Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (156)

Search Parameters:
Keywords = long-term heat exposure

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 1726 KiB  
Article
The Effects of Artificial UV-B Provision on Positional Sleeping Behaviour and Vitamin D3 Metabolites of Captive Aye-Ayes (Daubentonia madagascariensis)
by Danielle Walker, Paige Bwye and Sarah Richdon
J. Zool. Bot. Gard. 2025, 6(3), 39; https://doi.org/10.3390/jzbg6030039 - 6 Aug 2025
Abstract
Zoological environments aim to promote natural behaviours and optimal welfare conditions. Over the past decade, research on the use of artificial ultraviolet-B (UV-B) exposure has improved vitamin D3 levels and reduced incidences of metabolic bone disease in diurnal primates; however, this has [...] Read more.
Zoological environments aim to promote natural behaviours and optimal welfare conditions. Over the past decade, research on the use of artificial ultraviolet-B (UV-B) exposure has improved vitamin D3 levels and reduced incidences of metabolic bone disease in diurnal primates; however, this has not been investigated in nocturnals. Aye-ayes (Daubentonia madagascariensis), nocturnal lemurs often housed indoors in zoos with little to no exposure to natural sunlight, have been reported to have low vitamin D3 levels. This study aims to investigate the impacts of artificial UV-B as a supplemental healthcare strategy for aye-ayes, examining its influences on vitamin D3 levels and positional sleeping behaviour. The 25-hydroxy-vitamin D3 (25OHD3) blood levels were tested before and after exposure to different levels of artificial UV-B and heat sources. Statistical analysis showed no correlation between UV-B and 25OHD3 at group parameter levels. However, one individual showed a positive correlation. Sleeping position duration analysis showed a potential basking behaviour with the use of increased ear exposure and other thermoregulatory responses. Despite representing 8.06% of the European captive aye-aye population, these findings highlight the need for further research on vitamin D3 parameters and responses to UV-B to optimise captive conditions and support the species’ long-term health. Full article
Show Figures

Figure 1

19 pages, 2244 KiB  
Review
Artificial Turf Versus Natural Grass: A Case Study of Environmental Effects, Health Risks, Safety, and Cost
by Iman S. Cumberbatch, Leonard Richardson, Emma Grant-Bier, Mustafa Kayali, Mutanu Mbithi, Roberto F. Riviere, Eline Xia, Hailey Spinks, Gabrielle Mills and Amy R. Tuininga
Sustainability 2025, 17(14), 6292; https://doi.org/10.3390/su17146292 - 9 Jul 2025
Viewed by 1514
Abstract
While natural grass has been a reliable recreational surface for decades, artificial turf has gained popularity due to its durability, supposed ability to save water, and lower associated costs for municipalities and schools. Growing environmental and health concerns associated with artificial turf have [...] Read more.
While natural grass has been a reliable recreational surface for decades, artificial turf has gained popularity due to its durability, supposed ability to save water, and lower associated costs for municipalities and schools. Growing environmental and health concerns associated with artificial turf have prompted a necessary comparison of the environmental impact, chemical exposure, injury rates, surface heat, and costs of turf with natural grass. The township of Verona, New Jersey, engaged the PSEG Institute for Sustainability Studies’ Green Teams Program interns to perform an environmental impact assessment, literature review, and cost–benefit analysis to determine if the township should restore an aging artificial turf field in the town to natural grass. The environmental impact assessment revealed concerns regarding artificial turf’s high emission profile, microplastic pollution, lack of permeability, and the presence of per- and polyfluoroalkyl substances (PFAS). Natural grass’ high water usage was also identified as a drawback. The literature review revealed safety concerns of artificial turf regarding temperature disparities and no conclusive results regarding differences in overall injury rates. The artificial turf field in this case study was 182% hotter than the natural grass field when measured by an infrared thermometer during mid-day readings in June. The cost–benefit analysis revealed that natural grass offers a lower long-term expense over a 25-year period. Artificial turf has many benefits; however, natural grass was the recommended option when considering environmental sustainability, reduced chemical exposure, lower surface temperatures, and overall cost. The conclusions may further inform policy decisions and support the adoption of environmentally responsible and health-centered practices for sports fields across municipalities in New Jersey and beyond. Full article
Show Figures

