Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,170)

Search Parameters:
Keywords = long-term policies

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 326 KiB  
Article
Remittances and FDI: Drivers of Employment in the Economic Community of West African States
by Grace Toyin Adigun, Abiola John Asaleye, Olayinka Omolara Adenikinju, Kehinde Damilola Ilesanmi, Sunday Festus Olasupo and Adedoyin Isola Lawal
J. Risk Financial Manag. 2025, 18(8), 436; https://doi.org/10.3390/jrfm18080436 - 6 Aug 2025
Abstract
Unemployment and weak economic productivity are significant global issues, particularly in West Africa. Recently, through diverse mechanisms, remittances and foreign direct investment (FDI) have been sources of foreign capital flow that have positively influenced many less developed economies, including ECOWAS (ECOWAS stands for [...] Read more.
Unemployment and weak economic productivity are significant global issues, particularly in West Africa. Recently, through diverse mechanisms, remittances and foreign direct investment (FDI) have been sources of foreign capital flow that have positively influenced many less developed economies, including ECOWAS (ECOWAS stands for Economic Community of West African States). Nevertheless, these financial flows have exhibited significant inconsistencies, primarily resulting from economic downturns in migrants’ destination countries, with remarkable implications for beneficiary economies. This study, therefore, examines the effect of remittances and FDI on employment in ECOWAS. Specifically, the study assesses the effects of the inflow of remittances and FDI on employment using panel dynamic ordinary least squares (PDOLS) and also investigates the shock effects of remittances and FDI by employing Panel Vector Error Correction (PVECM), which involves variance decomposition. The results show that foreign direct investment (FDI) positively and significantly affects employment. Other variables that show a significant relationship with employment are wage rate, education expenditure, and interest rate. The variance decomposition result revealed that external shocks on remittances and FDI have short- and long-term effects on employment. The above findings imply that foreign direct investment has a far-reaching positive impact on the economy-wide management of the West African sub-region and thus calls for relevant policy options. Full article
(This article belongs to the Special Issue Macroeconomic Dynamics and Economic Growth)
14 pages, 2093 KiB  
Article
Parameter Identification Method of Grid-Forming Static Var Generator Based on Trajectory Sensitivity and Proximal Policy Optimization Algorithm
by Yufei Teng, Peng Shi, Jiayu Bai, Xi Wang, Ziyuan Shao, Tian Cao, Xianglian Guan and Zongsheng Zheng
Electronics 2025, 14(15), 3119; https://doi.org/10.3390/electronics14153119 - 5 Aug 2025
Abstract
As the penetration rate of new energy continues to increase, the active voltage support capability of the power system is decreasing. The grid-forming static var generator (GFM-SVG) features the advantages of fast dynamic response, strong reactive power support, and high overload capacity, which [...] Read more.
As the penetration rate of new energy continues to increase, the active voltage support capability of the power system is decreasing. The grid-forming static var generator (GFM-SVG) features the advantages of fast dynamic response, strong reactive power support, and high overload capacity, which play an important role in maintaining voltage stability. However, the parameters of the GFM-SVG are often unknown due to trade secret reasons. Meanwhile, the parameters may be changed during the long-term operation of the system, which brings challenges to the system stability analysis and control. Aiming at this problem, a parameter identification method based on trajectory sensitivity analysis and the proximal policy optimization (PPO) algorithm is proposed in this paper. Firstly, through trajectory sensitivity analysis, the key influential parameters on the output characteristics of the GFM-SVG can be selected, which can reduce the dimensionality of the identification parameters and improve the identification efficiency. Then, a parameter identification framework based on the PPO algorithm is constructed for GFM-SVGs, which utilizes its adaptive learning capability to achieve accurate identification of the key parameters of the system. Finally, the effectiveness of the proposed parameter identification method is verified through simulation examples. The simulation results show that the identification error of the parameters in the GFM-SVG is small. The proposed method can characterize the output response of the GFM-SVG under different operating conditions. Full article
Show Figures

