Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (38)

Search Parameters:
Keywords = local morphometric effects

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2729 KiB  
Article
Chronic Copper Overload Triggers Inflammation in Mesenteric PVAT Alongside Changes in Renin–Angiotensin System-Related Pathways
by Nina Bruna de Souza Mawandji, Nayara Ariel da Silva Lisboa, Karoline Neumann Gomes, Júlia Martins Vieira, Jussara de Jesus Simão, Maria Isabel Alonso-Vale, Karolini Zuqui Nunes, Dalton Valentim Vassallo and Andressa Bolsoni-Lopes
Nutrients 2025, 17(13), 2082; https://doi.org/10.3390/nu17132082 - 23 Jun 2025
Viewed by 385
Abstract
Background/Objectives: Copper is an essential micronutrient required for physiological functions, but elevated serum levels impair vascular reactivity and blood pressure regulation. Given PVAT’s critical role in vascular function, this study aimed to investigate the effects of chronic copper overload on the secretory function [...] Read more.
Background/Objectives: Copper is an essential micronutrient required for physiological functions, but elevated serum levels impair vascular reactivity and blood pressure regulation. Given PVAT’s critical role in vascular function, this study aimed to investigate the effects of chronic copper overload on the secretory function of mesenteric PVAT, focusing on its vasoregulatory role. Methods: In the first phase, 8-week-old male Wistar rats were assigned to two groups, namely control (saline, i.p.) or copper (25.72 µg/kg/day Cu, i.p., for 30 days), corresponding to twice the recommended daily dose of copper. In the second phase, rats were divided into four groups: control (saline, i.p., water by gavage), copper (Cu, i.p., water by gavage), losartan (saline, i.p., 10 mg/kg/day losartan by gavage), or copper + losartan (Cu, i.p., 10 mg/kg/day losartan by gavage). After euthanasia, mesenteric PVAT was collected for morphometric analysis, gene and protein expression of adipokines, inflammatory molecules, and the renin–angiotensin system. Serum was used for hormone and biochemical measurements. Results: In mesenteric PVAT, chronic copper overload increased adipocyte diameter and reduced lipolysis. It also elevated the secretion of TNF-α and PAI-1 while decreasing IL-10 levels. Additionally, it upregulated the mRNA expression of MCP-1, F4/80, CD86, TLR4, arginase-1, iNOS, ACE1, and AT1R, alongside an increase in serum angiotensin II levels. When copper treatment was combined with losartan, an AT1R antagonist, adipocyte hypertrophy; TNF-α secretion; and the gene expression of TLR4, F4/80, and arginase-1 were attenuated. Conclusions: Chronic exposure to double the recommended dose of Cu disrupts the secretory function of mesenteric PVAT, promoting inflammation and altering the local RAS. These effects appear to occur, at least in part, alongside the activation of the AT1R–TLR4–angiotensin II signaling pathway, triggering the upregulation of vasoregulatory inflammatory markers. Full article
(This article belongs to the Section Micronutrients and Human Health)
Show Figures

Figure 1

18 pages, 1392 KiB  
Review
Environmental Impacts and Behavioral Adaptations of Honeybees in Algeria: A Review of Apis mellifera intermissa and Apis mellifera sahariensis Characteristics
by Yamina Haider, Noureddine Adjlane and Nizar Haddad
Insects 2025, 16(6), 617; https://doi.org/10.3390/insects16060617 - 11 Jun 2025
Viewed by 927
Abstract
Honeybees are vital for pollination and the overall health of ecosystems. Since the 18th century, the intricate biology of honeybees has been a subject of scientific inquiry. Understanding their biological and behavioral characteristics is essential for effective beekeeping, honey production, and ecosystem sustainability. [...] Read more.
Honeybees are vital for pollination and the overall health of ecosystems. Since the 18th century, the intricate biology of honeybees has been a subject of scientific inquiry. Understanding their biological and behavioral characteristics is essential for effective beekeeping, honey production, and ecosystem sustainability. This review examines the environmental impact and management practices on the health of local honeybees in Algeria, focusing on Apis mellifera intermissa and Apis mellifera sahariensis. We summarize research findings on genetic diversity, morphometric traits, behavioral characteristics, and adaptation of local honeybees. Additionally, we discuss the threats posed by abiotic and biotic stressors and highlight the importance of conservation and sustainable management. The reviewed studies indicate that environmental factors significantly influence the behavioral characteristics and adaptation of local honeybees. Notably, the hygienic behavior of A. m. intermissa contributes to their resistance against diseases and the Varroa destructor mite. Further research in these areas is important for enhancing our understanding of honeybee health and population dynamics in Algeria, thereby informing strategies for sustainable beekeeping practices. Full article
Show Figures

