allowing for direct application of the shaped pulses to cesium telluride photocathodes. Full article
(This article belongs to the Special Issue Photonics: 10th Anniversary)
Show Figures

Figure 1

19 pages, 9100 KiB  
Article
Deep Ultraviolet Excitation Photoluminescence Characteristics and Correlative Investigation of Al-Rich AlGaN Films on Sapphire
by Zhe Chuan Feng, Ming Tian, Xiong Zhang, Manika Tun Nafisa, Yao Liu, Jeffrey Yiin, Benjamin Klein and Ian Ferguson
Nanomaterials 2024, 14(21), 1769; https://doi.org/10.3390/nano14211769 - 4 Nov 2024
Viewed by 1429
Abstract
AlGaN is attractive for fabricating deep ultraviolet (DUV) optoelectronic and electronic devices of light-emitting diodes (LEDs), photodetectors, high-electron-mobility field-effect transistors (HEMTs), etc. We investigated the quality and optical properties of AlxGa1−xN films with high Al fractions (60–87%) grown on [...] Read more.
AlGaN is attractive for fabricating deep ultraviolet (DUV) optoelectronic and electronic devices of light-emitting diodes (LEDs), photodetectors, high-electron-mobility field-effect transistors (HEMTs), etc. We investigated the quality and optical properties of AlxGa1−xN films with high Al fractions (60–87%) grown on sapphire substrates, including AlN nucleation and buffer layers, by metal–organic chemical vapor deposition (MOCVD). They were initially investigated by high-resolution X-ray diffraction (HR-XRD) and Raman scattering (RS). A set of formulas was deduced to precisely determine x(Al) from HR-XRD data. Screw dislocation densities in AlGaN and AlN layers were deduced. DUV (266 nm) excitation RS clearly exhibits AlGaN Raman features far superior to visible RS. The simulation on the AlGaN longitudinal optical (LO) phonon modes determined the carrier concentrations in the AlGaN layers. The spatial correlation model (SCM) analyses on E2(high) modes examined the AlGaN and AlN layer properties. These high-x(Al) AlxGa1−xN films possess large energy gaps Eg in the range of 5.0–5.6 eV and are excited by a DUV 213 nm (5.8 eV) laser for room temperature (RT) photoluminescence (PL) and temperature-dependent photoluminescence (TDPL) studies. The obtained RTPL bands were deconvoluted with two Gaussian bands, indicating cross-bandgap emission, phonon replicas, and variation with x(Al). TDPL spectra at 20–300 K of Al0.87Ga0.13N exhibit the T-dependences of the band-edge luminescence near 5.6 eV and the phonon replicas. According to the Arrhenius fitting diagram of the TDPL spectra, the activation energy (19.6 meV) associated with the luminescence process is acquired. In addition, the combined PL and time-resolved photoluminescence (TRPL) spectroscopic system with DUV 213 nm pulse excitation was applied to measure a typical AlGaN multiple-quantum well (MQW). The RT TRPL decay spectra were obtained at four wavelengths and fitted by two exponentials with fast and slow decay times of ~0.2 ns and 1–2 ns, respectively. Comprehensive studies on these Al-rich AlGaN epi-films and a typical AlGaN MQW are achieved with unique and significant results, which are useful to researchers in the field. Full article
Show Figures

Figure 1

18 pages, 30776 KiB  
Article
Classical Scattering of High-Energy Electrons off Ultra-Intense Laser Beams Taking into Account Radiation Reaction
by Ignacio Pastor, Ramón F. Álvarez-Estrada, Luis Roso and Francisco Castejón
Photonics 2024, 11(2), 113; https://doi.org/10.3390/photonics11020113 - 26 Jan 2024
Cited by 2 | Viewed by 2139
Abstract
The head-on scattering of electrons with energies from a few MeV to 5 GeV off ultrashort and ultra-intense laser pulses at petawatt intensities is investigated. Radiation reaction (RR) effects are included through the correction terms given by the Landau–Lifshitz equation. Full paraxial fields [...] Read more.
The head-on scattering of electrons with energies from a few MeV to 5 GeV off ultrashort and ultra-intense laser pulses at petawatt intensities is investigated. Radiation reaction (RR) effects are included through the correction terms given by the Landau–Lifshitz equation. Full paraxial fields for the laser are used, including their longitudinal electric and magnetic components, and both the fundamental Gaussian TEM00 mode as well as the orbital angular momentum (OAM) mode with (l,p)=(1,0) are studied. We compare the expected behavior, as regards the influence of RR, at near-infrared (NIR) and at vacuum ultraviolet (VUV) or X-ray wavelengths. Full article
(This article belongs to the Section Lasers, Light Sources and Sensors)
Show Figures