Figure 1

22 pages, 2029 KiB  
Article
A Deep Reinforcement Learning Framework for Cascade Reservoir Operations Under Runoff Uncertainty
by Jing Xu, Jiabin Qiao, Qianli Sun and Keyan Shen
Water 2025, 17(15), 2324; https://doi.org/10.3390/w17152324 - 5 Aug 2025
Abstract
Effective management of cascade reservoir systems is essential for balancing hydropower generation, flood control, and ecological sustainability, especially under increasingly uncertain runoff conditions driven by climate change. Traditional optimization methods, while widely used, often struggle with high dimensionality and fail to adequately address [...] Read more.
Effective management of cascade reservoir systems is essential for balancing hydropower generation, flood control, and ecological sustainability, especially under increasingly uncertain runoff conditions driven by climate change. Traditional optimization methods, while widely used, often struggle with high dimensionality and fail to adequately address inflow variability. This study introduces a novel deep reinforcement learning (DRL) framework that tightly couples probabilistic runoff forecasting with adaptive reservoir scheduling. We integrate a Long Short-Term Memory (LSTM) neural network to model runoff uncertainty and generate probabilistic inflow forecasts, which are then embedded into a Proximal Policy Optimization (PPO) algorithm via Monte Carlo sampling. This unified forecast–optimize architecture allows for dynamic policy adjustment in response to stochastic hydrological conditions. A case study on China’s Xiluodu–Xiangjiaba cascade system demonstrates that the proposed LSTM-PPO framework achieves superior performance compared to traditional baselines, notably improving power output, storage utilization, and spillage reduction. The results highlight the method’s robustness and scalability, suggesting strong potential for supporting resilient water–energy nexus management under complex environmental uncertainty. Full article
(This article belongs to the Section Hydrology)
Show Figures

Figure 1

18 pages, 810 KiB  
Article
The Impact of Technology, Economic Development, Environmental Quality, Safety, and Exchange Rate on the Tourism Performance in European Countries
by Zeki Keşanlı, Feriha Dikmen Deliceırmak and Mehdi Seraj
Sustainability 2025, 17(15), 7074; https://doi.org/10.3390/su17157074 - 4 Aug 2025
Abstract
The study investigates the contribution of technology (TECH), quantified by Internet penetration, in influencing tourism performance (TP) among the top ten touristic nations in Europe: France, Spain, Italy, Turkey, the United Kingdom, Germany, Greece, Austria, Portugal, and the Netherlands. Using panel data from [...] Read more.
The study investigates the contribution of technology (TECH), quantified by Internet penetration, in influencing tourism performance (TP) among the top ten touristic nations in Europe: France, Spain, Italy, Turkey, the United Kingdom, Germany, Greece, Austria, Portugal, and the Netherlands. Using panel data from 2000–2022, the study includes additional structural controls like environment quality, gross domestic production (GDP) per capita, exchange rate (ER), and safety index (SI). The Method of Moments Quantile Regression (MMQR) is employed to capture heterogeneous effects at different levels of TP, and Driscoll–Kraay standard error (DKSE) correction is employed to make the analysis robust against autocorrelation as well as cross-sectional dependence. Spectral–Granger causality tests are also conducted to check short- and long-run dynamics in the relationships. Empirical results are that TECH and SI are important in TP at all quantiles, but with stronger effects for lower-performing countries. Environmental quality (EQ) and GDP per capita (GDPPC) exert increasing impacts at upper quantiles, suggesting their importance in sustaining high-level tourism economies. ER effects are limited and primarily short-term. The findings highlight the need for integrated digital, environmental, and economic policies to achieve sustainable tourism development. The paper contributes to tourism research by providing a comprehensive, frequency-sensitive, and distributional analysis of macroeconomic determinants of tourism in highly developed European tourist destinations. Full article
Show Figures

