Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (584)

Search Parameters:
Keywords = long-term ecological monitoring

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 22713 KiB  
Article
Geospatial and Correlation Analysis of Heavy Metal Distribution on the Territory of Integrated Steel and Mining Company Qarmet JSC
by Yryszhan Zhakypbek, Kanay Rysbekov, Vasyl Lozynskyi, Sergey Mikhalovsky, Ruslan Salmurzauly, Yerkezhan Begimzhanova, Gulmira Kezembayeva, Bakhytzhan Yelikbayev and Assel Sankabayeva
Sustainability 2025, 17(15), 7148; https://doi.org/10.3390/su17157148 - 7 Aug 2025
Abstract
This paper provides geospatial and correlation analysis of heavy metal distribution in the soil cover of the city of Temirtau and its industrial zones. Based on 25 soil samples taken in 2024, concentrations of nine heavy metals (As, Pb, Zn, Cu, Ni, Co, [...] Read more.
This paper provides geospatial and correlation analysis of heavy metal distribution in the soil cover of the city of Temirtau and its industrial zones. Based on 25 soil samples taken in 2024, concentrations of nine heavy metals (As, Pb, Zn, Cu, Ni, Co, Mn, Cr, Ba) were determined using X-ray fluorescence analysis. Spatial data interpolation was performed using the Kriging method in the ArcGIS Pro environment. The results showed the presence of localized extreme pollution zones, primarily near the Qarmet JSC metallurgical plant. The most significant exceedances of maximum permissible concentrations (MPC), up to 348× MPC for Cr, 160× MPC for Zn, and 72× MPC for As, were recorded at individual locations. Correlation analysis revealed a moderate positive relationship between several elements, particularly Mn and Cu (r = 0.64). Comparison of the spatial distribution of pollution with population data allowed for the assessment of potential environmental risks. This research emphasizes the need to implement systematic monitoring, sustainable land management practices, ecological maps, and preventive measures to reduce the long-term impact of heavy metals on ecosystems and public health, and to promote environmental sustainability in industrial regions. Full article
Show Figures

Figure 1

20 pages, 1801 KiB  
Article
Territorially Stratified Modeling for Sustainable Management of Free-Roaming Cat Populations in Spain: A National Approach to Urban and Rural Environmental Planning
by Octavio P. Luzardo, Ruth Manzanares-Fernández, José Ramón Becerra-Carollo and María del Mar Travieso-Aja
Animals 2025, 15(15), 2278; https://doi.org/10.3390/ani15152278 - 4 Aug 2025
Viewed by 221
Abstract
This study presents the scientific and methodological foundation of Spain’s first national framework for the ethical management of community cat populations: the Action Plan for the Management of Community Cat Colonies (PACF), launched in 2025 under the mandate of Law 7/2023. This pioneering [...] Read more.
This study presents the scientific and methodological foundation of Spain’s first national framework for the ethical management of community cat populations: the Action Plan for the Management of Community Cat Colonies (PACF), launched in 2025 under the mandate of Law 7/2023. This pioneering legislation introduces a standardized, nationwide obligation for trap–neuter–return (TNR)-based management of free-roaming cats, defined as animals living freely, territorially attached, and with limited socialization toward humans. The PACF aims to support municipalities in implementing this mandate through evidence-based strategies that integrate animal welfare, biodiversity protection, and public health objectives. Using standardized data submitted by 1128 municipalities (13.9% of Spain’s total), we estimated a baseline population of 1.81 million community cats distributed across 125,000 colonies. These data were stratified by municipal population size and applied to national census figures to generate a model-ready demographic structure. We then implemented a stochastic simulation using Vortex software to project long-term population dynamics over a 25-year horizon. The model integrated eight demographic–environmental scenarios defined by a combination of urban–rural classification and ecological reproductive potential based on photoperiod and winter temperature. Parameters included reproductive output, mortality, sterilization coverage, abandonment and adoption rates, stochastic catastrophic events, and territorial carrying capacity. Under current sterilization rates (~20%), our projections indicate that Spain’s community cat population could surpass 5 million individuals by 2050, saturating ecological and social thresholds within a decade. In contrast, a differentiated sterilization strategy aligned with territorial reproductive intensity (50% in most areas, 60–70% in high-pressure zones) achieves population stabilization by 2030 at approximately 1.5 million cats, followed by a gradual long-term decline. This scenario prioritizes feasibility while substantially reducing reproductive output, particularly in rural and high-intensity contexts. The PACF combines stratified demographic modeling with spatial sensitivity, offering a flexible framework adaptable to local conditions. It incorporates One Health principles and introduces tools for adaptive management, including digital monitoring platforms and standardized welfare protocols. While ecological impacts were not directly assessed, the proposed demographic stabilization is designed to mitigate population-driven risks to biodiversity and public health without relying on lethal control. By integrating legal mandates, stratified modeling, and realistic intervention goals, this study outlines a replicable and scalable framework for coordinated action across administrative levels. It exemplifies how national policy can be operationalized through data-driven, territorially sensitive planning tools. The findings support the strategic deployment of TNR-based programs across diverse municipal contexts, providing a model for other countries seeking to align animal welfare policy with ecological planning under a multi-level governance perspective. Full article
(This article belongs to the Section Animal System and Management)
Show Figures