Figure 1

12 pages, 3683 KiB  
Article
Outage Probability and BER Estimation for FSO Links with Truncated Normal Time Jitter and Longitudinal Gaussian Pulse Propagation in Dispersive Media
by Panagiotis J. Gripeos, Dimitrios Kriempardis, Konstantinos Aidinis and Hector E. Nistazakis
Electronics 2022, 11(19), 2981; https://doi.org/10.3390/electronics11192981 - 20 Sep 2022
Cited by 2 | Viewed by 1483
Abstract
FSO is one of the most widespread, low-cost, wireless, optical communicational technologies with sufficiently high throughput, transmission reliability, and high-level security. Nevertheless, many fading effects act on the optical pulses used, during their propagation, causing performance degradation. In this work, group velocity dispersion [...] Read more.
FSO is one of the most widespread, low-cost, wireless, optical communicational technologies with sufficiently high throughput, transmission reliability, and high-level security. Nevertheless, many fading effects act on the optical pulses used, during their propagation, causing performance degradation. In this work, group velocity dispersion and time jitter, modeled by the truncated normal distribution, are jointly investigated analytically and numerically. The availability of the studied model is expressed in terms of outage probability, while its reliability is given in terms of its average bit error rate, through the derived novel mathematical expressions. To the best of authors’ knowledge, this is the first time that the outage and the BER performance are estimated analytically, through specific approximations, taking into account the abovementioned physical effects. Furthermore, using the obtained mathematical forms, the corresponding numerical results are presented by assuming typical parameter values for realistic FSO links. Full article
(This article belongs to the Section Microwave and Wireless Communications)
Show Figures

Figure 1

12 pages, 1270 KiB  
Article
Time Jitter, Turbulence and Chromatic Dispersion in Underwater Optical Wireless Links
by George D. Roumelas, Hector E. Nistazakis, Argyris N. Stassinakis, George K. Varotsos, Andreas D. Tsigopoulos and George S. Tombras
Technologies 2020, 8(1), 3; https://doi.org/10.3390/technologies8010003 - 22 Dec 2019
Cited by 11 | Viewed by 5297
Abstract
The performance of an underwater optical wireless communication link is investigated by taking into account—for the first time and to the best of our knowledge—the simultaneous influence of the chromatic dispersion, the time jitter and the turbulence effects, by assuming chirped longitudinal Gaussian [...] Read more.
The performance of an underwater optical wireless communication link is investigated by taking into account—for the first time and to the best of our knowledge—the simultaneous influence of the chromatic dispersion, the time jitter and the turbulence effects, by assuming chirped longitudinal Gaussian pulse propagation as information carriers. The estimation procedure is presented and a novel probability density function is extracted in order to describe the irradiance fluctuations at the receiver side. Furthermore, the availability of the link is investigated by means of its probability of fade and various numerical results are presented using typical parameters for the underwater optical wireless communication systems. Full article
(This article belongs to the Section Information and Communication Technologies)
Show Figures

Figure 1

15 pages, 7501 KiB  
Article
Manipulation of Laser Distribution to Mitigate the Space-Charge Effect for Improving the Performance of a THz Coherent Undulator Radiation Source
by Siriwan Krainara, Shuya Chatani, Heishun Zen, Toshiteru Kii and Hideaki Ohgaki
Particles 2018, 1(1), 238-252; https://doi.org/10.3390/particles1010018 - 7 Nov 2018
Cited by 5 | Viewed by 3444
Abstract
A THz coherent undulator radiation (THz-CUR) source has been developed at the Institute of Advanced Energy, Kyoto University. A photocathode Radio-Frequency (RF) gun and a bunch compressor chicane are used for generating short-bunch electron beams. When the electron beam energy is low, the [...] Read more.
A THz coherent undulator radiation (THz-CUR) source has been developed at the Institute of Advanced Energy, Kyoto University. A photocathode Radio-Frequency (RF) gun and a bunch compressor chicane are used for generating short-bunch electron beams. When the electron beam energy is low, the space-charge effect strongly degrades the beam quality, such as the bunch length and the energy spread at the high bunch charge condition at around 160 pC, and results in the reduction of the highest frequency and the maximum radiated power of the THz-CUR. To mitigate the space charge effect, we have investigated the dependence of the electron beam quality on the laser distribution in transverse and longitudinal directions by using a numerical simulation code, General Particle Tracer GPT. The manipulation of the laser distribution has potential for improving the performance of the THz-CUR source. The electron bunch was effectively compressed with the chicane magnet when the laser transverse distribution was the truncated Gaussian profile, illuminating a cathode. Moreover, the compressed electron bunch was shortened by enlarging the laser pulse width. Consequently, an enhancement of the radiated power of the THz-CUR has been indicated. Full article
(This article belongs to the Special Issue Superradiances from Ultra Short Electron Bunch Beam)
Show Figures

Graphical abstract

Back to TopTop