Figure 1

20 pages, 1801 KiB  
Article
Territorially Stratified Modeling for Sustainable Management of Free-Roaming Cat Populations in Spain: A National Approach to Urban and Rural Environmental Planning
by Octavio P. Luzardo, Ruth Manzanares-Fernández, José Ramón Becerra-Carollo and María del Mar Travieso-Aja
Animals 2025, 15(15), 2278; https://doi.org/10.3390/ani15152278 - 4 Aug 2025
Abstract
This study presents the scientific and methodological foundation of Spain’s first national framework for the ethical management of community cat populations: the Action Plan for the Management of Community Cat Colonies (PACF), launched in 2025 under the mandate of Law 7/2023. This pioneering [...] Read more.
This study presents the scientific and methodological foundation of Spain’s first national framework for the ethical management of community cat populations: the Action Plan for the Management of Community Cat Colonies (PACF), launched in 2025 under the mandate of Law 7/2023. This pioneering legislation introduces a standardized, nationwide obligation for trap–neuter–return (TNR)-based management of free-roaming cats, defined as animals living freely, territorially attached, and with limited socialization toward humans. The PACF aims to support municipalities in implementing this mandate through evidence-based strategies that integrate animal welfare, biodiversity protection, and public health objectives. Using standardized data submitted by 1128 municipalities (13.9% of Spain’s total), we estimated a baseline population of 1.81 million community cats distributed across 125,000 colonies. These data were stratified by municipal population size and applied to national census figures to generate a model-ready demographic structure. We then implemented a stochastic simulation using Vortex software to project long-term population dynamics over a 25-year horizon. The model integrated eight demographic–environmental scenarios defined by a combination of urban–rural classification and ecological reproductive potential based on photoperiod and winter temperature. Parameters included reproductive output, mortality, sterilization coverage, abandonment and adoption rates, stochastic catastrophic events, and territorial carrying capacity. Under current sterilization rates (~20%), our projections indicate that Spain’s community cat population could surpass 5 million individuals by 2050, saturating ecological and social thresholds within a decade. In contrast, a differentiated sterilization strategy aligned with territorial reproductive intensity (50% in most areas, 60–70% in high-pressure zones) achieves population stabilization by 2030 at approximately 1.5 million cats, followed by a gradual long-term decline. This scenario prioritizes feasibility while substantially reducing reproductive output, particularly in rural and high-intensity contexts. The PACF combines stratified demographic modeling with spatial sensitivity, offering a flexible framework adaptable to local conditions. It incorporates One Health principles and introduces tools for adaptive management, including digital monitoring platforms and standardized welfare protocols. While ecological impacts were not directly assessed, the proposed demographic stabilization is designed to mitigate population-driven risks to biodiversity and public health without relying on lethal control. By integrating legal mandates, stratified modeling, and realistic intervention goals, this study outlines a replicable and scalable framework for coordinated action across administrative levels. It exemplifies how national policy can be operationalized through data-driven, territorially sensitive planning tools. The findings support the strategic deployment of TNR-based programs across diverse municipal contexts, providing a model for other countries seeking to align animal welfare policy with ecological planning under a multi-level governance perspective. Full article
(This article belongs to the Section Animal System and Management)
Show Figures

Figure 1

31 pages, 2983 KiB  
Review
Sustainable Management of Willow Forest Landscapes: A Review of Ecosystem Functions and Conservation Strategies
by Florin Achim, Lucian Dinca, Danut Chira, Razvan Raducu, Alexandru Chirca and Gabriel Murariu
Land 2025, 14(8), 1593; https://doi.org/10.3390/land14081593 - 4 Aug 2025
Abstract
Willow stands (Salix spp.) are an essential part of riparian ecosystems, as they sustain biodiversity and provide bioenergy solutions. The present review synthesizes the global scientific literature about the management of willow stands. In order to achieve this goal, we used a [...] Read more.
Willow stands (Salix spp.) are an essential part of riparian ecosystems, as they sustain biodiversity and provide bioenergy solutions. The present review synthesizes the global scientific literature about the management of willow stands. In order to achieve this goal, we used a dual approach combining bibliometric analysis with traditional literature review. As such, we consulted 416 publications published between 1978 and 2024. This allowed us to identify key species, ecosystem services, conservation strategies, and management issues. The results we have obtained show a diversity of approaches, with an increase in short-rotation coppice (SRC) systems and the multiple roles covered by willow stands (carbon sequestration, biomass production, riparian restoration, and habitat provision). The key trends we have identified show a shift toward topics such as climate resilience, ecological restoration, and precision forestry. This trend has become especially pronounced over the past decade (2014–2024), as reflected in the increasing use of these keywords in the literature. However, as willow systems expand in scale and function—from biomass production to ecological restoration—they also raise complex challenges, including invasive tendencies in non-native regions and uncertainties surrounding biodiversity impacts and soil carbon dynamics over the long term. The present review is a guide for forest policies and, more specifically, for future research, linking the need to integrate and use adaptive strategies in order to maintain the willow stands. Full article
Show Figures