Figure 1

16 pages, 1889 KiB  
Article
Experimental Evaluation of the Sustainable Performance of Filtering Geotextiles in Green Roof Systems: Tensile Properties and Surface Morphology After Long-Term Use
by Olga Szlachetka, Joanna Witkowska-Dobrev, Anna Baryła and Marek Dohojda
Sustainability 2025, 17(14), 6242; https://doi.org/10.3390/su17146242 - 8 Jul 2025
Viewed by 328
Abstract
Green roofs are increasingly being adopted as sustainable, nature-based solutions for managing urban stormwater, mitigating the urban heat island effect, and saving energy in buildings. However, the long-term performance of their individual components—particularly filter geotextiles—remains understudied, despite their critical role in maintaining system [...] Read more.
Green roofs are increasingly being adopted as sustainable, nature-based solutions for managing urban stormwater, mitigating the urban heat island effect, and saving energy in buildings. However, the long-term performance of their individual components—particularly filter geotextiles—remains understudied, despite their critical role in maintaining system functionality. The filter layer, responsible for preventing clogging of the drainage layer with fine substrate particles, directly affects the hydrological performance and service life of green roofs. While most existing studies focus on the initial material properties, there is a clear gap in understanding how geotextile filters behave after prolonged exposure to real-world environmental conditions. This study addresses this gap by assessing the mechanical and structural integrity of geotextile filters after five years of use in both extensive and intensive green roof systems. By analyzing changes in surface morphology, microstructure, and porosity through tensile strength tests, digital imaging, and scanning electron microscopy, this research offers new insights into the long-term performance of geotextiles. Results showed significant retention of tensile strength, particularly in the machine direction (MD), and a 56% reduction in porosity, which may affect filtration efficiency. Although material degradation occurs, some geotextiles retain their structural integrity over time, highlighting their potential for long-term use in green infrastructure applications. This research emphasizes the importance of material selection, long-term monitoring, and standardized evaluation techniques to ensure the ecological and functional resilience of green roofs. Furthermore, the findings contribute to advancing knowledge on the durability and life-cycle performance of filter materials, promoting sustainability and longevity in urban green infrastructure. Full article
Show Figures

Figure 1

13 pages, 1949 KiB  
Article
Assessment of Growth and Physiological Responses of Lemna minor Exposed to 4-Aminodiphenylamine, a Tire Wear Compound
by Shila Kandel, Naja’Ree Campbell, Abubakar Abdulkadir, Kristin Moore, Raphyel Rosby and Ekhtear Hossain
Pollutants 2025, 5(3), 20; https://doi.org/10.3390/pollutants5030020 - 7 Jul 2025
Viewed by 417
Abstract
4-Aminodiphenylamine (4-ADPA) is a common additive in rubber tires, known for its antioxidant properties. It plays a crucial role in enhancing tire durability by preventing issues such as drying, cracking, and degradation from prolonged exposure to environmental factors like heat, oxygen, and ozone. [...] Read more.
4-Aminodiphenylamine (4-ADPA) is a common additive in rubber tires, known for its antioxidant properties. It plays a crucial role in enhancing tire durability by preventing issues such as drying, cracking, and degradation from prolonged exposure to environmental factors like heat, oxygen, and ozone. However, despite its advantages in extending tire lifespan, the use of 4-ADPA raises significant environmental concerns. As tires wear down, microscopic tire wear particles (TWPs) containing 4-ADPA are released into the environment with substantial leaching, contaminating the waterways. The 4-ADPA leachates pollute and pose a threat to aquatic ecosystems, affecting various forms of marine life. The current study investigates the ecotoxicological effects of 4-ADPA on the aquatic plant Lemna minor (L. minor), focusing on its impact on relative growth and physiological biomarkers. Several parameters were assessed to evaluate ecotoxicity, including frond morphology, fresh biomass, total frond number, chlorophyll content, and starch accumulation. L. minor was grown for 7 and 14 days under controlled laboratory conditions using Hoagland media with varying concentrations of 4-ADPA (10–100 μg/L), while a control group was maintained in media without 4-ADPA. The results indicate that exposure to 4-ADPA led to a dose-dependent reduction in fresh biomass, total frond number, and chlorophyll levels. Lugol’s staining revealed increased starch accumulation in the fronds after exposure to 4-ADPA. The biological effects observed in L. minor following exposure to 4-ADPA, even at environmentally relevant concentrations, demonstrate a significant ecotoxicological impact on aquatic ecosystems. Further research involving additional species and investigating the mechanisms behind 4-ADPA toxicity is recommended to better understand its long-term consequences. Full article
Show Figures