Figure 1

13 pages, 3680 KiB  
Article
Geometric Morphometric Analysis of Adult and Juvenile Turtle Shells: Directional Asymmetry and Fluctuating Asymmetry
by Ece Oktay, İlayda Boz Doğan, Sokol Duro, Gülsün Pazvant, Funda Yiğit and Tomasz Szara
Diversity 2025, 17(4), 241; https://doi.org/10.3390/d17040241 - 28 Mar 2025
Viewed by 580
Abstract
Bilateral symmetry is quite common in animals, but in some cases, asymmetry can be altered by hereditary or developmental processes. Symmetry may be preserved, or asymmetry may increase as the developmental stages progress. This study applied geometric morphometric analyses at the juvenile and [...] Read more.
Bilateral symmetry is quite common in animals, but in some cases, asymmetry can be altered by hereditary or developmental processes. Symmetry may be preserved, or asymmetry may increase as the developmental stages progress. This study applied geometric morphometric analyses at the juvenile and adult stages to investigate directional asymmetry and fluctuating asymmetry in turtle shells. In total, 71 turtle shells (46 adults, 25 juveniles) of Testudo hermanni boettgeri were used. These turtle shells were recorded using the Generalized Procrustes method to interpret developmental asymmetry. A covariance matrix was then applied, followed by principal component analysis. Analysis of Variance (ANOVA) was used to explain individual variation. The procedures were applied and interpreted separately to the carapace and plastron. Specific structures, such as the nuchal and neural plates, exhibited a narrower shape than the mean shape configuration in directional asymmetry. The epiplastron region showed significant enlargement in juveniles compared to adults, potentially linked to developmental growth. This study investigated fluctuating asymmetry (FA) and directional asymmetry (DA) in turtle shells by analyzing the carapace and plastron. Although wavy asymmetry was not statistically significant overall, localized shape differences between the edges of the coastal and neural plates of the carapace and the edges of the plastron were observed. The side effects showed statistical significance (p = 0.0005). Environmental or developmental factors may have influenced these differences. Directional asymmetry was statistically significant for the carapace and plastron, indicating consistent shape changes associated with developmental growth. This study revealed significant directional asymmetry in the carapace and plastron of Testudo hermanni boettgeri, reflecting consistent developmental trends. Full article
(This article belongs to the Special Issue Biology and Evolutionary History of Reptiles)
Show Figures

Figure 1

16 pages, 3251 KiB  
Article
Histological Alterations and Interferon-Gamma and AKT-mTOR Expression in an Experimental Model of Achilles Tendinopathy—A Comparison of Stem Cell and Amniotic Membrane Treatment
by Guilherme Vieira Cavalcante, Rosangela Fedato, Lucia de Noronha, Seigo Nagashima, Ana Paula Camargo Martins, Márcia Olandoski, Ricardo Pinho, Aline Takejima, Rossana Simeoni, Julio Cesar Francisco and Luiz César Guarita-Souza
Biomedicines 2025, 13(2), 525; https://doi.org/10.3390/biomedicines13020525 - 19 Feb 2025
Viewed by 714
Abstract
Achilles tendon injuries are extremely common and have a significant impact on the physical and mental health of individuals. Both conservative and surgical treatments have unsatisfactory results. The search for new therapeutic tools, using cell therapies with stem cells (SC) and biological tissues, [...] Read more.
Achilles tendon injuries are extremely common and have a significant impact on the physical and mental health of individuals. Both conservative and surgical treatments have unsatisfactory results. The search for new therapeutic tools, using cell therapies with stem cells (SC) and biological tissues, such as amniotic membranes (AM), has proved useful for the regeneration of injured tendons. Background/Objectives: This research was carried out to assess the capacity of tissue repair in animal models of Achilles tendinopathy, in which rats were submitted to complete sections of the tendon, and the effects of using bone marrow SC and/or AM graft are evaluated. Methods: Thirty-seven Wistar rats, submitted to complete surgical section of the Achilles tendon and subsequent tenorrhaphy, were randomized into four groups: Control Group (CG), received saline solution; SC Group (SCG) received an injection of SC infiltrated directly into the tendon; AM Group (AMG), the tendon was covered with an AM graft; SC + AM Group (SC+AMG), has been treated with an AM graft and SC local injection. Six weeks later, the Achilles tendons were evaluated using a histological score and immunohistochemical pro-healing markers such as Interferon-γ, AKT, and mTOR. Results: There were no differences between morphometric histological when evaluating the Achilles tendons of the samples. No significant differences were found regarding the expression of AKT-2 and mTOR markers between the study groups. The main finding was the presence of a higher concentration of Interferon-γ in the group treated with SC and AM. Conclusions: The isolated use of SC, AM, or the combination of SC-AM did not produce significant changes in tendon healing when the histological score was evaluated. Similarly, no difference was observed in the expression of AKT-2 and mTOR markers. An increase in the expression of Interferon-γ was observed in SC+AMG. This suggests that such therapies may be potentially beneficial for the regeneration of injured tendons. However, as tendon repair mechanisms are very complex, further studies should be carried out to verify the benefits of the tendon structure and function. Full article
(This article belongs to the Special Issue Advances in Immune Cell Biology: Insights from Molecular Perspectives)
Show Figures