Figure 1

28 pages, 2743 KiB  
Article
Unlocking Synergies: How Digital Infrastructure Reshapes the Pollution-Carbon Reduction Nexus at the Chinese Prefecture-Level Cities
by Zhe Ji, Yuqi Chang and Fengxiu Zhou
Sustainability 2025, 17(15), 7066; https://doi.org/10.3390/su17157066 - 4 Aug 2025
Abstract
In the context of global climate governance and the green transition, digital infrastructure serves as a critical enabler of resource allocation in the digital economy, offering strategic value in tackling synergistic pollution and carbon reduction challenges. Using panel data from 280 prefecture-level cities, [...] Read more.
In the context of global climate governance and the green transition, digital infrastructure serves as a critical enabler of resource allocation in the digital economy, offering strategic value in tackling synergistic pollution and carbon reduction challenges. Using panel data from 280 prefecture-level cities, this study employs a multiperiod difference-in-differences (DID) approach, leveraging smart city pilot policies as a quasinatural experiment, to assess how digital infrastructure affects urban synergistic pollution-carbon mitigation (SPCM). The empirical results show that digital infrastructure increases the urban SPCM index by 1.5%, indicating statistically significant effects. Compared with energy and income effects, digital infrastructure can influence this synergistic effect through indirect channels such as the energy effect, economic agglomeration effect, and income effect, with the economic agglomeration effect accounting for a larger share of the total effect. Additionally, fixed-asset investment has a nonlinear moderating effect on this relationship, with diminishing marginal returns on emission reduction when investment exceeds a threshold. Heterogeneity tests reveal greater impacts in eastern, nonresource-based, and environmentally regulated cities. This study expands the theory of collaborative environmental governance from the perspective of new infrastructure, providing a theoretical foundation for establishing a long-term digital technology-driven mechanism for SPCM. Full article
Show Figures

Figure 1

26 pages, 20835 KiB  
Article
Reverse Mortgages and Pension Sustainability: An Agent-Based and Actuarial Approach
by Francesco Rania
Risks 2025, 13(8), 147; https://doi.org/10.3390/risks13080147 - 4 Aug 2025
Abstract
Population aging poses significant challenges to the sustainability of pension systems. This study presents an integrated methodological approach that uniquely combines actuarial life-cycle modeling with agent-based simulation to assess the potential of Reverse Mortgage Loans (RMLs) as a dual lever for enhancing retiree [...] Read more.
Population aging poses significant challenges to the sustainability of pension systems. This study presents an integrated methodological approach that uniquely combines actuarial life-cycle modeling with agent-based simulation to assess the potential of Reverse Mortgage Loans (RMLs) as a dual lever for enhancing retiree welfare and supporting pension system resilience under demographic and financial uncertainty. We explore Reverse Mortgage Loans (RMLs) as a potential financial instrument to support retirees while alleviating pressure on public pensions. Unlike prior research that treats individual decisions or policy outcomes in isolation, our hybrid model explicitly captures feedback loops between household-level behavior and system-wide financial stability. To test our hypothesis that RMLs can improve individual consumption outcomes and bolster systemic solvency, we develop a hybrid model combining actuarial techniques and agent-based simulations, incorporating stochastic housing prices, longevity risk, regulatory capital requirements, and demographic shifts. This dual-framework enables a structured investigation of how micro-level financial decisions propagate through market dynamics, influencing solvency, pricing, and adoption trends. Our central hypothesis is that reverse mortgages, when actuarially calibrated and macroprudentially regulated, enhance individual financial well-being while preserving long-run solvency at the system level. Simulation results indicate that RMLs can improve consumption smoothing, raise expected utility for retirees, and contribute to long-term fiscal sustainability. Moreover, we introduce a dynamic regulatory mechanism that adjusts capital buffers based on evolving market and demographic conditions, enhancing system resilience. Our simulation design supports multi-scenario testing of financial robustness and policy outcomes, providing a transparent tool for stress-testing RML adoption at scale. These findings suggest that, when well-regulated, RMLs can serve as a viable supplement to traditional retirement financing. Rather than offering prescriptive guidance, this framework provides insights to policymakers, financial institutions, and regulators seeking to integrate RMLs into broader pension strategies. Full article
Show Figures