Figure 1

31 pages, 5440 KiB  
Article
Canals, Contaminants, and Connections: Exploring the Urban Exposome in a Tropical River System
by Alan D. Ziegler, Theodora H. Y. Lee, Khajornkiat Srinuansom, Teppitag Boonta, Jongkon Promya and Richard D. Webster
Urban Sci. 2025, 9(8), 302; https://doi.org/10.3390/urbansci9080302 - 4 Aug 2025
Viewed by 90
Abstract
Emerging and persistent contaminants (EPCs) were detected at high concentrations in Chiang Mai’s Mae Kha Canal, identifying urban waterways as important sources of pollution in the Ping River system in northern Thailand. Maximum levels of metformin (20,000 ng/L), fexofenadine (15,900 ng/L), gabapentin (12,300 [...] Read more.
Emerging and persistent contaminants (EPCs) were detected at high concentrations in Chiang Mai’s Mae Kha Canal, identifying urban waterways as important sources of pollution in the Ping River system in northern Thailand. Maximum levels of metformin (20,000 ng/L), fexofenadine (15,900 ng/L), gabapentin (12,300 ng/L), sucralose (38,000 ng/L), and acesulfame (23,000 ng/L) point to inadequately treated wastewater as a plausible contributor. Downstream enrichment patterns relative to upstream sites highlight the cumulative impact of urban runoff. Five compounds—acesulfame, gemfibrozil, fexofenadine, TBEP, and caffeine—consistently emerged as reliable tracers of urban wastewater, forming a distinct chemical fingerprint of the riverine exposome. Median EPC concentrations were highest in Mae Kha, lower in other urban canals, and declined with distance from the city, reflecting spatial gradients in urban density and pollution intensity. Although most detected concentrations fell below predicted no-effect thresholds, ibuprofen frequently approached or exceeded ecotoxicological benchmarks and may represent a compound of ecological concern. Non-targeted analysis revealed a broader “chemical cocktail” of unregulated substances—illustrating a witches’ brew of pollution that likely escapes standard monitoring efforts. These findings demonstrate the utility of wide-scope surveillance for identifying key compounds, contamination hotspots, and spatial gradients in mixed-use watersheds. They also highlight the need for integrated, long-term monitoring strategies that address diffuse, compound mixtures to safeguard freshwater ecosystems in rapidly urbanizing regions. Full article
Show Figures

Figure 1

26 pages, 6220 KiB  
Article
Estimating Urbanization’s Impact on Soil Erosion: A Global Comparative Analysis and Case Study of Phoenix, USA
by Ara Jeong, Dylan S. Connor, Ronald I. Dorn and Yeong Bae Seong
Land 2025, 14(8), 1590; https://doi.org/10.3390/land14081590 - 4 Aug 2025
Viewed by 172
Abstract
Healthy soils are an essential ingredient of land systems and ongoing global change. Urbanization as a global change process often works through the lens of urban planning, which involves urban agriculture, urban greening, and leveraging nature-based solutions to promote resilient cities. Yet, urbanization [...] Read more.
Healthy soils are an essential ingredient of land systems and ongoing global change. Urbanization as a global change process often works through the lens of urban planning, which involves urban agriculture, urban greening, and leveraging nature-based solutions to promote resilient cities. Yet, urbanization frequently leads to soil erosion. Despite recognition of this tension, the rate at which the urban growth boundary accelerates soil erosion above natural background levels has not yet been determined. Our goal here is to provide a first broad estimate of urbanization’s impact of soil erosion. By combining data on modern erosion levels with techniques for estimating long-term natural erosion rates through cosmogenic nuclide 10Be analysis, we modeled the impact of urbanization on erosion across a range of cities in different global climates, revealing an acceleration of soil erosion ~7–19x in environments with mean annual precipitation <1500 mm; growth in wetter urban centers accelerated soil erosion ~23–72x. We tested our statistical model by comparing natural erosion rates to decades of monitoring soil erosion on the margins of Phoenix, USA. A century-long expansion of Phoenix accelerated soil erosion by ~12x, an estimate that is roughly at the mid-point of model projections for drier global cities. In addition to urban planning implications of being able to establish a baseline target of natural rates of soil erosion, our findings support the urban cycle of soil erosion theory for the two USA National Science Foundation urban long-term ecological research areas of Baltimore and Phoenix. Full article
Show Figures