Figure 1

21 pages, 8795 KiB  
Article
Morphometric Characterization and Dual Analysis for Flash Flood Hazard Assessment of Wadi Al-Lith Watershed, Saudi Arabia
by Bashar Bashir and Abdullah Alsalman
Water 2024, 16(22), 3333; https://doi.org/10.3390/w16223333 - 20 Nov 2024
Cited by 2 | Viewed by 1575
Abstract
Flash floods are one of the most hazardous natural events globally, characterized by their rapid onset and unpredictability, often overwhelming emergency preparedness and response systems. In the arid environment of Saudi Arabia, Wadi Al-Lith watershed is particularly prone to flash floods, exacerbated by [...] Read more.
Flash floods are one of the most hazardous natural events globally, characterized by their rapid onset and unpredictability, often overwhelming emergency preparedness and response systems. In the arid environment of Saudi Arabia, Wadi Al-Lith watershed is particularly prone to flash floods, exacerbated by sudden storms and the region’s distinct topographical features. This study focuses on the morphometric characterization and comparative analysis of flash flood risk within the Wadi Al-Lith basin. To assess flood susceptibility, two widely adopted methodologies were employed: the morphometric ranking approach and El-Shamy’s method. A 12.5-m resolution ALOS PALSAR digital elevation model (DEM) was used to delineate the watershed and generate a detailed drainage network via Arc-Hydro tools in the ArcGIS 10.4 software. Fifteen morphometric parameters were analyzed to determine their influence on flood potential and hazard prioritization. The findings of this study provide crucial insights for regional flood risk management, offering an improved understanding of flash flood dynamics and assisting in developing effective mitigation strategies for Wadi Al-Lith and similar environments. The findings reveal that Wadi Al-Lith comprises multiple sub-catchments with varying degrees of vulnerability to flash flooding. According to the morphometric hazard analysis (MHA), certain sub-catchments, including sc-2, sc-4, sc-5, sc-6, sc-10, sc-12, sc-13, and sc-15, emerge as highly susceptible to flood hazards, while others (sc-1 and sc-9) fall into moderate risk categories. In contrast, the application of El-Shamy’s method provides a different ranking of flood risks across the watershed’s sub-catchments, offering a comparative view of flood susceptibility. The insights gained from this dual-analysis approach are expected to support the development of targeted flood prevention and mitigation strategies, which are essential for minimizing the future impacts of flash flooding in the Wadi Al-Lith watershed and ensuring better preparedness for local communities. Full article
(This article belongs to the Special Issue Use of Remote Sensing Technologies for Water Resources Management)
Show Figures

Figure 1

22 pages, 3255 KiB  
Article
Classification Importance of Seed Morphology and Insights on Large-Scale Climate-Driven Strophiole Size Changes in the Iberian Endemic Chasmophytic Genus Petrocoptis (Caryophyllaceae)
by Jorge Calvo-Yuste, Ángela Lis Ruiz-Rodríguez, Brais Hermosilla, Agustí Agut, María Montserrat Martínez-Ortega and Pablo Tejero
Plants 2024, 13(22), 3208; https://doi.org/10.3390/plants13223208 - 15 Nov 2024
Cited by 1 | Viewed by 1006
Abstract
Recruitment poses significant challenges for narrow endemic plant species inhabiting extreme environments like vertical cliffs. Investigating seed traits in these plants is crucial for understanding the adaptive properties of chasmophytes. Focusing on the Iberian endemic genus Petrocoptis A. Braun ex Endl., a strophiole-bearing [...] Read more.
Recruitment poses significant challenges for narrow endemic plant species inhabiting extreme environments like vertical cliffs. Investigating seed traits in these plants is crucial for understanding the adaptive properties of chasmophytes. Focusing on the Iberian endemic genus Petrocoptis A. Braun ex Endl., a strophiole-bearing Caryophyllaceae, this study explored the relationships between seed traits and climatic variables, aiming to shed light on the strophiole’s biological role and assess its classificatory power. We analysed 2773 seeds (557 individuals) from 84 populations spanning the genus’ entire distribution range. Employing cluster and machine learning algorithms, we delineated well-defined morphogroups based on seed traits and evaluated their recognizability. Linear mixed-effects models were utilized to investigate the relationship between climate predictors and strophiole area, seed area and the ratio between both. The combination of seed morphometric traits allows the division of the genus into three well-defined morphogroups. The subsequent validation of the algorithm allowed 87% of the seeds to be correctly classified. Part of the intra- and interpopulation variability found in strophiole raw and relative size could be explained by average annual rainfall and average annual maximum temperature. Strophiole size in Petrocoptis could have been potentially driven by adaptation to local climates through the investment of more resources in the production of bigger strophioles to increase the hydration ability of the seed in dry and warm climates. This reinforces the idea of the strophiole being involved in seed water uptake and germination regulation in Petrocoptis. Similar relationships have not been previously reported for strophioles or other analogous structures in Angiosperms. Full article
(This article belongs to the Section Plant Ecology)
Show Figures