Figure 1

25 pages, 1165 KiB  
Article
China’s Low-Carbon City Pilot Policy, Eco-Efficiency, and Energy Consumption: Study Based on Period-by-Period PSM-DID Model
by Xiao Na Li and Hsing Hung Chen
Energies 2025, 18(15), 4126; https://doi.org/10.3390/en18154126 - 4 Aug 2025
Viewed by 33
Abstract
The sustainable development of Chinese cities is of long-term significance. Multiple environmental regulatory instruments aim to promote the parallel advancement of environmental conservation and economic growth. This study examines three batches of low-carbon city pilot (LCCP) programs, employing eco-efficiency as the outcome variable. [...] Read more.
The sustainable development of Chinese cities is of long-term significance. Multiple environmental regulatory instruments aim to promote the parallel advancement of environmental conservation and economic growth. This study examines three batches of low-carbon city pilot (LCCP) programs, employing eco-efficiency as the outcome variable. Using conventional difference-in-differences (DID) models, time-varying DID models, and period-by-period propensity score matching DID (PSM-DID) models with city and time fixed effects, we investigate the comprehensive impact of pilot policies on both economic and environmental performance. Eco-efficiency, measured through the Data Envelopment Analysis (DEA) model, exhibits a strong correlation with energy consumption patterns, as carbon emissions and air pollutants predominantly originate from non-clean energy utilization. The analysis reveals that LCCP policies significantly enhance eco-efficiency. These findings demonstrate robustness across placebo tests, endogeneity treatments, and alternative outcome variable specifications. The first and third LCCP batches significantly improve eco-efficiency, whereas the second batch demonstrates no statistically significant effect. Significant impacts emerge in regions where cities hold pilot status while provinces do not; conversely, regions where both cities and provinces participate in pilot programs show no significant effects. Finally, from an energy consumption perspective, policy recommendations are proposed to further enhance eco-efficiency through regulatory instruments. Full article
(This article belongs to the Special Issue Sustainable Energy Futures: Economic Policies and Market Trends)
Show Figures