Figure 1

18 pages, 2003 KiB  
Article
Spatial Gradient Effects of Metal Pollution: Assessing Ecological Risks Through the Lens of Fish Gut Microbiota
by Jin Wei, Yake Li, Yuanyuan Chen, Qian Lin and Lin Zhang
J. Xenobiot. 2025, 15(4), 124; https://doi.org/10.3390/jox15040124 - 3 Aug 2025
Viewed by 244
Abstract
This comprehensive study investigates the spatial distribution of metals in surface water, their accumulation in fish tissues, and their impact on the gut microbiome dynamics of fish in the Qi River, Huanggang City, Hubei Province. Three distinct sampling regions were established: the mining [...] Read more.
This comprehensive study investigates the spatial distribution of metals in surface water, their accumulation in fish tissues, and their impact on the gut microbiome dynamics of fish in the Qi River, Huanggang City, Hubei Province. Three distinct sampling regions were established: the mining area (A), the transition area (B), and the distant area (C). Our results revealed that metal concentrations were highest in the mining area and decreased with increasing distance from it. The bioaccumulation of metals in fish tissues followed the order of gut > brain > muscle, with some concentrations exceeding food safety standards. Analysis of the gut microbiota showed that Firmicutes and Proteobacteria dominated in the mining area, while Fusobacteriota were more prevalent in the distant area. Heavy metal pollution significantly altered the composition and network structure of the gut microbiota, reducing microbial associations and increasing negative correlations. These findings highlight the profound impact of heavy metal pollution on both fish health and the stability of their gut microbiota, underscoring the urgent need for effective pollution control measures to mitigate ecological risks and protect aquatic biodiversity. Future research should focus on long-term monitoring and exploring potential remediation strategies to restore the health of affected ecosystems. Full article
Show Figures

Graphical abstract

33 pages, 12598 KiB  
Article
OKG-ConvGRU: A Domain Knowledge-Guided Remote Sensing Prediction Framework for Ocean Elements
by Renhao Xiao, Yixiang Chen, Lizhi Miao, Jie Jiang, Donglin Zhang and Zhou Su
Remote Sens. 2025, 17(15), 2679; https://doi.org/10.3390/rs17152679 - 2 Aug 2025
Viewed by 322
Abstract
Accurate prediction of key ocean elements (e.g., chlorophyll-a concentration, sea surface temperature, etc.) is imperative for maintaining marine ecological balance, responding to marine disaster pollution, and promoting the sustainable use of marine resources. Existing spatio-temporal prediction models primarily rely on either physical or [...] Read more.
Accurate prediction of key ocean elements (e.g., chlorophyll-a concentration, sea surface temperature, etc.) is imperative for maintaining marine ecological balance, responding to marine disaster pollution, and promoting the sustainable use of marine resources. Existing spatio-temporal prediction models primarily rely on either physical or data-driven approaches. Physical models are constrained by modeling complexity and parameterization errors, while data-driven models lack interpretability and depend on high-quality data. To address these challenges, this study proposes OKG-ConvGRU, a domain knowledge-guided remote sensing prediction framework for ocean elements. This framework integrates knowledge graphs with the ConvGRU network, leveraging prior knowledge from marine science to enhance the prediction performance of ocean elements in remotely sensed images. Firstly, we construct a spatio-temporal knowledge graph for ocean elements (OKG), followed by semantic embedding representation for its spatial and temporal dimensions. Subsequently, a cross-attention-based feature fusion module (CAFM) is designed to efficiently integrate spatio-temporal multimodal features. Finally, these fused features are incorporated into an enhanced ConvGRU network. For multi-step prediction, we adopt a Seq2Seq architecture combined with a multi-step rolling strategy. Prediction experiments for chlorophyll-a concentration in the eastern seas of China validate the effectiveness of the proposed framework. The results show that, compared to baseline models, OKG-ConvGRU exhibits significant advantages in prediction accuracy, long-term stability, data utilization efficiency, and robustness. This study provides a scientific foundation and technical support for the precise monitoring and sustainable development of marine ecological environments. Full article
Show Figures

