Enhancing Drought Resilience through Groundwater Engineering by Utilizing GIS and Remote Sensing in Southern Lebanon
Abstract
:1. Introduction
2. Methods
2.1. Data Sources
2.2. Remote Sensing
2.3. Geographical Information Systems
2.4. Modeling and Simulation
2.5. Geomorphic Indices
2.6. Statistical Techniques
3. Results
3.1. Climate Elements and Water Resources
3.2. Tectonic Influence on Water Resources
- -
- Nabatieh–Bint Jbeil Concave: This concave takes the shape of a rectangle from the south, at the Lebanese–Palestinian border, to the north, in the Iqlim al-Tuffah area (Figure 4 and Figure 5). Its surface is covered by continental Neogene limestone rocks (Mcg), followed by Eocene rocks (E2) in the center of its axis, and on the edges, Cretaceous rocks (C4) appear. Moreover, due to the high horizontal pressure on the sides, the rock masses thinned in the middle and formed a concave ripple, or what is referred to as a syncline. The main factor in its formation was the presence of resilient and soft rock strata that tectonic movements could not break (Senonian C6 and Albian C3), which allowed it to form the rocky undulations that contributed to its formation. The axis of this concave inclines from the north and from the south toward the center at the stream of the Litani River [87], while its sides are unequal and incline toward Al-Hula in Palestine (Figure 4).
- -
- The convex of Jebel Amel: This convex is complementary to the concave of Nabatieh–Bint Jbeil from its western side. It begins to slope toward the sea from its axis at the town of Ansar in the district of Nabatieh and the city of Bint Jbeil (Figure 4 and Figure 5), and it contributes to groundwater flow to the sea, causing springs to discharge several kilometers from the shore, opposite the city of Tyr and the town of Khaizran.
3.3. Stratigraphy and Lithology in the Study Area
- The Cretaceous period:
3.4. Geomorphological Features
3.5. Karst and Rock Permeability Are Positive Indicators of Groundwater
3.6. Assessing Drought Conditions on the Surface and in the Subsurface Using Remote Sensing
3.7. Hydrogeological Concept and Groundwater in the Study Area
3.7.1. Eocene Aquifers
Physical Characteristics
The Direction of Groundwater Flow
Natural Recharge Eocene Aquifers
Geometry of the Eocene Aquifer
3.8. Support for the Eocene Aquifer with Clean Water Resources from the Litani River
3.8.1. Morphometric Characteristics of the Litani River Basin in the Study Area
- Form factor (Ff)
- 2.
- Circularity ratio (Rc)
- 3.
- Elongation ratio (Re)
- 4.
- Compactness coefficient (Kc)
- 5.
- Basin relief (H)
- 6.
- Hypsometric Curve of the Basin
- 7.
- Rainwater Harvesting Potential Index (RWHPI)
- 8.
- Drainage density (Dd)
- 9.
- Constant of channel maintenance (Cm)
- 10.
- Stream frequency (F)
- 11.
- Stream length ratio (Rl)
- 12.
- Bifurcation ratio (Br)
- 13.
- Sinuosity (S)
- 14.
- Mean stream length (Lm)
- 15.
- Relief gradient (Rg)
3.8.2. Artificial Recharge
3.8.3. Dam Properties
3.8.4. Geomorphic Indices for Dam Construction
3.8.5. Characteristics of the Dam
3.8.6. Artificial Recharge by Tunnel
3.9. Using GISs to Determine Areas Benefiting from Groundwater According to Their Proximity to the Surface
3.9.1. The 0 m Depth of the Water Table
3.9.2. The 150 m Depth of the Water Table
3.9.3. The 250 m Depth of the Water Table
3.9.4. The Layer of the Water Table at a Depth of up to 250 m
4. Discussion
4.1. Water Projects and Proposed Recommendations to Confront Drought
4.2. Potential Environmental and Ecological Issues
4.3. Future Research
Groundwater Modeling and Simulation
5. Conclusions
- Level zero: This pertains to areas where the water table reaches the surface, forming sustainable streams, rivers, and swamps.
- The 150 m level: These areas encompass locations where the water table is situated at a depth of 0 to 150 m below the ground surface.