Figure 1

36 pages, 2033 KiB  
Article
Beyond GDP: COVID-19’s Effects on Macroeconomic Efficiency and Productivity Dynamics in OECD Countries
by Ümit Sağlam
Econometrics 2025, 13(3), 29; https://doi.org/10.3390/econometrics13030029 - 4 Aug 2025
Viewed by 62
Abstract
The COVID-19 pandemic triggered unprecedented economic disruptions, raising critical questions about the resilience and adaptability of macroeconomic productivity across countries. This study examines the impact of COVID-19 on macroeconomic efficiency and productivity dynamics in 37 OECD countries using quarterly data from 2018Q1 to [...] Read more.
The COVID-19 pandemic triggered unprecedented economic disruptions, raising critical questions about the resilience and adaptability of macroeconomic productivity across countries. This study examines the impact of COVID-19 on macroeconomic efficiency and productivity dynamics in 37 OECD countries using quarterly data from 2018Q1 to 2024Q4. By employing a Slack-Based Measure Data Envelopment Analysis (SBM-DEA) and the Malmquist Productivity Index (MPI), we decompose total factor productivity (TFP) into efficiency change (EC) and technological change (TC) across three periods: pre-pandemic, during-pandemic, and post-pandemic. Our framework incorporates both desirable (GDP) and undesirable outputs (inflation, unemployment, housing price inflation, and interest rate distortions), offering a multidimensional view of macroeconomic efficiency. Results show broad but uneven productivity gains, with technological progress proving more resilient than efficiency during the pandemic. Post-COVID recovery trajectories diverged, reflecting differences in structural adaptability and innovation capacity. Regression analysis reveals that stringent lockdowns in 2020 were associated with lower productivity in 2023–2024, while more adaptive policies in 2021 supported long-term technological gains. These findings highlight the importance of aligning crisis response with forward-looking economic strategies and demonstrate the value of DEA-based methods for evaluating macroeconomic performance beyond GDP. Full article
(This article belongs to the Special Issue Advancements in Macroeconometric Modeling and Time Series Analysis)
Show Figures

Figure 1

15 pages, 980 KiB  
Article
Wilson’s Disease in Oman: A National Cohort Study of Clinical Spectrum, Diagnostic Delay, and Long-Term Outcomes
by Said A. Al-Busafi, Juland N. Al Julandani, Zakariya Alismaeili and Juhaina J. Al Raisi
Clin. Pract. 2025, 15(8), 144; https://doi.org/10.3390/clinpract15080144 - 3 Aug 2025
Viewed by 135
Abstract
Background/Objectives: Wilson’s disease (WD) is a rare autosomal recessive disorder of copper metabolism that results in hepatic, neurological, and psychiatric manifestations. Despite being described globally, data from the Middle East remains limited. This study presents the first comprehensive national cohort analysis of [...] Read more.
Background/Objectives: Wilson’s disease (WD) is a rare autosomal recessive disorder of copper metabolism that results in hepatic, neurological, and psychiatric manifestations. Despite being described globally, data from the Middle East remains limited. This study presents the first comprehensive national cohort analysis of WD in Oman, examining clinical features, diagnostic challenges, treatment patterns, and long-term outcomes. Methods: A retrospective cohort study was conducted on 36 Omani patients diagnosed with WD between 2013 and 2020 at Sultan Qaboos University Hospital using AASLD diagnostic criteria. Clinical presentation, biochemical parameters, treatment regimens, and progression-free survival were analyzed. Results: The median age at diagnosis was 14.5 years, with a slight female predominance (55.6%). Clinical presentation varied: 25% had hepatic symptoms, 22.2% had mixed hepatic-neurological features, and 16.7% presented with neurological symptoms alone. Asymptomatic cases identified via family screening accounted for 33.3%. Diagnostic delays were most pronounced among patients presenting with neurological symptoms. A positive family history was reported in 88.9% of cases, suggesting strong familial clustering despite a low rate of consanguinity (5.6%). Regional distribution was concentrated in Ash Sharqiyah North and Muscat. Chelation therapy with trientine or penicillamine, often combined with zinc, was the mainstay of treatment. Treatment adherence was significantly associated with improved progression-free survival (p = 0.012). Conclusions: WD in Oman is marked by heterogeneous presentations, frequent diagnostic delays, and strong familial clustering. Early detection through cascade screening and sustained treatment adherence are critical for favorable outcomes. These findings support the need for national screening policies and structured long-term care models for WD in the region. Full article
Show Figures