Figure 1

19 pages, 19576 KiB  
Article
Constitutive Pleiotrophin Deletion Results in a Phenotype with an Altered Pancreatic Morphology and Function in Old Mice
by Cristina Ballesteros-Pla, Julio Sevillano, María Gracia Sánchez-Alonso, María Limones, Jimena Pita, Begoña Zapatería, Marta Inmaculada Sanz-Cuadrado, Javier Pizarro-Delgado, Adriana Izquierdo-Lahuerta, Gema Medina-Gómez, Gonzalo Herradón and María del Pilar Ramos-Álvarez
Int. J. Mol. Sci. 2024, 25(20), 10960; https://doi.org/10.3390/ijms252010960 - 11 Oct 2024
Viewed by 1402
Abstract
Pleiotrophin (PTN) is crucial for embryonic development and pancreas organogenesis as it regulates metainflammation, metabolic homeostasis, thermogenesis, and glucose tolerance. Pleiotrophin deletion is associated with a lipodystrophic phenotype in which adipose tissue plasticity is altered in late life. This study explored the impact [...] Read more.
Pleiotrophin (PTN) is crucial for embryonic development and pancreas organogenesis as it regulates metainflammation, metabolic homeostasis, thermogenesis, and glucose tolerance. Pleiotrophin deletion is associated with a lipodystrophic phenotype in which adipose tissue plasticity is altered in late life. This study explored the impact of pleiotrophin deletion on pancreatic morphology and function in later life. We analyzed glucose tolerance and circulating parameters on female wild-type (Ptn+/+) and knock-out (Ptn−/−) mice. At 9 and 15 months, we conducted morphometric analyses of pancreatic islets and evaluated the levels of insulin, glucagon, somatostatin, glucose transporter 2 (GLUT2), vesicle-associated membrane protein 2 (VAMP2), and synaptosome-associated protein 25 (SNAP25) via immunofluorescence. The effect of PTN on glucose-stimulated insulin secretion (GSIS) was evaluated in INS1E cells and isolated islets. Ptn−/− mice showed hyperinsulinemia, impaired glucose tolerance, and increased homeostatic model assessment for insulin resistance (HOMA-IR) with age. While Ptn+/+ islets enlarge with age, in Ptn−/− mice, the median size decreased, and insulin content increased. Vesicle transport and exocytosis proteins were significantly increased in 9-month-old Ptn−/− islets. Islets from Ptn−/− mice showed impaired GSIS and decreased cell membrane localization of GLUT2 whereas, PTN increased GSIS in INS1E cells. Ptn deletion accelerated age-related changes in the endocrine pancreas, affecting islet number and size, and altering VAMP2 and SNAP25 levels and GLUT2 localization leading to impaired GSIS and insulin accumulation in islets. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