- The 250 m level: This level corresponds to areas where the water table is 150 to 250 m below the ground surface.
- Depths exceeding 250 m: This level encompasses the remaining areas situated above the Eocene Strata, with the water table depth ranging from 250 to 540 m, extending to the base of the Eocene Strata.
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, L.; Peng, Q.; Li, Z.; Cai, H. Evolution of drought characteristics and propagation from meteorological to agricultural drought under the influences of climate change and human activities. Environ. Sci. Pollut. Res. 2024, 31, 26713–26736. [Google Scholar] [CrossRef] [PubMed]
- Cheng, X.; Xu, Y.; Chen, J.; Liu, Q. The Impact of Climatic Conditions, Human Activities, and Catchment Characteristics on the Propagation from Meteorological to Agricultural and Hydrological Droughts in China. J. Geophys. Res. 2023, 128, 24. [Google Scholar] [CrossRef]
- Saha, A.; Pal, S.; Chowdhuri, I.; Roy, P.; Chakrabortty, R.; Shit, M. Vulnerability assessment of drought in India: Insights from meteorological, hydrological, agricultural and socio-economic perspectives. Glob. Planet. Chang. 2022, 123, 68–88. [Google Scholar] [CrossRef]
- Van Lanen, H.A.J.; Wanders, N.; Tallaksen, L.M.; Van Loon, A.F. Hydrological drought across the world: Impact of climate and physical catchment structure. Hydrol. Earth Syst. Sci. 2013, 17, 1715–1732. [Google Scholar] [CrossRef]
- Mishra, A.K.; Singh, V.P. A review of drought concepts. J. Hydrol. 2010, 391, 202–216. [Google Scholar] [CrossRef]
- Tallaksen, L.M.; Hisdal, H.; van Lanen, H.A.J. Space-time modelling of catchment scale drought characteristics. J. Hydrol. 2009, 375, 363–372. [Google Scholar] [CrossRef]
- Tallaksen, L.M.; Van Lanen, H.A.J. (Eds.) Hydrological Drought. Processes and Estimation Methods for Streamflow and Groundwater. In Developments in Water Science; Elsevier Science B.V.: Amsterdam, The Netherlands, 2004; Volume 48, p. 579. [Google Scholar]
- Fink, A.H.; Brucher, T.; Kruger, A.; Leckebush, G.C.; Pinto, J.G.; Ulbrich, U. The 2003 European summer heatwaves and drought—Synoptic diagnosis and impacts. Weather 2006, 59, 209–216. [Google Scholar] [CrossRef]
- Lloyd-Hughes, B.; Saunders, M.A. A drought climatology for Europe. Int. J. Climatol. 2002, 22, 1571–1592. [Google Scholar] [CrossRef]
- Zittis, G.; Almazroui, M.; Alpert, P.; Ciais, P.; Cramer, W.; Dahdal, Y.; Fnais, M.; Francis, D.; Hadjinicolaou, P.; Howari, F.; et al. Climate Change and Weather Extremes in the Eastern Mediterranean and Middle East. Rev. Geophys. 2022, 60, e2021RG000762. [Google Scholar] [CrossRef]
- Cramer, W.; Guiot, J.; Fader, M.; Garrabou, J.; Gattuso, J.P.; Iglesias, A.; Lange, M.A.; Lionello, P.; Llasat, M.C.; Paz, S.; et al. Climate change and interconnected risks to sustainable development in the Mediterranean. Nature Clim. Chang. 2018, 8, 972–980. [Google Scholar] [CrossRef]
- Lelieveld, J.; Hadjinicolaou, P.; Kostopoulou, E.; Chenoweth, J.; El Maayar, M.; Giannakopoulos, C.; Hannides, C.; Lange, M.A.; Tanarhte, M.; Tyrlis, E.; et al. Climate change and impacts in the Eastern Mediterranean and the Middle East. Clim. Chang. 2012, 114, 667–687. [Google Scholar] [CrossRef] [PubMed]
- Hochman, A.; Marra, F.; Messori, G.; Raveh-Rubin, S.; Yosef, I.; Zittis, G.; Pinto, J.G. Extreme weather and related societal impacts over the Eastern Mediterranean: A systematic review. Earth Syst. Dyn. 2022, 13, 749–777. [Google Scholar] [CrossRef]