Graphical abstract

12 pages, 584 KiB  
Article
Exposure to Toxic Compounds Using Alternative Smoking Products: Analysis of Empirical Data
by Sandra Sakalauskaite, Linas Zdanavicius, Jekaterina Šteinmiller and Natalja Istomina
Int. J. Environ. Res. Public Health 2025, 22(7), 1010; https://doi.org/10.3390/ijerph22071010 - 26 Jun 2025
Viewed by 666
Abstract
Tobacco control policies have aimed to reduce the global prevalence of smoking. Unfortunately, the recent survey data shows that about 24% of Europeans still smoke. Although combustible cigarettes remain the most used tobacco product, the tendency made evident in the prevalence of smoking-alternative [...] Read more.
Tobacco control policies have aimed to reduce the global prevalence of smoking. Unfortunately, the recent survey data shows that about 24% of Europeans still smoke. Although combustible cigarettes remain the most used tobacco product, the tendency made evident in the prevalence of smoking-alternative nicotine-containing products increases. Studies that can objectively assess the long-term health effects of the latter products are lacking, so assessing toxic substances associated with smoking-alternative products and comparing them to substances from combustible cigarettes could inform future public health efforts. The manufacturers of these alternative products claim that the use of alternatives to combustible cigarettes reduces exposure to toxic compounds, but the reality is unclear. This study compares the concentrations of toxic substances in generated aerosols and performs calculations based on mainstream cigarette smoke and aerosols from smoking-alternative products. It summarizes the amounts of harmful and potentially harmful constituents per single puff. Alternative smoking products are undoubtedly harmful to non-smokers. Still, based on the analysis of the latest independent studies’ empirical data, the concentrations of inhaled HPHCs using heated tobacco products or e-cigarettes are reduced up to 91–98%, respectively; therefore, for those who cannot quit, these could provide a less harmful alternative. However, more well-designed studies of alternative product emissions are needed, including an analysis of the compounds that are not present in conventional tobacco products (e.g., thermal degradation products of propylene glycol, glycerol, or flavorings) to evaluate possible future health effects objectively. Full article
(This article belongs to the Special Issue Human Exposure to Genotoxic Environmental Contaminants)
Show Figures

Figure 1

16 pages, 1375 KiB  
Review
The Influence of Temperature on the Microstructure, Atterberg Limits, and Swelling Pressure of Bentonite Clay: A Review
by Lingling Li, Haiquan Sun, Xiaoyu Fang and Liangliang Lu
Geosciences 2025, 15(6), 233; https://doi.org/10.3390/geosciences15060233 - 18 Jun 2025
Viewed by 355
Abstract
The geological containment of high-level radioactive waste has become widely accepted among international organizations, and it has been adopted by many countries as part of their national nuclear waste disposal plan. The multi-barrier system, including the compacted bentonite blocks or pellets serving as [...] Read more.
The geological containment of high-level radioactive waste has become widely accepted among international organizations, and it has been adopted by many countries as part of their national nuclear waste disposal plan. The multi-barrier system, including the compacted bentonite blocks or pellets serving as human-made containment or buffer media, is the key component of high-level radioactive waste disposal, which contains a waste canister that isolates the nuclear waste from a human being geosphere for one million years. The bentonite clay surrounding the nuclear waste capsule is subjected to prolonged exposure to elevated temperatures because of the continuous decay of radioactivity. Long-term heating at high temperatures could change the buffers’ microstructural characteristics and physicochemical and hydromechanical properties, which can influence their self-sealing ability. This paper offers a comprehensive overview of the current understanding of thermal effects on bentonite-based buffer systems. The thermal impact on the microstructure, Atterberg limits, and swelling pressure of bentonite clay are intensely reviewed, and the findings are summarized. This review paper highlights new insights into the design of multi-layered containment approaches for high-level radioactive waste isolation. Full article
(This article belongs to the Section Geomechanics)
Show Figures