Figure 1

26 pages, 1103 KiB  
Article
How to Compensate Forest Ecosystem Services Through Restorative Justice: An Analysis Based on Typical Cases in China
by Haoran Gao and Tenglong Lin
Forests 2025, 16(8), 1254; https://doi.org/10.3390/f16081254 - 1 Aug 2025
Viewed by 242
Abstract
The ongoing degradation of global forests has severely weakened ecosystem service functions, and traditional judicial remedies have struggled to quantify intangible ecological losses. China has become an important testing ground for restorative justice through the establishment of specialized environmental courts and the practice [...] Read more.
The ongoing degradation of global forests has severely weakened ecosystem service functions, and traditional judicial remedies have struggled to quantify intangible ecological losses. China has become an important testing ground for restorative justice through the establishment of specialized environmental courts and the practice of environmental public interest litigation. Since 2015, China has actively explored and institutionalized the application of the concept of restorative justice in its environmental justice reform. This concept emphasizes compensating environmental damages through actual ecological restoration acts rather than relying solely on financial compensation. This shift reflects a deep understanding of the limitations of traditional environmental justice and an institutional response to China’s ecological civilization construction, providing critical support for forest ecosystem restoration and enabling ecological restoration activities, such as replanting and re-greening, habitat reconstruction, etc., to be enforced through judicial decisions. This study conducts a qualitative analysis of judicial rulings in forest restoration cases to systematically evaluate the effectiveness of restorative justice in compensating for losses in forest ecosystem service functions. The findings reveal the following: (1) restoration measures in judicial practice are disconnected from the types of ecosystem services available; (2) non-market values and long-term cumulative damages are systematically underestimated, with monitoring mechanisms exhibiting fragmented implementation and insufficient effectiveness; (3) management cycles are set in violation of ecological restoration principles, and acceptance standards lack function-oriented indicators; (4) participation of key stakeholders is severely lacking, and local knowledge and professional expertise have not been integrated. In response, this study proposes a restorative judicial framework oriented toward forest ecosystem services, utilizing four mechanisms: independent recognition of legal interests, function-matched restoration, application of scientific assessment tools, and multi-stakeholder collaboration. This framework aims to drive a paradigm shift from formal restoration to substantive functional recovery, providing theoretical support and practical pathways for environmental judicial reform and global forest governance. Full article
(This article belongs to the Section Forest Economics, Policy, and Social Science)
Show Figures

Figure 1

28 pages, 6962 KiB  
Article
Mapping Drought Incidents in the Mediterranean Region with Remote Sensing: A Step Toward Climate Adaptation
by Aikaterini Stamou, Aikaterini Bakousi, Anna Dosiou, Zoi-Eirini Tsifodimou, Eleni Karachaliou, Ioannis Tavantzis and Efstratios Stylianidis
Land 2025, 14(8), 1564; https://doi.org/10.3390/land14081564 - 30 Jul 2025
Viewed by 482
Abstract
The Mediterranean region, identified by scientists as a ‘climate hot spot’, is experiencing warmer and drier conditions, along with an increase in the intensity and frequency of extreme weather events. One such extreme phenomena is droughts. The recent wildfires in this region are [...] Read more.
The Mediterranean region, identified by scientists as a ‘climate hot spot’, is experiencing warmer and drier conditions, along with an increase in the intensity and frequency of extreme weather events. One such extreme phenomena is droughts. The recent wildfires in this region are a concerning consequence of this phenomenon, causing severe environmental damage and transforming natural landscapes. However, droughts involve a two-way interaction: On the one hand, climate change and various human activities, such as urbanization and deforestation, influence the development and severity of droughts. On the other hand, droughts have a significant impact on various sectors, including ecology, agriculture, and the local economy. This study investigates drought dynamics in four Mediterranean countries, Greece, France, Italy, and Spain, each of which has experienced severe wildfire events in recent years. Using satellite-based Earth observation data, we monitored drought conditions across these regions over a five-year period that includes the dates of major wildfires. To support this analysis, we derived and assessed key indices: the Normalized Difference Vegetation Index (NDVI), Normalized Difference Water Index (NDWI), and Normalized Difference Drought Index (NDDI). High-resolution satellite imagery processed within the Google Earth Engine (GEE) platform enabled the spatial and temporal analysis of these indicators. Our findings reveal that, in all four study areas, peak drought conditions, as reflected in elevated NDDI values, were observed in the months leading up to wildfire outbreaks. This pattern underscores the potential of satellite-derived indices for identifying regional drought patterns and providing early signals of heightened fire risk. The application of GEE offered significant advantages, as it allows efficient handling of long-term and large-scale datasets and facilitates comprehensive spatial analysis. Our methodological framework contributes to a deeper understanding of regional drought variability and its links to extreme events; thus, it could be a valuable tool for supporting the development of adaptive management strategies. Ultimately, such approaches are vital for enhancing resilience, guiding water resource planning, and implementing early warning systems in fire-prone Mediterranean landscapes. Full article
(This article belongs to the Special Issue Land and Drought: An Environmental Assessment Through Remote Sensing)
Show Figures