22 pages, 5778 KiB  
Article
Targeting Oxidative Stress: The Potential of Vitamin C in Protecting against Liver Damage after Electron Beam Therapy
by Grigory Demyashkin, Mikhail Parshenkov, Sergey Koryakin, Polina Skovorodko, Vladimir Shchekin, Vladislav Yakimenko, Zhanna Uruskhanova, Dali Ugurchieva, Ekaterina Pugacheva, Sergey Ivanov, Petr Shegay and Andrey Kaprin
Biomedicines 2024, 12(10), 2195; https://doi.org/10.3390/biomedicines12102195 - 26 Sep 2024
Cited by 2 | Viewed by 2397
Abstract
Background: Radiation-induced liver disease (RILD) is a severe complication arising from radiotherapy, particularly when treating abdominal malignancies such as hepatocellular carcinoma. The liver’s critical role in systemic metabolism and its proximity to other abdominal organs make it highly susceptible to radiation-induced damage. [...] Read more.
Background: Radiation-induced liver disease (RILD) is a severe complication arising from radiotherapy, particularly when treating abdominal malignancies such as hepatocellular carcinoma. The liver’s critical role in systemic metabolism and its proximity to other abdominal organs make it highly susceptible to radiation-induced damage. This vulnerability significantly limits the maximum safe therapeutic dose of radiation, thereby constraining the overall efficacy of radiotherapy. Among the various modalities, electron beam therapy has gained attention due to its ability to precisely target tumors while minimizing exposure to surrounding healthy tissues. However, despite its advantages, the long-term impacts of electron beam exposure on liver tissue remain inadequately understood, particularly concerning chronic injury and fibrosis driven by sustained oxidative stress. Objectives: to investigate the molecular and cellular mechanisms underlying the radioprotective effects of vitamin C in a model of radiation-induced liver disease. Methods: Male Wistar rats (n = 120) were randomly assigned to four groups: control, fractionated local electron irradiation (30 Gy), pre-treatment with vitamin C before irradiation, and vitamin C alone. The study evaluated the effects of electron beam radiation and vitamin C on liver tissue through a comprehensive approach, including biochemical analysis of serum enzymes (ALT, AST, ALP, and bilirubin), cytokine levels (IL-1β, IL-6, IL-10, and TNF-α), and oxidative stress markers (MDA and SOD). Histological and morphometric analyses were conducted on liver tissue samples collected at 7, 30, 60, and 90 days, which involved standard staining techniques and advanced imaging, including light and electron microscopy. Gene expression of Bax, Bcl-2, and caspase-3 was analyzed using real-time PCR. Results: The present study demonstrated that fractional local electron irradiation led to significant reductions in body weight and liver mass, as well as marked increases in biochemical markers of liver damage (ALT, AST, ALP, and bilirubin), inflammatory cytokines (IL-1β, IL-6, and TNF-α), and oxidative stress markers (MDA) in the irradiated group. These changes were accompanied by substantial histopathological alterations, including hepatocyte degeneration, fibrosis, and disrupted microvascular circulation. Pre-treatment with vitamin C partially mitigated these effects, reducing the severity of the liver damage, oxidative stress, and inflammation, and preserving a more favorable balance between hepatocyte proliferation and apoptosis. Overall, the results highlight the potential protective role of vitamin C in reducing radiation-induced liver injury, although the long-term benefits require further investigation. Conclusions: The present study highlights vitamin C’s potential as a radioprotective agent against electron beam-induced liver damage. It effectively reduced oxidative stress, apoptosis, and inflammation, particularly in preventing the progression of radiation-induced liver fibrosis. These findings suggest that vitamin C could enhance radiotherapy outcomes by minimizing liver damage, warranting further exploration into its broader clinical applications. Full article
(This article belongs to the Section Drug Discovery, Development and Delivery)
Show Figures

Figure 1

47 pages, 19713 KiB  
Article
Enhancing Drought Resilience through Groundwater Engineering by Utilizing GIS and Remote Sensing in Southern Lebanon
by Nasser Farhat
Hydrology 2024, 11(9), 156; https://doi.org/10.3390/hydrology11090156 - 21 Sep 2024
Cited by 1 | Viewed by 2128
Abstract
Countries face challenges of excess, scarcity, pollution, and uneven water distribution. This study highlights the benefits of advances in groundwater engineering that improve the understanding of utilizing local geological characteristics due to their crucial role in resisting drought in southern Lebanon. The type [...] Read more.
Countries face challenges of excess, scarcity, pollution, and uneven water distribution. This study highlights the benefits of advances in groundwater engineering that improve the understanding of utilizing local geological characteristics due to their crucial role in resisting drought in southern Lebanon. The type of drought in the region was determined using the Standardized Precipitation Index (SPI), Standardized Vegetation Index (NDVI), Vegetation Condition Index (VCI), and Soil Moisture Anomaly Index (SM). The dry aquifer and its characteristics were analyzed using mathematical equations and established hydrogeological principles, including Darcy’s law. Additionally, a morphometric assessment of the Litani River was performed to evaluate its suitability for artificial recharge, where the optimal placement of the water barrier and recharge tunnels was determined using Spearman’s rank correlation coefficient. This analysis involved excluding certain parameters based on the Shapiro–Wilk test for normality. Accordingly, using the Geographic Information System (GIS), we modeled and simulated the potential water table. The results showed the importance and validity of linking groundwater engineering and morphometric characteristics in combating the drought of groundwater layers. The Eocene layer showed a clearer trend for the possibility of being artificially recharged from the Litani River than any other layer. The results showed that the proposed method can enhance artificial recharge, raise the groundwater level to four levels, and transform it into a large, saturated thickness. On the other hand, it was noted that the groundwater levels near the surface will cover most of the area of the studied region and could potentially store more than one billion cubic meters of water, mitigating the effects of climate change for decades. Full article
(This article belongs to the Section Surface Waters and Groundwaters)
Show Figures