Figure 1

18 pages, 1390 KiB  
Article
Durability and Mechanical Analysis of Basalt Fiber Reinforced Metakaolin–Red Mud-Based Geopolymer Composites
by Ouiame Chakkor
Buildings 2025, 15(12), 2010; https://doi.org/10.3390/buildings15122010 - 11 Jun 2025
Cited by 1 | Viewed by 542
Abstract
Cement is widely used as the primary binder in concrete; however, growing environmental concerns and the rapid expansion of the construction industry have highlighted the need for more sustainable alternatives. Geopolymers have emerged as promising eco-friendly binders due to their lower carbon footprint [...] Read more.
Cement is widely used as the primary binder in concrete; however, growing environmental concerns and the rapid expansion of the construction industry have highlighted the need for more sustainable alternatives. Geopolymers have emerged as promising eco-friendly binders due to their lower carbon footprint and potential to utilize industrial byproducts. Geopolymer mortar, like other cementitious substances, exhibits brittleness and tensile weakness. Basalt fibers serve as fracture-bridging reinforcements, enhancing flexural and tensile strength by redistributing loads and postponing crack growth. Basalt fibers enhance the energy absorption capacity of the mortar, rendering it less susceptible to abrupt collapse. Basalt fibers have thermal stability up to about 800–1000 °C, rendering them appropriate for geopolymer mortars designed for fire-resistant or high-temperature applications. They assist in preserving structural integrity during heat exposure. Fibers mitigate early-age microcracks resulting from shrinkage, drying, or heat gradients. This results in a more compact and resilient microstructure. Using basalt fibers improves surface abrasion and impact resistance, which is advantageous for industrial flooring or infrastructure applications. Basalt fibers originate from natural volcanic rock, are non-toxic, and possess a minimal ecological imprint, consistent with the sustainability objectives of geopolymer applications. This study investigates the mechanical and thermal performance of a geopolymer mortar composed of metakaolin and red mud as binders, with basalt powder and limestone powder replacing traditional sand. The primary objective was to evaluate the effect of basalt fiber incorporation at varying contents (0.4%, 0.8%, and 1.2% by weight) on the durability and strength of the mortar. Eight different mortar mixes were activated using sodium hydroxide (NaOH) and sodium silicate (Na2SiO3) solutions. Mechanical properties, including compressive strength, flexural strength, and ultrasonic pulse velocity (UPV), were tested 7 and 28 days before and after exposure to elevated temperatures (200, 400, 600, and 800 °C). The results indicated that basalt fiber significantly enhanced the performance of the geopolymer mortar, particularly at a content of 1.2%. Specimens with 1.2% fiber showed up to 20% improvement in compressive strength and 40% in flexural strength after thermal exposure, attributed to the fiber’s role in microcrack bridging and structural densification. Subsequent research should concentrate on refining fiber type, dose, and dispersion techniques to improve mechanical performance and durability. Examinations of microstructural behavior, long-term durability under environmental settings, and performance following high-temperature exposure are crucial. Furthermore, investigations into hybrid fiber systems, extensive structural applications, and life-cycle evaluations will inform the practical and sustainable implementation in the buildings. Full article
Show Figures

