Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (69)

Search Parameters:
Keywords = long-span suspension bridge

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 3654 KiB  
Article
Longitudinal Displacement Reconstruction Method of Suspension Bridge End Considering Multi-Type Data Under Deep Learning Framework
by Xiaoting Yang, Chao Wu, Youjia Zhang, Wencai Shao, Linyuan Chang, Kaige Kong and Quan Cheng
Buildings 2025, 15(15), 2706; https://doi.org/10.3390/buildings15152706 - 31 Jul 2025
Viewed by 136
Abstract
Suspension bridges, as a type of long-span bridge, usually have a larger longitudinal displacement at the end of the beam (LDBD). LDBD can be used to evaluate the safety of bridge components at the end of the beam. However, due to factors such [...] Read more.
Suspension bridges, as a type of long-span bridge, usually have a larger longitudinal displacement at the end of the beam (LDBD). LDBD can be used to evaluate the safety of bridge components at the end of the beam. However, due to factors such as sensor failure and system maintenance, LDBD in the bridge health monitoring system is often missing. Therefore, this study reconstructs the missing part of LDBD based on the long short-term memory network (LSTM) and various data. Specifically, first, the monitoring data that may be related to LDBD in a suspension bridge is analyzed, and the temperature and beam end rotation angle data (RDBD) at representative locations are selected. Then, the temperature data at different places of the bridge are used as the input of the LSTM model to compare and analyze the prediction effect of LDBD. Next, RDBD is used as the input of the LSTM model to observe the prediction effect of LDBD. Finally, temperature and RDBD are used as the input of the LSTM model to observe whether the prediction effect of the LSTM model is improved. The results show that compared with other parts of the bridge, the prediction effect of the temperature inside the box girder in the main span as the model input is better; when RDBD is used as the input of the LSTM model, it is better than the prediction effect of temperature as the model input; temperature and RDBD have higher prediction accuracy when used as the input of the LSTM model together than when used separately as the input of the LSTM model. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

21 pages, 4834 KiB  
Article
Static and Dynamic Performance of Long-Span Suspension Bridges with Flexible CFRP Central Buckles
by Maoqiang Wang, Taike Zhang, Huaimao Yang, Yaoyu Zhu, Bin Liu and Yue Liu
Polymers 2025, 17(13), 1807; https://doi.org/10.3390/polym17131807 - 28 Jun 2025
Viewed by 280
Abstract
The central buckle is essential for maintaining longitudinal stability in suspension bridges. However, conventional steel buckles are often excessively stiff, leading to stress concentration and insufficient durability. Moreover, they tend to perform poorly under fatigue loading conditions. This study proposes a novel flexible [...] Read more.
The central buckle is essential for maintaining longitudinal stability in suspension bridges. However, conventional steel buckles are often excessively stiff, leading to stress concentration and insufficient durability. Moreover, they tend to perform poorly under fatigue loading conditions. This study proposes a novel flexible central buckle system based on a Carbon Fiber-Reinforced Polymer (CFRP) to address these limitations. This study proposes a novel flexible central buckle system based on Carbon Fiber-Reinforced Polymer (CFRP) to address these limitations. Taking the long-span Shiziyang Suspension Bridge as a case study, a finite element model is developed to investigate the effects of CFRP central buckles with eight different stiffness levels on the static and dynamic responses of the bridge. The results indicate that a CFRP central buckle with a low elastic modulus achieves comparable displacement control performance to that of traditional steel buckles, while inducing significantly lower internal forces, demonstrating strong potential as a substitute. Based on this finding, a coordinated control strategy combining the CFRP central buckle with end-span restraining devices is proposed. This integrated system reduces midspan displacement and central buckle internal force by 61.1% and 49.8%, respectively. Considering both performance and cost-efficiency, a low-modulus CFRP material such as T300 is recommended. The proposed approach offers a new and effective solution for longitudinal control in ultra-long-span suspension bridges. Full article
Show Figures