Figure 1

10 pages, 4541 KiB  
Article
Deciphering the Hearts: Geometric Morphometrics Reveals Shape Variation in Abatus Sea Urchins across Subantarctic and Antarctic Seas
by Fernando Moya, Jordan Hernández, Manuel J. Suazo, Thomas Saucède, Paul Brickle, Elie Poulin and Hugo A. Benítez
Animals 2024, 14(16), 2376; https://doi.org/10.3390/ani14162376 - 16 Aug 2024
Viewed by 1179
Abstract
Abatus is a genus of irregular brooding sea urchins to the Southern Ocean. Among the 11 described species, three shared morphological traits and present an infaunal lifestyle in the infralittoral from the Subantarctic province; A. cavernosus in Patagonia, A. cordatus in Kerguelen, and [...] Read more.
Abatus is a genus of irregular brooding sea urchins to the Southern Ocean. Among the 11 described species, three shared morphological traits and present an infaunal lifestyle in the infralittoral from the Subantarctic province; A. cavernosus in Patagonia, A. cordatus in Kerguelen, and A. agassizii in Tierra del Fuego and South Shetlands. The systematic of Abatus, based on morphological characters and incomplete phylogenies, is complex and largely unresolved. This study evaluates the shape variation among these species using geometric morphometrics analysis (GM). For this, 72 individuals from four locations; South Shetlands, Kerguelen, Patagonia, and Falklands/Malvinas were photographed, and 37 landmarks were digitized. To evaluate the shape differences among species, a principal component analysis and a Procrustes ANOVA were performed. Our results showed a marked difference between the Falklands/Malvinas and the other localities, characterized by a narrower and more elongated shape and a significant influence of location in shape but not sex. Additionally, the effect of allometry was evaluated using a permutation test and a regression between shape and size, showing significant shape changes during growth in all groups. The possibility that the Falklands/Malvinas group shows phenotypic plasticity or represents a distinct evolutionary unit is discussed. Finally, GM proved to be a powerful tool to differentiate these species, highlighting its utility in systematic studies. Full article
Show Figures

Figure 1

18 pages, 4681 KiB  
Article
Genetic Diversity and Relationships among Indian Jujube (Ziziphus mauritiana Lamk.) Cultivars Using Morphometric Characteristics, matK Barcoding, and ISSR Markers
by Mahmoud Abdel-Sattar, Rashid S. Al-Obeed, Hail Z. Rihan and Ghada E. El-Badan
Diversity 2024, 16(6), 313; https://doi.org/10.3390/d16060313 - 23 May 2024
Cited by 3 | Viewed by 2208
Abstract
Indian jujube displays genetic diversity and does not prominently display minute morphometric variations, and this makes correct identification a difficult and long-term task. However, little work has been conducted to bring jujube cultivars into domestication. So, the present study aimed to evaluate eleven [...] Read more.
Indian jujube displays genetic diversity and does not prominently display minute morphometric variations, and this makes correct identification a difficult and long-term task. However, little work has been conducted to bring jujube cultivars into domestication. So, the present study aimed to evaluate eleven cultivars of Indian jujube in terms of the fruit’s morphometric characteristics, as well as molecular marker studies by plastidial megakaryocyte-associated tyrosine kinase (matK) barcoding and inter-simple sequence repeats (ISSR) markers for species differentiation, identification, and relationships among Indian jujube cultivars. The results of the morphometric characteristics showed that the mean geometric diameter, surface area, sphericity, sphericity ratio, shape index, fruit length, fruit diameter, fruit weight, and seed weight varied among cultivars. The results also showed that the color values of L*, a*, and b* for fruits differed in different cultivars. In addition, the results showed a discrepancy in the genetic diversity parameters related to the matK barcoding, ISSR markers, and relationships among Indian jujube cultivars. Substantially, hierarchical clustering by heatmap revealed that ‘Zytoni’ and ‘Um-Sulaem’ with spines seem to be mono-clades distinct from other cultivars, which related to variations in the expression levels of genes. Therefore, they should be relied upon together to distinguish and identify cultivars in order to maximize the effectiveness of local germplasm conservation and exploitation. Full article
Show Figures