Figure 1

15 pages, 6396 KiB  
Article
Evolution Mechanism and Mechanical Response of Tungsten Surface Damage Under Pulsed Heat Load and Helium Plasma Irradiation
by Xiaoxuan Huang, Jianjun Wei, Zongbiao Ye and Fujun Gou
Processes 2025, 13(6), 1711; https://doi.org/10.3390/pr13061711 - 30 May 2025
Viewed by 461
Abstract
This study investigates the synergistic effects of pulsed heat load and helium plasma irradiation on the surface damage evolution of high-purity tungsten, a candidate plasma-facing material (PFM) for future fusion reactors. Using a self-developed linear plasma device, tungsten samples were exposed to controlled [...] Read more.
This study investigates the synergistic effects of pulsed heat load and helium plasma irradiation on the surface damage evolution of high-purity tungsten, a candidate plasma-facing material (PFM) for future fusion reactors. Using a self-developed linear plasma device, tungsten samples were exposed to controlled single-pulse heat loads (32–124 MW·m−2) and helium plasma fluxes (7.76 × 1022–2.40 × 1023 ions·m−2·s−1). SEM and XRD analyses revealed a progressive damage mechanism involving helium bubble formation, pit collapse, coral-like nanostructure evolution, and melting-induced restructuring. These surface changes were accompanied by grain refinement, lattice contraction, and peak shifts in the (110) diffraction plane. Mechanical testing showed a flux-dependent variation in hardness, with initial hardening followed by softening due to crack propagation. Surface reflectivity significantly declined with increasing load, indicating severe optical degradation. This work demonstrates the nonlinear coupling between thermal and irradiation effects in tungsten, offering new insights into damage accumulation under realistic reactor conditions. The findings highlight the dominant role of transient heat loads in driving structural and property changes and emphasize the importance of accounting for synergistic effects in material design. These results provide essential experimental data for optimizing PFMs in divertor and first-wall applications and suggest directions for future research into cyclic loading, long-term exposure, and microstructural recovery mechanisms. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Figure 1

22 pages, 6610 KiB  
Article
Tricky with Heat and Salt: Soil Factors, Thermotaxis, and Potential for Heat–Saline Agar Trapping of Strongyloides Larvae
by Nuttapon Ekobol, Sirintip Boonjaraspinyo, Chatanun Eamudomkarn and Thidarut Boonmars
Biology 2025, 14(5), 559; https://doi.org/10.3390/biology14050559 - 16 May 2025
Viewed by 929
Abstract
The viability and host-seeking behavior of Strongyloides larvae are significantly influenced by soil conditions, emphasizing the critical role of environmental control in disease management. This is particularly relevant given the growing concerns about drug resistance resulting from mass chemotherapy or the use of [...] Read more.
The viability and host-seeking behavior of Strongyloides larvae are significantly influenced by soil conditions, emphasizing the critical role of environmental control in disease management. This is particularly relevant given the growing concerns about drug resistance resulting from mass chemotherapy or the use of chemical nematicides. Strongyloides stercoralis was effectively inactivated by exposure to 50 °C for both 12 and 24 h (long-term exposure). Strongyloides ratti was inactivated by 50 °C for 20 min (short-term exposure), 9% saline for 50 min, and a combination of 4% saline and 40 °C for 50 min. The combined treatment successfully inactivated S. ratti in four soil mediums using 5% saline at a central temperature of 40 °C. Thermotaxis responses to noxious heat revealed attraction at 40 °C, increased localized searching at 45 °C, and complete inactivation at 50 °C. Larvae migrating within agar at 45 °C were more readily inactivated. Long-range heat attraction at 5 cm resulted in the inactivation of up to 50% of incoming larvae; however, heat-high concentration saline traps at 3 cm distance proved ineffective. Thermal–saline agar trapping demonstrated promise for larval removal in sand, loam, and laterite soils. This method offers a promising approach to larval removal while minimizing hazards to non-target organisms. Full article
(This article belongs to the Section Infection Biology)
Show Figures