Figure 1

28 pages, 8423 KiB  
Article
Research on the Support-Free Replacement Method of Suspenders for Long-Span Self-Anchored Rail Special Suspension Bridges
by Xiaogang Li, Minglin Zhou, Peng Ding, Ling Luo, Xiangsheng Huang and Xiang Li
Buildings 2025, 15(9), 1406; https://doi.org/10.3390/buildings15091406 - 22 Apr 2025
Viewed by 388
Abstract
To meet the demand of not interrupting traffic during the replacement of suspenders in long-span railway suspension bridges, this research proposes for the first time the application of the unsupported replacement method to the suspender replacement of self-anchored railway suspension bridges. Based on [...] Read more.
To meet the demand of not interrupting traffic during the replacement of suspenders in long-span railway suspension bridges, this research proposes for the first time the application of the unsupported replacement method to the suspender replacement of self-anchored railway suspension bridges. Based on the basic principle of suspension bridge, the safety control index in the process of boom replacement is proposed. Midas Civil 2024 software is used to analyze the structural response of the boom after removal under static force and train load, including the change of cable force of adjacent boom, the displacement of main cable and stiffening beam. The real bridge test was carried out based on the special bridge of Chongqing Egongyan Track. The results show that after the removal of the boom, the cable force of the adjacent boom increases by 42–55%, the main cable is partially twisted but the adjacent joints change little, and the displacement of the stiffened beam meets the specification requirements. When the train is fully loaded, the maximum increase of the cable force of the adjacent boom is 150 kN, the stress increment of the operating boom is far less than the design strength, the increase of the downtorsion of the main cable is only 2.22%, and the displacement of the stiffening beam is within the allowable range. The safety control index and real bridge test results show that the unsupported replacement method is feasible and safe in the replacement of the suspenders of long-span rail suspension bridges, which provides an important reference for related projects. Full article
Show Figures

Figure 1

24 pages, 4414 KiB  
Article
A Novel Analytical Model for Structural Analysis of Long-Span Hybrid Cable-Stayed Suspension Bridges
by Dongsheng He, Shunquan Qin, Haizhu Xiao and Suiwen Wu
Appl. Sci. 2025, 15(3), 1187; https://doi.org/10.3390/app15031187 - 24 Jan 2025
Viewed by 795
Abstract
The hybrid cable-stayed suspension bridge is used to combine the advantages of cable-stayed and suspension bridges and hence has a broad prospect for application. The conventional simplified analytical models of the hybrid bridge are usually developed based on a schematic with the cable-stayed [...] Read more.
The hybrid cable-stayed suspension bridge is used to combine the advantages of cable-stayed and suspension bridges and hence has a broad prospect for application. The conventional simplified analytical models of the hybrid bridge are usually developed based on a schematic with the cable-stayed and suspension systems working separately without any overlapping zone, which cannot represent the modern hybrid bridge system. In this study, a novel analytical model is proposed based on the modified suspension–elastic foundation beam theory to estimate the mechanical performance and deflection of the hybrid bridge system with the consideration of the overlapped section between the suspension and stayed cables. The governing equations of the hybrid bridge system are developed based on the elastic foundation beam theory and the deflection theory, which are derived separately in the hybrid section, the pure suspension section and the cable-stayed section. The general solution of each section is presented. The Transfer Matrix Method is then employed to solve the unknowns from one end to the other, which are in turn used to solve the internal forces of the hybrid bridge system caused by the concentrated load. In addition, in view of no variation in the unstressed length of the main cable, the compatibility equation of the main cable is established with consideration of the longitudinal displacement of the main tower, which is used to derive the formulas for the internal force and deflection of the hybrid system. The model can be easily complied in any programming platform, such as Matlab, with simple input parameters, which can eliminate the complex finite element modeling process. Hence, it can be easily used in the preliminary design stage to determine the optimal size and layout of the bridge. Then, a case study is presented for the verification of the proposed model under a vertical load, which is simplified from the Xihoumen Bridge, a combined highway and railway bridge with a main span of 1488 m. Good agreement is obtained between the proposed model and the finite element method. Meanwhile, it is found that there exists a negative deflection zone for the main beam at a distance from the concentrated vertical load, which is mainly caused by the deflection of the main cables, leading to the cambering of the beam. Full article
Show Figures