Figure 1

30 pages, 1511 KiB  
Review
Environmental and Health Impacts of Pesticides and Nanotechnology as an Alternative in Agriculture
by Jesús Martín Muñoz-Bautista, Ariadna Thalía Bernal-Mercado, Oliviert Martínez-Cruz, Armando Burgos-Hernández, Alonso Alexis López-Zavala, Saul Ruiz-Cruz, José de Jesús Ornelas-Paz, Jesús Borboa-Flores, José Rogelio Ramos-Enríquez and Carmen Lizette Del-Toro-Sánchez
Agronomy 2025, 15(8), 1878; https://doi.org/10.3390/agronomy15081878 - 3 Aug 2025
Viewed by 213
Abstract
The extensive use of conventional pesticides has been a fundamental strategy in modern agriculture for controlling pests and increasing crop productivity; however, their improper application poses significant risks to human health and environmental sustainability. This review compiles scientific evidence linking pesticide exposure to [...] Read more.
The extensive use of conventional pesticides has been a fundamental strategy in modern agriculture for controlling pests and increasing crop productivity; however, their improper application poses significant risks to human health and environmental sustainability. This review compiles scientific evidence linking pesticide exposure to oxidative stress and genotoxic damage, particularly affecting rural populations and commonly consumed foods, even at levels exceeding the maximum permissible limits in fruits, vegetables, and animal products. Additionally, excessive pesticide use has been shown to alter soil microbiota, negatively compromising long-term agricultural fertility. In response to these challenges, recent advances in nanotechnology offer promising alternatives. This review highlights the development of nanopesticides designed for controlled release, improved stability, and targeted delivery of active ingredients, thereby reducing environmental contamination and increasing efficacy. Moreover, emerging nanobiosensor technologies, such as e-nose and e-tongue systems, have shown potential for real-time monitoring of pesticide residues and soil health. Although pesticides are still necessary, it is crucial to implement stricter laws and promote sustainable solutions that ensure safe and responsible agricultural practices. The need for evidence-based public policy is emphasized to regulate pesticide use and protect both human health and agricultural resources. Full article
Show Figures

Figure 1

24 pages, 997 KiB  
Article
A Spatiotemporal Deep Learning Framework for Joint Load and Renewable Energy Forecasting in Stability-Constrained Power Systems
by Min Cheng, Jiawei Yu, Mingkang Wu, Yihua Zhu, Yayao Zhang and Yuanfu Zhu
Information 2025, 16(8), 662; https://doi.org/10.3390/info16080662 - 3 Aug 2025
Viewed by 187
Abstract
With the increasing uncertainty introduced by the large-scale integration of renewable energy sources, traditional power dispatching methods face significant challenges, including severe frequency fluctuations, substantial forecasting deviations, and the difficulty of balancing economic efficiency with system stability. To address these issues, a deep [...] Read more.
With the increasing uncertainty introduced by the large-scale integration of renewable energy sources, traditional power dispatching methods face significant challenges, including severe frequency fluctuations, substantial forecasting deviations, and the difficulty of balancing economic efficiency with system stability. To address these issues, a deep learning-based dispatching framework is proposed, which integrates spatiotemporal feature extraction with a stability-aware mechanism. A joint forecasting model is constructed using Convolutional Neural Network (CNN) and Long Short-Term Memory (LSTM) to handle multi-source inputs, while a reinforcement learning-based stability-aware scheduler is developed to manage dynamic system responses. In addition, an uncertainty modeling mechanism combining Dropout and Bayesian networks is incorporated to enhance dispatch robustness. Experiments conducted on real-world power grid and renewable generation datasets demonstrate that the proposed forecasting module achieves approximately a 2.1% improvement in accuracy compared with Autoformer and reduces Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) by 18.1% and 14.1%, respectively, compared with traditional LSTM models. The achieved Mean Absolute Percentage Error (MAPE) of 5.82% outperforms all baseline models. In terms of scheduling performance, the proposed method reduces the total operating cost by 5.8% relative to Autoformer, decreases the frequency deviation from 0.158 Hz to 0.129 Hz, and increases the Critical Clearing Time (CCT) to 2.74 s, significantly enhancing dynamic system stability. Ablation studies reveal that removing the uncertainty modeling module increases the frequency deviation to 0.153 Hz and raises operational costs by approximately 6.9%, confirming the critical role of this module in maintaining robustness. Furthermore, under diverse load profiles and meteorological disturbances, the proposed method maintains stable forecasting accuracy and scheduling policy outputs, demonstrating strong generalization capabilities. Overall, the proposed approach achieves a well-balanced performance in terms of forecasting precision, system stability, and economic efficiency in power grids with high renewable energy penetration, indicating substantial potential for practical deployment and further research. Full article
(This article belongs to the Special Issue Real-World Applications of Machine Learning Techniques)
Show Figures