Graphical abstract

25 pages, 8173 KiB  
Article
Advancing Heat Health Risk Assessment: Hotspot Identification of Heat Stress and Risk Across Municipalities in Algiers, Algeria
by Dyna Chourouk Zitouni, Djihed Berkouk, Mohamed Elhadi Matallah, Mohamed Akram Eddine Ben Ratmia and Shady Attia
Atmosphere 2025, 16(4), 484; https://doi.org/10.3390/atmos16040484 - 21 Apr 2025
Cited by 2 | Viewed by 1077
Abstract
With accelerating surface warming trends in urban regions, cities like Algiers are increasingly exposed to extreme heat, contributing to a growing concern over heat-related illnesses. For a comprehensive long-term assessment (2001–2023) of heat-related risks in Algiers, multi-decade satellite, meteorological, and census data were [...] Read more.
With accelerating surface warming trends in urban regions, cities like Algiers are increasingly exposed to extreme heat, contributing to a growing concern over heat-related illnesses. For a comprehensive long-term assessment (2001–2023) of heat-related risks in Algiers, multi-decade satellite, meteorological, and census data were used in this study to map and assess spatial patterns of the Heat Health Risk Index (HHRI) within the framework established by the Intergovernmental Panel on Climate Change (IPCC) incorporating hazard, exposure and vulnerability components. The Universal Thermal Climate Index (UTCI) was then calculated to assess thermal stress levels during the same period. Following this, the study addressed a critical research gap by coupling the HHRI and UTCI and identified hotspots using the Getis-Ord Gi* statistical analysis tool. Our findings reveal that the intensity of HHRI has increased over time since “very-low” risk areas had an outstanding decrease (93%) and a 6 °C UTCI rise over 23 years reaching the “very strong heat stress” level. The coupled index demonstrated greater and different risk areas compared to the HHRI alone, suggesting that the coupling of both indicators enhances the sensitivity of heat risk assessment. Finally, persistently identified hotspots in central and eastern regions call for localized, targeted interventions in those areas and highlight the value of remote sensing in informing policymakers and enhancing climate resilience. Full article
(This article belongs to the Special Issue Extreme Weather Events in a Warming Climate)
Show Figures

Graphical abstract

17 pages, 35371 KiB  
Article
Enhancing the Adhesion of Polyaniline on Steel Substrates Without a Binding Agent: Evaluated by ASTM D 3359 Tape Test and Sodium Chloride (NaCl) Exposure
by Saleh Aldwais, Ali A. Al-Muntaser, Chen Chen, Jaqueline Robles, Anish Pal and Jeremiah T. Abiade
Polymers 2025, 17(8), 1082; https://doi.org/10.3390/polym17081082 - 17 Apr 2025
Viewed by 426
Abstract
This study presents a method for enhancing the adhesion of chemically synthesized polyaniline on steel substrates without the need for a binding agent. Hydrochloric acid (HCl) was used in the synthesis of polyaniline. The experiment details the in situ chemical synthesis of polyaniline [...] Read more.
This study presents a method for enhancing the adhesion of chemically synthesized polyaniline on steel substrates without the need for a binding agent. Hydrochloric acid (HCl) was used in the synthesis of polyaniline. The experiment details the in situ chemical synthesis of polyaniline and its application as a coating on steel surfaces using an air spray technique. Pre-surface treatment, including cleaning and sanding, was performed on the steel substrates prior to coating. Following the application of the polyaniline coating, heat treatment was applied, where the coating was heated to 350 °F for 3 h after it was fully dried. The adhesion properties of the coating were evaluated using the ASTM D 3359 adhesive tape test, along with short- and long-term exposure to 3.5% sodium chloride (NaCl) solution. Additional analysis, including SEM, XPS, XRD, and coating thickness measurements, demonstrates the effectiveness of polyaniline in enhancing adhesion on steel substrates. Full article
(This article belongs to the Section Polymer Analysis and Characterization)
Show Figures