Figure 1

21 pages, 8866 KiB  
Article
Experimental Study on Fatigue Characteristics and Life Prediction of Rotating Restricted Short Suspender in Suspension Bridge
by Lei Zhao, Zhili Yang, Xianneng Tong, Yang Zhang and Ruifeng Nie
Buildings 2025, 15(2), 254; https://doi.org/10.3390/buildings15020254 - 16 Jan 2025
Cited by 1 | Viewed by 837
Abstract
The corrosion of the rotating axis pins of the short suspender will lead to the rotating restriction of its end, which will lead to the corrosion of the parallel wires and affect the performance of the short suspender. In this study, the technical [...] Read more.
The corrosion of the rotating axis pins of the short suspender will lead to the rotating restriction of its end, which will lead to the corrosion of the parallel wires and affect the performance of the short suspender. In this study, the technical condition of the rotating restricted short suspender unfixed from the suspension bridge was carefully detected. An axial tensile performance test was carried out on these short suspenders, and the subsequent availability of the rotating restricted suspender was evaluated based on the size of the fracture gap. The rotationally limited working conditions of these short suspenders were skillfully simulated by the specially designed tooling, and the fatigue performance test of the rotating restricted short suspender was carried out. A simplified simulation method was proposed based on the random traffic theory. By introducing traffic data obtained from the WIM system, the stress response of the short suspenders caused by vehicles on each lane was simulated, and the simulation results were converted by the rain flow counting method. The residual life of the rotating restricted short suspender was predicted by the comparison between the fatigue test results and the fitting curve of the simulation results. From this study, several of the following conclusions can be summarized: The measured fracture gap size is negatively correlated with the effective area of the suspender, and the gap size of 8mm is a key value. When the fatigue load cycle reaches 345,000 times, the suspender is already in a dangerous state. Additionally, the fractured gap size is considered as the judgment basis for the usability of rotating restricted short suspenders. When the gap size is less than 8 mm, the suspender can be continually used after maintenance and should be updated after 6 years. Otherwise, the suspender needs to be replaced immediately. Full article
Show Figures

Figure 1

19 pages, 4072 KiB  
Article
Vehicle–Bridge Coupling Vibration Analysis of Long-Span Self-Anchored Suspension Bridges Based on Cross-Section Mass–Shear Center Heterocentricity
by Zheng Li, Aoli Li, Daihai Chen, Shizhan Xu and Chaoxu Yang
Buildings 2024, 14(12), 3808; https://doi.org/10.3390/buildings14123808 - 28 Nov 2024
Viewed by 946
Abstract
In order to study the influence of the difference between the center of mass and shear center position of the main girder cross-section on the coupled vibration response of a vehicle–bridge, and in accordance with the theory of finite element analysis, we derive [...] Read more.
In order to study the influence of the difference between the center of mass and shear center position of the main girder cross-section on the coupled vibration response of a vehicle–bridge, and in accordance with the theory of finite element analysis, we derive the stiffness matrix of the spatial girder unit with the main girder cross-section mass–shear center heterocentricity, use finite element software to establish a bridge model, select a three-axle heavy vehicle, and solve the coupled vibration equation of the vehicle–bridge by the separation method. A large-span self-anchored suspension bridge is taken as the research object, and a self-programming program is used to calculate and analyze the influence of the main girder cross-section mass–shear center heterocentricity, driving lanes, and speed on the coupled vibration response of the vehicle–bridge. The results show the following: the main girder cross-section mass–shear center heterocentricity has a significant effect on the transverse dynamic response of the bridge, and the peak values of transverse displacement and acceleration in the main span are increased by about 87% and 136%; the outward shift of lanes has a greater effect on the transverse dynamic response of the bridge; and the vibration response of the bridge while considering mass–shear center heterocentricity is more affected under different vehicle speeds. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