Figure 1

23 pages, 6132 KiB  
Article
Anthropogenic Activities Dominate Vegetation Improvement in Arid Areas of China
by Yu Guo, Xinwei Wang, Hongying Cao, Qin Peng, Yunshe Dong, Yunchun Qi, Jian Liu, Ning Lv, Feihu Yin, Xiujin Yuan and Mei Zeng
Remote Sens. 2025, 17(15), 2634; https://doi.org/10.3390/rs17152634 - 29 Jul 2025
Viewed by 165
Abstract
Arid regions, while providing essential ecosystem services, are among the most ecologically vulnerable worldwide. Understanding and monitoring their long-term vegetation dynamics is essential for accurate environmental assessment and climate adaptation strategies. This study examined the spatiotemporal variations and driving forces of the vegetation [...] Read more.
Arid regions, while providing essential ecosystem services, are among the most ecologically vulnerable worldwide. Understanding and monitoring their long-term vegetation dynamics is essential for accurate environmental assessment and climate adaptation strategies. This study examined the spatiotemporal variations and driving forces of the vegetation dynamics in arid Northwestern China during 2000 to 2020, using the annual peak fractional vegetation cover (FVC) as the primary indicator. The Sen’s slope estimator with the Mann–Kendall test and the coefficient of variation were employed to assess the spatiotemporal variations in FVC, while the Pearson correlation, geographic detector model and random forest model were applied to identify the dominant driving factors for FVC. The results indicated that (1) overall vegetation cover was low (averaged peak FVC = 0.191), showing a spatial pattern of higher values in the northwest and lower values in the southeast; high FVC values were primarily observed in mountainous areas and river corridors; (2) the annual peak FVC increased significantly at a rate of 0.0508 yr−1, with 33.72% of the region showing significant improvements and 5.49% degradation; (3) the spatial pattern of FVC was shaped by the distribution of land use types (59.46%), while the temporal dynamics of FVC were driven by land use changes (16.37%) and the land use intensity (37.56%); (4) both the spatial pattern and the temporal dynamics were limited by the environmental conditions. These findings highlight the critical role of anthropogenic activities in shaping the spatiotemporal variations in FVC, particularly emphasizing the distinct contributions of changes in land use types and land use intensity. This study could provide a scientific basis for sustainable land management and restoration strategies in arid regions facing global changes. Full article
Show Figures