Graphical abstract

13 pages, 6621 KiB  
Article
Crystallization of Vanillin Isomers in Carboxymethyl Chitosan Gels
by Lin Zhang, Xiaoling Lu, Hao Li, Hongjie Chen, Qi Yin, Xuehan Hu, Kang Yang, Fang Yang, Liya Chen, Zeng Yang, You Long, Chao Shen, Bo Yao and Chenghong Huang
Gels 2025, 11(4), 285; https://doi.org/10.3390/gels11040285 - 11 Apr 2025
Viewed by 558
Abstract
The medicinal value of vanillin and its isomers has not been well developed, so it is necessary to prepare crystals of vanillin and its isomers as well as to investigate their crystallization rules in detail using advanced crystallization techniques in polymer gel. Based [...] Read more.
The medicinal value of vanillin and its isomers has not been well developed, so it is necessary to prepare crystals of vanillin and its isomers as well as to investigate their crystallization rules in detail using advanced crystallization techniques in polymer gel. Based on molecular simulation, the maximum number of hydrogen bonds between CMCS with Van, IsoVan and oVan were reached at molar ratios of 1:9 and 1:4 and 1:5, respectively. The gel hardness and apparent viscosity of CMCS/Van isomers were proportional to the mole ratio, while elongation at break and tensile strength decreased with an increase in molar concentration depending on the position of the side chain group of the Van isomer, exposure of the benzene ring, steric resistance and the number of hydrogen bonds formed. The crystallization of Van, IsoVan and oVan in CMCS gel unexceptionally follow classical supersaturation theory in the case that nVan mainly exhibits a unique growth pattern from needle to strip, IsoVan’s growth style changes from plate to bulk and oVan adapts growth pattern from needle to branch bifurcating. It was also found that the Van crystal changed from II-type to I-type under long-term heating. Studies have further confirmed that the discrepancy of physicochemical characteristics of CMCS/Van blend gel can be attributed to differences in the number of hydrogen bonds compared to CMCS with given group positions of Van isomers. This study provides powerful technical support for the gel crystallization of van isomers. Full article
(This article belongs to the Special Issue Synthesis and Applications of Hydrogels (3rd Edition))
Show Figures

Figure 1

30 pages, 10670 KiB  
Article
Impact of Multiple HVAC Systems on Indoor Air VOC and Radon Concentrations from Vapor Intrusion During Seasonal Usage
by John H. Zimmerman, Alan Williams, Brian Schumacher, Christopher Lutes, Rohit Warrier, Brian Cosky, Ben Thompson, Chase W. Holton and Kate Bronstein
Atmosphere 2025, 16(4), 378; https://doi.org/10.3390/atmos16040378 - 27 Mar 2025
Viewed by 678
Abstract
Subsurface contamination can migrate upward into overlying buildings, exposing the buildings’ inhabitants to contaminants that can cause detrimental health effects. This phenomenon is known as vapor intrusion (VI). When evaluating a building for VI, one must understand that seasonal and short-term variability are [...] Read more.
Subsurface contamination can migrate upward into overlying buildings, exposing the buildings’ inhabitants to contaminants that can cause detrimental health effects. This phenomenon is known as vapor intrusion (VI). When evaluating a building for VI, one must understand that seasonal and short-term variability are significant factors in determining the reasonable maximum exposure (RME) to the occupants. RME is a semi-quantitative term that refers to the lower portion of the high end of the exposure distribution—conceptually, above the 90th percentile exposure but less than the 98th percentile exposure. Samples were collected between December 2020 and April 2022 at six non-residential commercial buildings in Fairbanks, Alaska. The types of samples collected included indoor air (IA); outdoor air; subslab soil gas; soil gas; indoor radon; differential pressure; indoor and outdoor temperature; heating, ventilation, and air conditioning (HVAC) parameters; and other environmental factors. The buildings in close proximity to the volatile organic compound (VOC) source/release points presented less variability in indoor air concentrations of trichloroethylene (TCE) and tetrachloroethylene (PCE) compared to the buildings farther down gradient in the contaminated groundwater plume. The VOC data pattern for the source area buildings shows an outdoor air temperature-dominated behavior for indoor air concentrations in the summer season. HVAC system operations had less influence on long-term indoor air concentration trends than environmental factors, which is supported by similar indoor air concentration patterns independent of location within the plume. The use of soil temperature and indoor/outdoor temperatures as indicators and tracers (I&Ts) across the plume as predictors of the sampling period could produce a good estimation of the RME for the building occupants. These results, which show the use of soil temperature and indoor/outdoor temperatures as I&Ts, will help advance investigative methods for evaluation of VI in similar settings and thereby improve the protection of human health in indoor environments. Full article
(This article belongs to the Section Air Quality and Health)
Show Figures