22 pages, 6692 KiB  
Article
Effects of Differential Displacements Between the Ground Anchors in Suspension Bridges
by Paolo Clemente
Infrastructures 2024, 9(11), 211; https://doi.org/10.3390/infrastructures9110211 - 20 Nov 2024
Cited by 1 | Viewed by 1187
Abstract
A simple model to evaluate the effects of relative displacements between the ground anchors of a suspension bridge is proposed. An equation system is defined, which allows for the evaluation of the structural response under a general displacement set of the ground anchor [...] Read more.
A simple model to evaluate the effects of relative displacements between the ground anchors of a suspension bridge is proposed. An equation system is defined, which allows for the evaluation of the structural response under a general displacement set of the ground anchor points. Then, the most interesting and likely cases are analyzed in detail with reference to a suspension bridge having geometrical and mechanical characteristics typical of a long-span bridge. A simple procedure for the assessment of variation in cable stress is also given, which can be used to choose the optimum values for stress in cables under dead loads, as a percentage of their strength. The results obtained showed that expected movements do not significantly impact the structure in its lifetime and that the effects become negligible for very long-span bridges. Finally, the results obtained can be easily used for the condition monitoring of suspension bridges. Full article
(This article belongs to the Section Infrastructures and Structural Engineering)
Show Figures

Figure 1

19 pages, 6684 KiB  
Article
Research on the Refined Main Cable Shape-Finding Algorithm for Long-Span Suspension Bridges
by Chun Yi, Eguo Xiao, Xianliang Tan, Zhengyi He, Yi Xiang and Linshu Li
Buildings 2024, 14(10), 3233; https://doi.org/10.3390/buildings14103233 - 12 Oct 2024
Viewed by 790
Abstract
This study aims to address the complexities in the calculation of the tangent stiffness matrix and the issues of divergence in iterative calculations in the shape-finding process of existing suspension bridge main cables. The research investigates the factors influencing the computational errors of [...] Read more.
This study aims to address the complexities in the calculation of the tangent stiffness matrix and the issues of divergence in iterative calculations in the shape-finding process of existing suspension bridge main cables. The research investigates the factors influencing the computational errors of existing cable element theories and the convergence or divergence of the main cable shape-finding calculations. First, a nonlinear equation for calculating the height of the cable element is constructed. Subsequently, a formula for cable height calculation is established according to the differential equations of the deformed cable element. Finally, considering the mass conservation principle before and after the cable deformation, a nonlinear system of equations for the configuration of the cable element is derived. Given the symmetric nature of the mid-span structure and loading in most suspension bridges, it is inferred that the point of the lowest slope of the main cable in the completed bridge state serves as the symmetry center of the structure. Consequently, a symmetric main cable shape-finding method is developed. A comparative analysis between the proposed method and existing iterative methods was conducted in terms of calculation accuracy and convergence behavior. The results indicate that the difference in horizontal cable force at the IP point between the two methods is 1.9 kN, and the difference in unstressed length is 2.5 mm. The calculation efficiency of the symmetric main cable shape-finding method is more than twice that of traditional iterative algorithms, with the number of iterations required for convergence generally being lower than that of traditional methods. For initial values that cause divergence in traditional iterative methods, the symmetric main cable shape-finding method achieved convergence within 10 iterations. The derived cable element theory and the symmetric main cable shape-finding calculation method can lay a theoretical foundation for the refined and efficient calculation of the main cable shape-finding process. Full article
Show Figures