- Spinoni, J.; Barbosa, P.; Füssel, H.-M.; McCormick, N.; Vogt, J.V.; Dosio, A. Global population-weighted degree-day projections for a combination of climate and socio-economic scenarios. Int. J. Climatol. 2021, 41, 5447–5464. [Google Scholar] [CrossRef]
- Zittis, G.; Hadjinicolaou, P.; Klangidou, M.; Proestos, Y.; Lelieveld, J. A multi-model, multi-scenario, and multi-domain analysis of regional climate projections for the Mediterranean. Reg. Environ. Chang. 2019, 19, 2621–2635. [Google Scholar] [CrossRef]
- Cook, I.; Anchukaitis, K.J.; Touchan, R.; Meko, M.; Cook, B.I. Spatiotemporal drought variability in the Mediterranean over the last 900 years. J. Geophys. Res. Atmos. 2016, 121, 1184–1199. [Google Scholar] [CrossRef] [PubMed]
- Guha-Sapir, D.; Below, R.; Hoyois, P. EM-DAT: International Disaster Database. Universitécatholique de Louvain—CRED, 2015, Brussels, Belgium. Available online: http://www.emdat.be/ (accessed on 25 December 2023).
- NOAA-NCEI. U.S. Billion-Dollar Weather and Climate Disasters. 2021. Available online: https://www.ncdc.noaa.gov/billions/ (accessed on 14 June 2023). [CrossRef]
- National Drought Mitigation Center. University of Nebraska-Lincoln. 2024. Available online: https://drought.unl.edu/ (accessed on 2 May 2024).
- ARSET—Drought Monitoring, Prediction, and Projection Using NASA Earth System Data. NASA Applied Remote Sensing Training Program. 2024. Available online: http://appliedsciences.nasa.gov/get-involved/training/english/arset-drought-monitoring-prediction-and-projection-using-nasa-earth (accessed on 24 July 2024).
- Farhat, N.; Sleiman, W. Potential natural obstacles to groundwater engineering. Civil Eng. Appl. J. 2023, 4, 46–61. [Google Scholar] [CrossRef]
- Stevanović, Z. Karst waters in potable water supply: A global scale overview. Environ. Earth Sci. 2019, 78, 1–12. [Google Scholar] [CrossRef]
- Peters, E.; Bier, G.; van Lanen, H.A.J.; Torfs, P.J.J.F. Propagation and spatial distribution of drought in a groundwater catchment. J. Hydrol. 2006, 321, 257–275. [Google Scholar] [CrossRef]
- Müller, J.D.; Gruber, N.; Carter, B.; Feely, R.; Ishii, M.; Lange, N.; Lauvset, S.K.; Murata, A.; Olsen, A.; Pérez, F.F.; et al. Decadal Trends in the Oceanic Storage of Anthropogenic Carbon from 1994 to 2014. AGU Adv. 2023, 4, e2023AV000875. [Google Scholar] [CrossRef]
- Leblanc, M.J.; Tregoning, P.; Ramillien, G.; Tweed, S.O.; Fakes, A. Basin-scale, integrated observations of the early 21st century multiyear drought in southeast Australia. Water Resour. Res. 2009, 45, W04408. [Google Scholar] [CrossRef]
- Peters, E.; van Lanen, H.A.J.; Torfs, P.J.J.F.; Bier, G. Drought in groundwater—Drought distribution and performance indicators. J. Hydrol. 2005, 306, 302–317. [Google Scholar] [CrossRef]
- Peters, E.; Torfs, P.J.J.F.; van Lanen, H.A.J.; Bier, G. Propagation of drought through groundwater—A new approach using linear reservoir theory. Hydrol. Process. 2003, 17, 3023–3040. [Google Scholar] [CrossRef]
- Eltahir, E.A.B.; Yeh, P.J.-F. On the asymmetric response of aquifer water level to floods and droughts in Illinois. Water Resour. Res. 1999, 35, 1199–1217. [Google Scholar] [CrossRef]