Figure 1

19 pages, 4467 KiB  
Article
Delineation of Dynamic Coastal Boundaries in South Africa from Hyper-Temporal Sentinel-2 Imagery
by Mariel Bessinger, Melanie Lück-Vogel, Andrew Luke Skowno and Ferozah Conrad
Remote Sens. 2025, 17(15), 2633; https://doi.org/10.3390/rs17152633 - 29 Jul 2025
Viewed by 188
Abstract
The mapping and monitoring of coastal regions are critical to ensure their sustainable use and viability in the long term. Delineation of coastlines is becoming increasingly important in the light of climate change and rising sea levels. However, many coastlines are highly dynamic; [...] Read more.
The mapping and monitoring of coastal regions are critical to ensure their sustainable use and viability in the long term. Delineation of coastlines is becoming increasingly important in the light of climate change and rising sea levels. However, many coastlines are highly dynamic; therefore, mono-temporal assessments of coastal ecosystems and coastlines are mere snapshots of limited practical value for space-based planning. Understanding of the spatio-temporal dynamics of coastal ecosystem boundaries is important to inform ecosystem management but also for a meaningful delineation of the high-water mark, which is used as a benchmark for coastal spatial planning in South Africa. This research aimed to use hyper-temporal Sentinel-2 imagery to extract ecological zones on the coast of KwaZulu-Natal, South Africa. A total of 613 images, collected between 2019 and 2023, were classified into four distinct coastal ecological zones—vegetation, bare, surf, and water—using a Random Forest model. Across all classifications, the percentage of each of the four classes’ occurrence per pixel over time was determined. This enabled the identification of ecosystem locations, spatially static ecosystem boundaries, and the occurrence of ecosystem boundaries with a more dynamic location over time, such as the non-permanent vegetation zone of the foredune area as well as the intertidal zone. The overall accuracy of the model was 98.13%, while the Kappa coefficient was 0.975, with user’s and producer’s accuracies ranging between 93.02% and 100%. These results indicate that cloud-based analysis of Sentinel-2 time series holds potential not just for delineating coastal ecosystem boundaries, but also for enhancing the understanding of spatio-temporal dynamics between them, to inform meaningful environmental management, spatial planning, and climate adaptation strategies. Full article
Show Figures

Figure 1

22 pages, 3267 KiB  
Article
Identifying Deformation Drivers in Dam Segments Using Combined X- and C-Band PS Time Series
by Jonas Ziemer, Jannik Jänichen, Gideon Stein, Natascha Liedel, Carolin Wicker, Katja Last, Joachim Denzler, Christiane Schmullius, Maha Shadaydeh and Clémence Dubois
Remote Sens. 2025, 17(15), 2629; https://doi.org/10.3390/rs17152629 - 29 Jul 2025
Viewed by 262
Abstract
Dams play a vital role in securing water and electricity supplies for households and industry, and they contribute significantly to flood protection. Regular monitoring of dam deformations holds fundamental socio-economic and ecological importance. Traditionally, this has relied on time-consuming in situ techniques that [...] Read more.
Dams play a vital role in securing water and electricity supplies for households and industry, and they contribute significantly to flood protection. Regular monitoring of dam deformations holds fundamental socio-economic and ecological importance. Traditionally, this has relied on time-consuming in situ techniques that offer either high spatial or temporal resolution. Persistent Scatterer Interferometry (PSI) addresses these limitations, enabling high-resolution monitoring in both domains. Sensors such as TerraSAR-X (TSX) and Sentinel-1 (S-1) have proven effective for deformation analysis with millimeter accuracy. Combining TSX and S-1 datasets enhances monitoring capabilities by leveraging the high spatial resolution of TSX with the broad coverage of S-1. This improves monitoring by increasing PS point density, reducing revisit intervals, and facilitating the detection of environmental deformation drivers. This study aims to investigate two objectives: first, we evaluate the benefits of a spatially and temporally densified PS time series derived from TSX and S-1 data for detecting radial deformations in individual dam segments. To support this, we developed the TSX2StaMPS toolbox, integrated into the updated snap2stamps workflow for generating single-master interferogram stacks using TSX data. Second, we identify deformation drivers using water level and temperature as exogenous variables. The five-year study period (2017–2022) was conducted on a gravity dam in North Rhine-Westphalia, Germany, which was divided into logically connected segments. The results were compared to in situ data obtained from pendulum measurements. Linear models demonstrated a fair agreement between the combined time series and the pendulum data (R2 = 0.5; MAE = 2.3 mm). Temperature was identified as the primary long-term driver of periodic deformations of the gravity dam. Following the filling of the reservoir, the variance in the PS data increased from 0.9 mm to 3.9 mm in RMSE, suggesting that water level changes are more responsible for short-term variations in the SAR signal. Upon full impoundment, the mean deformation amplitude decreased by approximately 1.7 mm toward the downstream side of the dam, which was attributed to the higher water pressure. The last five meters of water level rise resulted in higher feature importance due to interaction effects with temperature. The study concludes that integrating multiple PS datasets for dam monitoring is beneficial particularly for dams where few PS points can be identified using one sensor or where pendulum systems are not installed. Identifying the drivers of deformation is feasible and can be incorporated into existing monitoring frameworks. Full article
(This article belongs to the Special Issue Dam Stability Monitoring with Satellite Geodesy II)
Show Figures