Figure 1

25 pages, 5531 KiB  
Article
Transitions of Carbon Dioxide Emissions in China: K-Means Clustering and Discrete Endogenous Markov Chain Approach
by Shangyu Chen, Xiaoyu Kang and Sung Y. Park
Climate 2025, 13(8), 165; https://doi.org/10.3390/cli13080165 - 3 Aug 2025
Viewed by 110
Abstract
This study employs k-means clustering to group 30 Chinese provinces into four CO2 emission patterns, characterized by increasing emission levels and distinct energy consumption structures, and captures their dynamic evolution from 2000 to 2021 using a discrete endogenous Markov chain approach. While [...] Read more.
This study employs k-means clustering to group 30 Chinese provinces into four CO2 emission patterns, characterized by increasing emission levels and distinct energy consumption structures, and captures their dynamic evolution from 2000 to 2021 using a discrete endogenous Markov chain approach. While Shanghai, Jiangxi, and Hebei retained their original classifications, provinces such as Beijing, Fujian, Tianjin, and Anhui transitioned from higher to lower emission patterns, indicating notable reversals in emission trajectories. To identify the determinants of these transitions, GDP growth rate, population growth rate, and energy investment are incorporated as time varying covariates. The empirical findings demonstrate that GDP growth substantially increases interpattern mobility, thereby weakening state persistence, whereas population growth and energy investment tend to reinforce emission pattern stability. These results imply that policy responses must be tailored to regional dynamics. In rapidly growing regions, fiscal incentives and technological upgrading may facilitate downward transitions in emission states, whereas in provinces where emissions remain persistent due to demographic or investment related rigidity, structural adjustments and long term mitigation frameworks are essential. The study underscores the importance of integrating economic, demographic, and investment characteristics into carbon reduction strategies through a region specific and data informed approach. Full article
Show Figures

Figure 1

20 pages, 641 KiB  
Article
The Impact of China’s Circular Economy Demonstration Policy on Urban Green Innovation Efficiency
by Yanqiu Zhu, Ming Zhang, Hongan Chen, Jun Ma and Fei Pan
Sustainability 2025, 17(15), 7037; https://doi.org/10.3390/su17157037 - 3 Aug 2025
Viewed by 241
Abstract
Green innovation is a critical driver of sustainable development, yet it often faces efficiency challenges in rapidly industrializing economies. This study investigates the effect of China’s Circular Economy Demonstration Policy (CEDP) on urban green innovation efficiency (GIE) using city-level panel data from 2010 [...] Read more.
Green innovation is a critical driver of sustainable development, yet it often faces efficiency challenges in rapidly industrializing economies. This study investigates the effect of China’s Circular Economy Demonstration Policy (CEDP) on urban green innovation efficiency (GIE) using city-level panel data from 2010 to 2021. Employing a difference-in-differences (DID) approach, we find that CEDP significantly enhances GIE, with the policy effect becoming statistically significant after a three-year lag and accumulating over time. Robustness tests, including placebo analyses, alternative dependent variables, and propensity score matching, confirm the validity of the results. Mechanism analysis reveals that the policy improves green innovation primarily by reducing capital distortion, promoting market integration, and enhancing resource allocation efficiency. Further heterogeneity analyses show that the positive effects are stronger in central cities, capital cities, and eastern regions, reflecting the role of local economic and institutional conditions. The study concludes with policy implications emphasizing regionally tailored implementation, capacity building, and long-term commitment to maximize green innovation outcomes. Full article
Show Figures

Figure 1

Back to TopTop