Graphical abstract

10 pages, 5737 KiB  
Article
Effect of Solid Solution Treatment Routes on the Microstructure Configuration of a Third-Generation Ni-Based Superalloy
by Guo Yang, Ming Sun, Yanhui Chen and Haibo Long
Crystals 2025, 15(4), 303; https://doi.org/10.3390/cryst15040303 - 26 Mar 2025
Viewed by 388
Abstract
The step and ramp heat treatments can improve the homogenization degree of the structure in superalloys. However, the comparison between them using the same temperate range and total holding time on the microstructure and the microstructural stability is still vague. The effects of [...] Read more.
The step and ramp heat treatments can improve the homogenization degree of the structure in superalloys. However, the comparison between them using the same temperate range and total holding time on the microstructure and the microstructural stability is still vague. The effects of step and ramp heat treatment in the same solution temperature range and the same hold time on the microstructural stability in a third-generation superalloy were studied. The sizes of γ′ phases at dendrite cores and dendrite edges are different, which is caused by the dissolution degree of the γ′ phase during solution treatment. A low degree of γ′ phase dissolution aggravates the dendritic segregation. Dendrite segregation makes refractory elements such as Co, Mo, W, and Re aggregate in the dendrite core, and the TCP phase is easy to nucleate and precipitate during long-term thermal exposure, resulting in decreased structural stability. The investigations in this study compare the differences and obtain optimized processes and parameters for the improvement of superalloys. Full article
(This article belongs to the Special Issue Structure and Elemental Variations in Metals)
Show Figures

Graphical abstract

20 pages, 11840 KiB  
Article
Effect of Trace Er Addition on the Microstructural Evolution and Heat Resistance Properties of an Al-Zn-Mg-Cu Alloy During High Temperature Tensile and Thermal Exposure
by Juangang Zhao, Ruizhi Zhang, Ruiting Li, Yu Liu, Song Bai, Xuetong Zhao, Jianquan Sang, Jianping Huang, Chunquan Liu, Xinbin Liu and Fuming Du
Coatings 2025, 15(4), 368; https://doi.org/10.3390/coatings15040368 - 21 Mar 2025
Viewed by 434
Abstract
High temperature tensile properties and long-term thermal stability play an important role in practical applications of Al-Zn-Mg-Cu alloys. In order to evaluate the effect of Er addition on the properties of an Al-Zn-Mg-Cu alloy as potential high temperature structural materials, the heat resistance [...] Read more.
High temperature tensile properties and long-term thermal stability play an important role in practical applications of Al-Zn-Mg-Cu alloys. In order to evaluate the effect of Er addition on the properties of an Al-Zn-Mg-Cu alloy as potential high temperature structural materials, the heat resistance properties of an Al-Zn-Mg-Cu alloy were investigated at various temperatures. After high temperature tensile testing and long periods of heat exposure testing, the microstructures of Al-Zn-Cu-Mg alloys with and without small Er addition is intentionally investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), and quantitative transmission electron microscopy (TEM) characterization to explore the potential effect of Er on the tensile properties. The experimental results reveal that the heat resistance of T76-tempered Al-Zn-Cu-Mg alloy is obviously improved by adding trace Er. The Al8Cu4Er phase is found to segregate at the localized regions along grain boundaries and strengthens the grain boundaries at elevated temperatures. The η′ and η precipitation is obviously promoted by adding trace Er, and dispersed nano-sized Al3(Er, Zr) precipitates were formed in the Er-containing alloys after homogenization, thereby enhancing the strength of Al-Zn-Mg-Cu. In addition, precipitates in both alloys gradually coarsen with the increase in thermal exposure temperature and the extension of thermal exposure time. The influence of precipitates on mechanical properties of the investigatived alloy after thermal exposure is also discussed. Full article
Show Figures

Figure 1

Back to TopTop