Figure 1

18 pages, 3467 KiB  
Article
Implications of Warming on the Morphometric and Reproductive Traits of the Green Crab, Carcinus maenas
by João N. Monteiro, Juan Bueno-Pardo, Miguel Pinto, Miguel A. Pardal, Filipe Martinho and Francisco Leitão
Fishes 2023, 8(10), 485; https://doi.org/10.3390/fishes8100485 - 27 Sep 2023
Cited by 4 | Viewed by 1889
Abstract
Understanding the relationship between environmental temperature and the biological traits of organisms is fundamental to inferring the potential impacts of climate change. In the case of marine poikilotherm species, seawater temperature is one of the main driving forces of biological processes, with consequences [...] Read more.
Understanding the relationship between environmental temperature and the biological traits of organisms is fundamental to inferring the potential impacts of climate change. In the case of marine poikilotherm species, seawater temperature is one of the main driving forces of biological processes, with consequences at higher levels of organization such as population and ecosystem. In this study, we analysed differences in maximum carapace width (CWmax), size at maturation, relative size at maturation, and duration of the reproductive season for the green crab (Carcinus maenas) along a temperature gradient. An extensive review of bibliographic data was performed on studies published between 1962 and 2020, gathering C. maenas data from 55 different populations, spread over 20 degrees of latitude and 14.2 °C of sea surface temperature (SST). In addition, green crab data were collected at five different lagoons and estuaries along the continental Portuguese coast. The relationship between average SST and CWmax, age of maturation, reduction of size at maturation, and duration of egg bearing was analysed to understand the role of SST in driving variation in these C. maenas characteristics across a latitudinal gradient. There was a significant relationship between SST and CWmax for males and SST and CW of females at maturation, respectively. The results extrapolate for each local projected temperature increase caused by climate change and suggest an effect on the morphometric and reproductive traits of C. maenas across regions. These changes comprise an overall reduction in C. maenas body size, an enlargement of the reproductive season, a shortening in the duration of larval developmental time, and a decrease in the relative size of crabs at maturation. Secondary consequences on the fecundity and connectivity of populations are discussed. Full article
(This article belongs to the Special Issue Response of Aquatic Animals to Environmental Changes)
Show Figures