Figure 1

17 pages, 7301 KiB  
Article
Environmental Analysis for the Implementation of Underwater Paths on Sepultura Beach, Southern Brazil: The Case of Palythoa caribaeorum Bleaching Events at the Global Southern Limit of Species Distribution
by Rafael Schroeder, Lucas Gavazzoni, Carlos E. N. de Oliveira, Pedro H. M. L. Marques and Ewerton Wegner
Coasts 2025, 5(3), 26; https://doi.org/10.3390/coasts5030026 - 28 Jul 2025
Viewed by 217
Abstract
Recreational diving depends on healthy marine ecosystems, yet it can harm biodiversity through species displacement and habitat damage. Bombinhas, a biodiverse diving hotspot in southern Brazil, faces growing threats from human activity and climate change. This study assessed the ecological structure of Sepultura [...] Read more.
Recreational diving depends on healthy marine ecosystems, yet it can harm biodiversity through species displacement and habitat damage. Bombinhas, a biodiverse diving hotspot in southern Brazil, faces growing threats from human activity and climate change. This study assessed the ecological structure of Sepultura Beach (2018) for potential diving trails, comparing it with historical data from Porto Belo Island. Using visual censuses, transects, and photo-quadrats across six sampling campaigns, researchers documented 2419 organisms from five zoological groups, identifying 14 dominant species, including Haemulon aurolineatum and Diplodus argenteus. Cluster analysis revealed three ecological zones, with higher biodiversity at the site’s edges (Groups 1 and 3), but these areas also hosted endangered species like Epinephelus marginatus, complicating trail planning. A major concern was the widespread bleaching of the zoanthid Palythoa caribaeorum, a key ecosystem engineer, likely due to rising sea temperatures (+1.68 °C from 1961–2018) and declining chlorophyll-a levels post-2015. Comparisons with past data showed a 0.33 °C increase in species’ thermal preferences over 17 years, alongside lower trophic levels and greater ecological vulnerability, indicating tropicalization from the expanding Brazil Current. While Sepultura Beach’s biodiversity supports diving tourism, conservation efforts must address coral bleaching and endangered species protection. Long-term monitoring is crucial to track warming impacts, and adaptive management is needed for sustainable trail development. The study highlights the urgent need to balance ecotourism with climate resilience in subtropical marine ecosystems. Full article
Show Figures

Figure 1

16 pages, 6072 KiB  
Article
Climate Warming-Driven Expansion and Retreat of Alpine Scree in the Third Pole over the Past 45 Years
by Guanshi Zhang, Bingfang Wu, Lingxiao Ying, Yu Zhao, Li Zhang, Mengru Cheng, Liang Zhu, Lu Zhang and Zhiyun Ouyang
Remote Sens. 2025, 17(15), 2611; https://doi.org/10.3390/rs17152611 - 27 Jul 2025
Viewed by 267
Abstract
Alpine scree, a distinctive plateau ecosystem, serves as habitat for numerous rare and endangered species. However, current research does not differentiate it from desert in terms of spatial boundary, hindering biodiversity conservation and ecological monitoring efforts. Using the Tibetan Plateau as a case [...] Read more.
Alpine scree, a distinctive plateau ecosystem, serves as habitat for numerous rare and endangered species. However, current research does not differentiate it from desert in terms of spatial boundary, hindering biodiversity conservation and ecological monitoring efforts. Using the Tibetan Plateau as a case study, we defined the spatial boundary of alpine scree based on its surface formation process and examined its distribution and long-term evolution. The results show that in 2020, alpine scree on the Tibetan Plateau covered 73,735.34 km2, 1.5 times the area of glaciers. Alpine scree is mostly distributed at elevations between 4000 and 6000 m, with a slope of approximately 30–40 degrees. Characterized by low temperature and sparse rainfall, the regions are located in the humid zone. From 1975 to 2020, the area of alpine scree initially increased before declining, with an overall decrease of 560.68 km2. Climate warming was the primary driver of these changes, leading to an increase in scree from 1975 to 1995 and a decrease in scree from 1995 to 2020. Additionally, between 1975 and 2020, the Tibetan Plateau’s grasslands shifted upward by 16.47 km2. This study enhances our understanding of the spatial distribution and dynamics of this unique ecosystem, alpine scree, offering new insights into climate change impacts on alpine ecosystems. Full article
Show Figures