Figure 1

15 pages, 18216 KiB  
Article
A Study on Post-Flutter Characteristics of a Large-Span Double-Deck Steel Truss Main Girder Suspension Bridge
by Chunguang Li, Minhao Zou, Kai Li, Yan Han, Hubin Yan and Chunsheng Cai
Buildings 2024, 14(10), 3206; https://doi.org/10.3390/buildings14103206 - 9 Oct 2024
Cited by 1 | Viewed by 1458
Abstract
To investigate the nonlinear flutter characteristics of long-span suspension bridges under different deck ancillary structures and configurations, including those with and without a central wind-permeable zone, as well as to analyze the hysteresis phenomenon of a subcritical flutter and elucidate the mechanisms leading [...] Read more.
To investigate the nonlinear flutter characteristics of long-span suspension bridges under different deck ancillary structures and configurations, including those with and without a central wind-permeable zone, as well as to analyze the hysteresis phenomenon of a subcritical flutter and elucidate the mechanisms leading to the occurrence of nonlinear flutter, this paper studies first the post-flutter characteristics of the torsion single-degree-of-freedom (SDOF) test systems and vertical bending–torsion two-degree-of-freedom (2DOF) test systems under different aerodynamic shape conditions are further analyzed, and the role of the vertical vibration in coupled nonlinear flutter is discussed. The results indicate that better flutter performance is achieved in the absence of bridge deck auxiliary structures with a central wind-permeable zone. The participation of vertical vibrations in the post-flutter vibration increases with the increase in wind speed, reducing the flutter performance of the main girder. Furthermore, the hysteresis phenomenon in the subcritical flutter state is observed in the wind tunnel experiment, and its evolution law and mechanism are discussed from the perspective of amplitude-dependent damping. Finally, the vibration-generating mechanism of the limit oscillation ring is elaborated in terms of the evolution law of the post-flutter vibration damping. Full article
(This article belongs to the Special Issue Wind Load Effects on High-Rise and Long-Span Structures: 2nd Edition)
Show Figures

Figure 1

18 pages, 5931 KiB  
Article
Finite Element Modeling and Calibration of a Three-Span Continuous Suspension Bridge Based on Loop Adjustment and Temperature Correction
by Hai Zong, Xun Su, Jianxiao Mao, Hao Wang and Hui Gao
Sensors 2024, 24(17), 5641; https://doi.org/10.3390/s24175641 - 30 Aug 2024
Cited by 1 | Viewed by 1147
Abstract
Precise finite element modeling is critically important for the construction and maintenance of long-span suspension bridges. During the process of modeling, shape-finding and model calibration directly impact the accuracy and reliability. Scholars have provided numerous alternative proposals for the shape-finding of main cables [...] Read more.
Precise finite element modeling is critically important for the construction and maintenance of long-span suspension bridges. During the process of modeling, shape-finding and model calibration directly impact the accuracy and reliability. Scholars have provided numerous alternative proposals for the shape-finding of main cables in suspension bridges from both theoretical and finite element analysis perspectives. However, it is difficult to apply these solutions to suspension bridges with special components. Seeking a viable solution for such suspension bridges holds practical significance. The Nanjing Qixiashan Yangtze River Bridge is the first three-span suspension bridge in China. To maintain the configuration of the main cable, the suspension bridge is equipped with specialized suspenders near the anchors, referred to as displacement-limiting suspenders. It is the first suspension bridge in China to use displacement-limiting suspenders and their anchorage system. Taking the suspension bridge as a research background, this paper introduces a refined finite element modeling approach considering the effect of geometric nonlinearity. Firstly, based on the loop adjustment and temperature correction, the shape-finding and force assessment of the main cables are carried out. On this basis, a nonlinear finite element model of the bridge was established and calibrated, taking into account factors such as pylon settlement and cable saddle precession. Finally, the static and dynamic characteristics of the suspension bridge were thoroughly investigated. This study aims to provide a reference for the design, construction and operation of the three-span continuous suspension bridge. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

13 pages, 30396 KiB  
Article
BOPVis: Bridge Monitoring Data Visualization for Operational Performance Mining
by Xiaohui Wang, Zilong Zheng, Jiaxiang You, Yuning Qin, Wentao Xia and Yi Zhou
Appl. Sci. 2024, 14(15), 6615; https://doi.org/10.3390/app14156615 - 29 Jul 2024
Cited by 1 | Viewed by 1157
Abstract
Bridges are fundamental facilities in the transportation system, and their operational performance is crucial for economic and social development. Many large bridges are now equipped with structural health monitoring (SHM) systems that collect various types of real-time data. However, our user study found [...] Read more.
Bridges are fundamental facilities in the transportation system, and their operational performance is crucial for economic and social development. Many large bridges are now equipped with structural health monitoring (SHM) systems that collect various types of real-time data. However, our user study found that despite the accumulation of massive amounts of monitoring data, current analysis methods cannot efficiently process large-scale, high-dimensional data. To address this, we have developed BOPVis, a visualization system for bridge monitoring data. BOPVis allows users to intuitively locate sensors and extract corresponding data from a 3D digital model of a bridge. It also provides convenient and flexible interactions for examining trends over time and correlations across hundreds of monitoring channels. A real-world long-span suspension bridge in China is used as a case study to demonstrate the advantages of the BOPVis system for operational performance mining. Through BOPVis, the global temperature deformation behaviors of the bridge are explored and found to align with the physical mechanism documented in the SHM literature. The BOPVis system, with its interactive visualization analysis capabilities, offers a new method for analyzing bridge monitoring data. Full article
(This article belongs to the Special Issue Structural Health Monitoring for Bridge Structures)
Show Figures