Figure 1

11 pages, 3888 KiB  
Article
Incidence of Morphological Defects in Sperm of Mice Exposed to Hospital Effluent
by Priyanka Mathur, Kusum Rani, Pradeep Bhatnagar and Swaran Jeet Singh Flora
Toxics 2023, 11(5), 418; https://doi.org/10.3390/toxics11050418 - 29 Apr 2023
Cited by 1 | Viewed by 2357
Abstract
Hospital effluents are loaded with drugs, radioactive elements, pathogens, etc. Effluents from treatment plants at source sites may get mixed up with potable water, leading to numerous detrimental/toxic effects. In this study, efforts were made to investigate the toxic effects of one such [...] Read more.
Hospital effluents are loaded with drugs, radioactive elements, pathogens, etc. Effluents from treatment plants at source sites may get mixed up with potable water, leading to numerous detrimental/toxic effects. In this study, efforts were made to investigate the toxic effects of one such effluent from a local hospital on the reproductive characteristics of mice when orally administered daily for 60 consecutive days. We primarily focused on the changes in the morphology of the sperm and its geometric morphometrics, i.e., sperm head length and width, area, and perimeter, measured using ImageJ software. The incidence of sperm defects was recorded, and variations in the morphometrics were analyzed by one-way ANOVA using Tukey’s post hoc test. A physico-chemical characterization of the water samples was also performed to assess the basic water quality. In summary, the study revealed the critical role of treated water in inducing different abnormalities in sperm, such as the absence of a head, bent necks, abnormal neck attachment, highly coiled tails, and missing tails. Significant differences (p < 0.01 **, p < 0.001 ***) in the morphometrics of spermatozoa with banana heads, hammer heads, missing heads, pin heads, and missing hooks were noted compared to corresponding controls. It could thus be concluded that treated hospital effluent is still inadequately clean and contains significant amounts of toxicants that might be detrimental to sperm quality. Full article
(This article belongs to the Special Issue Environmental Exposure and Reproductive Health)
15 pages, 10500 KiB  
Article
Biomarkers of Tumor Heterogeneity in Glioblastoma Multiforme Cohort of TCGA
by Garrett Winkelmaier, Brandon Koch, Skylar Bogardus, Alexander D. Borowsky and Bahram Parvin
Cancers 2023, 15(8), 2387; https://doi.org/10.3390/cancers15082387 - 20 Apr 2023
Cited by 2 | Viewed by 2802
Abstract
Tumor Whole Slide Images (WSI) are often heterogeneous, which hinders the discovery of biomarkers in the presence of confounding clinical factors. In this study, we present a pipeline for identifying biomarkers from the Glioblastoma Multiforme (GBM) cohort of WSIs from TCGA archive. The [...] Read more.
Tumor Whole Slide Images (WSI) are often heterogeneous, which hinders the discovery of biomarkers in the presence of confounding clinical factors. In this study, we present a pipeline for identifying biomarkers from the Glioblastoma Multiforme (GBM) cohort of WSIs from TCGA archive. The GBM cohort endures many technical artifacts while the discovery of GBM biomarkers is challenged because “age” is the single most confounding factor for predicting outcomes. The proposed approach relies on interpretable features (e.g., nuclear morphometric indices), effective similarity metrics for heterogeneity analysis, and robust statistics for identifying biomarkers. The pipeline first removes artifacts (e.g., pen marks) and partitions each WSI into patches for nuclear segmentation via an extended U-Net for subsequent quantitative representation. Given the variations in fixation and staining that can artificially modulate hematoxylin optical density (HOD), we extended Navab’s Lab method to normalize images and reduce the impact of batch effects. The heterogeneity of each WSI is then represented either as probability density functions (PDF) per patient or as the composition of a dictionary predicted from the entire cohort of WSIs. For PDF- or dictionary-based methods, morphometric subtypes are constructed based on distances computed from optimal transport and linkage analysis or consensus clustering with Euclidean distances, respectively. For each inferred subtype, Kaplan–Meier and/or the Cox regression model are used to regress the survival time. Since age is the single most important confounder for predicting survival in GBM and there is an observed violation of the proportionality assumption in the Cox model, we use both age and age-squared coupled with the Likelihood ratio test and forest plots for evaluating competing statistics. Next, the PDF- and dictionary-based methods are combined to identify biomarkers that are predictive of survival. The combined model has the advantage of integrating global (e.g., cohort scale) and local (e.g., patient scale) attributes of morphometric heterogeneity, coupled with robust statistics, to reveal stable biomarkers. The results indicate that, after normalization of the GBM cohort, mean HOD, eccentricity, and cellularity are predictive of survival. Finally, we also stratified the GBM cohort as a function of EGFR expression and published genomic subtypes to reveal genomic-dependent morphometric biomarkers. Full article
Show Figures

Figure 1

18 pages, 1382 KiB  
Article
A Quasiconformal-Based Geometric Model for Craniofacial Analysis and Its Application
by Ming-Hei Wong, Meixi Li, King-Man Tam, Hoi-Man Yuen, Chun-Ting Au, Kate Ching-Ching Chan, Albert Martin Li and Lok-Ming Lui
Axioms 2023, 12(4), 393; https://doi.org/10.3390/axioms12040393 - 18 Apr 2023
Viewed by 2452
Abstract
We address the problem of craniofacial morphometric analysis using geometric models, which has important clinical applications for the diagnosis of syndromes associated with craniofacial dysmorphologies. In this work, a novel geometric model is proposed to analyze craniofacial structures based on local curvature information [...] Read more.
We address the problem of craniofacial morphometric analysis using geometric models, which has important clinical applications for the diagnosis of syndromes associated with craniofacial dysmorphologies. In this work, a novel geometric model is proposed to analyze craniofacial structures based on local curvature information and Teichmüller mappings. A key feature of the proposed model is that its pipeline starts with few two-dimensional images of the human face captured at different angles, from which the three-dimensional craniofacial structure can be reconstructed. The 3D surface reconstruction from 2D images is based on a modified 3D morphable model (3DMM) framework. Geometric quantities around important feature landmarks according to different clinical applications can then be computed on each three-dimensional craniofacial structure. Together with the Teichmüller mapping, the landmark-based Teichmüller curvature distances (LTCDs) for every classes can be computed, which are further used for three-class classification. A composite score model is used and the parameter optimization is carried out to further improve the classification accuracy. Our proposed model is applied to study the craniofacial structures of children with and without the obstructive sleep apnoea (OSA). Sixty subjects, with accessible multi-angle photography and polysomnography (PSG) data, are divided into three classes based on the severity of OSA. Using our proposed model, our proposed model achieves a high 90% accuracy, which outperforms other existing models. This demonstrates the effectiveness of our proposed geometric model for craniofacial analysis. Full article
Show Figures

Figure 1

Back to TopTop