Figure 1

22 pages, 7937 KiB  
Article
Insights into Biological and Ecological Features of Four Rare and Endemic Plants from the Northern Tian Shan (Kazakhstan)
by Gulbanu Sadyrova, Aisha Taskuzhina, Alexandr Pozharskiy, Kuralai Orazbekova, Kirill Yanin, Nazym Kerimbek, Saule Zhamilova, Gulzhanat Kamiyeva, Ainur Tanybaeva and Dilyara Gritsenko
Plants 2025, 14(15), 2305; https://doi.org/10.3390/plants14152305 - 26 Jul 2025
Viewed by 395
Abstract
This study presents an integrative investigation of four rare and threatened plant species—Taraxacum kok-saghyz L.E. Rodin, Astragalus rubtzovii Boriss., Schmalhausenia nidulans (Regel) Petr., and Rheum wittrockii Lundstr.—native to the Ile Alatau and Ketmen ridges of the Northern Tian Shan in Kazakhstan. Combining [...] Read more.
This study presents an integrative investigation of four rare and threatened plant species—Taraxacum kok-saghyz L.E. Rodin, Astragalus rubtzovii Boriss., Schmalhausenia nidulans (Regel) Petr., and Rheum wittrockii Lundstr.—native to the Ile Alatau and Ketmen ridges of the Northern Tian Shan in Kazakhstan. Combining chloroplast genome sequencing, geobotanical surveys, and anatomical and population structure analyses, we aimed to assess the ecological adaptation, genetic distinctiveness, and conservation status of these species. Field surveys revealed that population structures varied across species, with T. kok-saghyz and S. nidulans dominated by mature vegetative and generative individuals, while A. rubtzovii and R. wittrockii exhibited stable age spectra marked by reproductive maturity and ongoing recruitment. Chloroplast genome assemblies revealed characteristic patterns of plastid evolution, including structural conservation in S. nidulans and R. wittrockii, and a reduced inverted repeat region in A. rubtzovii, consistent with its placement in the IR-lacking clade of Fabaceae. Morphological and anatomical traits reflected habitat-specific adaptations such as tomentose surfaces, thickened epidermis, and efficient vascular systems. Despite these adaptations, anthropogenic pressures including overgrazing and habitat degradation pose significant risks to population viability. Our findings underscore the need for targeted conservation measures, continuous monitoring, and habitat management to ensure the long-term survival of these ecologically and genetically valuable endemic species. Full article
(This article belongs to the Section Plant Ecology)
Show Figures

Figure 1

23 pages, 2274 KiB  
Review
Nature-Based Solutions for Water Management in Europe: What Works, What Does Not, and What’s Next?
by Eleonora Santos
Water 2025, 17(15), 2193; https://doi.org/10.3390/w17152193 - 23 Jul 2025
Viewed by 494
Abstract
Nature-based solutions (NbS) are increasingly recognized as strategic alternatives and complements to grey infrastructure for addressing water-related challenges in the context of climate change, urbanization, and biodiversity decline. This article presents a critical, theory-informed review of the state of NbS implementation in European [...] Read more.
Nature-based solutions (NbS) are increasingly recognized as strategic alternatives and complements to grey infrastructure for addressing water-related challenges in the context of climate change, urbanization, and biodiversity decline. This article presents a critical, theory-informed review of the state of NbS implementation in European water management, drawing on a structured synthesis of empirical evidence from regional case studies and policy frameworks. The analysis found that while NbS are effective in reducing surface runoff, mitigating floods, and improving water quality under low- to moderate-intensity events, their performance remains uncertain under extreme climate scenarios. Key gaps identified include the lack of long-term monitoring data, limited assessment of NbS under future climate conditions, and weak integration into mainstream planning and financing systems. Existing evaluation frameworks are critiqued for treating NbS as static interventions, overlooking their ecological dynamics and temporal variability. In response, a dynamic, climate-resilient assessment model is proposed—grounded in systems thinking, backcasting, and participatory scenario planning—to evaluate NbS adaptively. Emerging innovations, such as hybrid green–grey infrastructure, adaptive governance models, and novel financing mechanisms, are highlighted as key enablers for scaling NbS. The article contributes to the scientific literature by bridging theoretical and empirical insights, offering region-specific findings and recommendations based on a comparative analysis across diverse European contexts. These findings provide conceptual and methodological tools to better design, evaluate, and scale NbS for transformative, equitable, and climate-resilient water governance. Full article
Show Figures

Figure 1

Back to TopTop