Figure 1

18 pages, 6460 KiB  
Article
Reliability Analysis of Degraded Suspenders of Long-Span Suspension Bridge under Traffic Flow Braking
by Yue Zhao, Yingzi Fu, Yiyun Zhu and Botong Su
Buildings 2024, 14(8), 2333; https://doi.org/10.3390/buildings14082333 - 28 Jul 2024
Cited by 1 | Viewed by 1227
Abstract
The suspender is a crucial and vulnerable component of large-span cable bridges, and its service performance inevitably degrades under environmentally corrosive media and traffic load. The long loading area of a large-span bridge provides the possibility for continuous traffic flow braking on the [...] Read more.
The suspender is a crucial and vulnerable component of large-span cable bridges, and its service performance inevitably degrades under environmentally corrosive media and traffic load. The long loading area of a large-span bridge provides the possibility for continuous traffic flow braking on the bridge. This study proposes a continuous braking model of traffic flow based on the driver’s emergency braking reaction time and a steel wire degradation model considering the stress distribution characteristics of steel wire bending in the cross-section to analyze the safety of degraded cable components. The degradation process and bearing capacity variation of the cable are accurately quantified, and the reliability of the degraded cable under the action of traffic flow braking is determined. The results show that the traffic flow braking action causes a remarkable bending stress response in the bridge cable that reaches 450 MPa, which is much larger than the normal acting time. Moreover, differences in the bending stress of the cross-sectional steel wire cause significant differences in the fatigue process of the steel wire in different layers of the suspender. The outermost steel wires begin to fail after 12 years, and their service life is considerably different from that of the interlayer wires. The severely degraded steel wires on the outside can easily break under the traffic flow braking action, but they have no noticeable effect on the suspender’s ultimate bearing capacity because of the Daniels effect. The increase in the cable force caused by traffic flow braking and the stress redistribution after the steel wires break have the most evident influence on the reliability of the structure. Due to the effects of traffic flow braking, the timing of suspender maintenance is advanced by 8 years. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

17 pages, 18374 KiB  
Article
Study on the Influence of Wind Fairing Parameters on the Aerodynamic Performance of Long-Span Double-Deck Steel Truss Suspension Bridge
by Yang Yang, Long Li, Gang Yao, Bo Wu, Dawu Wang, Hui Yu and Hao Qu
Buildings 2024, 14(7), 2255; https://doi.org/10.3390/buildings14072255 - 22 Jul 2024
Viewed by 1294
Abstract
A long-span double-deck steel truss suspension bridge is easy to produce vortex-induced vibration (VIV) at low air velocity, which affects bridge service life. Additional aerodynamic measures play a role in suppressing VIV by changing the aerodynamic shape, which is a common control method. [...] Read more.
A long-span double-deck steel truss suspension bridge is easy to produce vortex-induced vibration (VIV) at low air velocity, which affects bridge service life. Additional aerodynamic measures play a role in suppressing VIV by changing the aerodynamic shape, which is a common control method. As the main aerodynamic measure to suppress the VIV response, wind fairing is widely used in engineering practice. In order to obtain the optimal additional position and shape parameters of the fairing, Huangjuetuo Yangtze River Bridge is the research target. Through the combination of a wind tunnel test and numerical simulation, the VIV response of the original and fairing section is studied. Based on data analysis, it is revealed that these additional fairings to the upper chord can significantly reduce the VIV response. When the shape parameters of the fairing are h/D = 1/4 and l/D = 1, the VIV inhibition efficiency is the highest, which can reach 65.51%. By analyzing the flow distribution, it can be seen that VIV is caused mainly by vortex separation in the upper bridge board area. Although this wind fairing does not change the original vortex shedding forms, it changes the first separation point and movement direction of the airflow, making the vortex scale generated by the airflow smaller and the vorticity lower, thus effectively suppressing VIV. Full article
Show Figures

Figure 1

19 pages, 7211 KiB  
Article
Optimization of the Traffic Load Model for Suspenders of a Super-Long-Span Suspension Bridge Considering Influence Line Geometry and Extreme Load Effect Scenarios
by Yi Wei, Xin Ruan, Hongtao Li and Zeren Jin
Appl. Sci. 2024, 14(11), 4549; https://doi.org/10.3390/app14114549 - 25 May 2024
Cited by 1 | Viewed by 1305
Abstract
The reasonable expression of live load and its accuracy are important to the safety and design rationality of highway bridge structures. In this study, the optimization issue of the traffic load model for the suspenders of large-scale suspension bridges is studied. Taking a [...] Read more.
The reasonable expression of live load and its accuracy are important to the safety and design rationality of highway bridge structures. In this study, the optimization issue of the traffic load model for the suspenders of large-scale suspension bridges is studied. Taking a 2300-m main span suspension bridge as an example, a method for suspender classification based on the geometric feature of the influence lines is proposed, and the extreme traffic load effect scenarios are analyzed and used as an optimization reference. Multi-objective optimization based on a genetic algorithm is used to explore the improvement of the traffic load model of the suspender. The traffic load model of the suspender is optimized with three objectives, i.e., accuracy, convenience, and improvement, and the optimization results regarding the load value and loading length are obtained. The value of the uniformly distributed load of the optimized model ranges from 6.4 kN/m to 8.9 kN/m, and the maximum value of the concentrated force could reach 1433 kN. By comparing the obtained optimized model with the current specification model and the extreme load effect scenario model, the improved applicability of the optimized model in the analysis of the load effect of the suspender can be verified. The optimized method and relevant conclusions can provide useful references for the improved design and operation management of similar bridge structures. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

22 pages, 7226 KiB  
Article
Online Collaborative Perception of Full Bridge Deck Driving Visual of Far Blind Area on Suspension Bridge during Vortex-Induced Vibration
by Danhui Dan, Gang Zeng and Xuewen Yu
Sensors 2024, 24(6), 1934; https://doi.org/10.3390/s24061934 - 18 Mar 2024
Cited by 1 | Viewed by 1212
Abstract
During a vertical vortex-induced vibration (VVIV), an undulating bridge deck will affect drivers’ sightlines, causing the phenomenon of drifting and changes in the far blind area, thus presenting a potential threat to driving safety. Consequently, to ensure the safety of driving on a [...] Read more.
During a vertical vortex-induced vibration (VVIV), an undulating bridge deck will affect drivers’ sightlines, causing the phenomenon of drifting and changes in the far blind area, thus presenting a potential threat to driving safety. Consequently, to ensure the safety of driving on a suspension bridge deck under VVIV, it is necessary to perceive the far blind spot caused by the occlusion of the driving sightlines under this condition, and to establish an online perception and evaluation mechanism for driving safety. With a long-span suspension bridge experiencing VVIV as the engineering background, this paper utilizes the acceleration integration algorithm and the sine function fitting method to achieve the online perception of real-time dynamic configurations of the main girder. Then, based on the configurations, the maximum height of the driver’s far blind area and effective sight distance are calculated accordingly, and the impact of different driving conditions on them is discussed. The proposed technical framework for driving safety perception in far blind spots is feasible, as it can achieve real-time estimation of the maximum height and effective distance of the far blind area, thereby providing technical support for bridge–vehicle–human collaborative perception and traffic control during vortex-induced vibration. Full article
Show Figures

Figure 1

Back to TopTop