- Aranguren-Díaz, Y.; Galán-Freyle, N.J.; Guerra, A.; Manares-Romero, A.; Pacheco-Londoño, L.C.; Romero-Coronado, A.; Vidal-Figueroa, N.; Machado-Sierra, E. Aquifers and Groundwater: Challenges and Opportunities in Water Resource Management in Colombia. Water 2024, 16, 685. [Google Scholar] [CrossRef]
- Eduvie, M.; Musilim, I. Groundwater recharge, rainwater harvesting and regulations for sustainable water resources development in Nigeria. In Managed Groundwater Recharge and Rainwater Harvesting; Springer: Berlin/Heidelberg, Germany, 2024; pp. 1–15. [Google Scholar] [CrossRef]
- Fan, Y.; Miguez-Macho, G.; Weaver, C.P.; Walko, R.L.; Robock, A. Incorporating water table dynamics in climate modeling: 1. Water table observations and equilibrium water table simulations. J. Geophys. Res. 2007, 112, D10125. [Google Scholar] [CrossRef]
- Haitjema, H.M.; Mitchell-Bruker, S. Are water tables a subdued replica of the topography? Ground Water 2005, 43, 781–786. [Google Scholar] [CrossRef]
- Devito, K.; Creed, I.; Gan, T.; Mendoza, C.; Petrone, R.; Silins, U.; Smerdon, B. A framework for broad-scale classification of hydrologic response units on the Boreal Plain: Is topography the last thing to consider? Hydrol. Process. 2005, 19, 1705–1714. [Google Scholar] [CrossRef]
- Wolock, D.M.; Winter, T.C.; McMahon, G. Delineation and evaluation of hydrologic-landscape regions in the United States using geographic information system tools and multivariate statistical analyses. Environ. Manag. 2004, 34, S71–S88. [Google Scholar] [CrossRef]
- Winter, T.C. Relation of streams, lakes, and wetlands to groundwater flow systems. Hydrogeol. J. 1999, 7, 28–45. [Google Scholar] [CrossRef]
- Salvucci, G.D.; Entekhabi, D. Hillslope and climatic controls on hydrologic fluxes. Water Resour. Res. 1995, 31, 1725–1739. [Google Scholar] [CrossRef]
- Toth, J. A conceptual model of the groundwater regime and the hydrogeological environment. J. Hydrol. 1970, 10, 164–176. [Google Scholar] [CrossRef]
- Chen, F.; Crow, W.T.; Bindlish, R.; Colliander, A.; Burgin, M.S.; Asanuma, J.; Aida, K. Global-scale evaluation of SMAP, SMOS and ASCAT soil moisture products using triple collocation. Remote Sens. Environ. 2018, 214, 1–13. [Google Scholar] [CrossRef]
- Frash, L.P.; Carey, J.W.; Welch, N.J. Scalable en echelon shear-fracture aperture-roughness mechanism: Theory, validation, and implications. J. Geophys. Res. Solid Earth 2019, 124, 957–977. [Google Scholar] [CrossRef]
- McBeck, J.; Kandula, N.; Aiken, J.M.; Cordonnier, B.; Renard, F. Isolating the factors that govern fracture development in rocks throughout dynamic in situ X-ray tomography experiments. Geophys. Res. Lett. 2019, 46, 11127–11135. [Google Scholar] [CrossRef]
- Shoemaker, W.B.; Kuniansky, E.L.; Birk, S.; Bauer, S.; Swain, E.D. Documentation of a Conduit Flow Process (CFP) for MODFLOW-2005 (Vol. 6); US Department of the Interior, US Geological Survey: Reston, VA, USA, 2008. Available online: http://www.usgs.gov/pubprod (accessed on 12 June 2024).
- Bonnet, E.; Bour, O.; Odling, N.E.; Davy, P.; Main, I.; Cowie, P.; Berkowitz, B. Scaling of fracture systems in geological media. Rev. Geophys. 2001, 39, 347–383. [Google Scholar] [CrossRef]
- Javadi, M.; Sharifzadeh, M.; Shahriar, K.; Mitani, Y. Critical Reynolds number for nonlinear flow through rough-walled fractures: The role of shear processes. Water Resour. Res. 2014, 50, 1789–1804. [Google Scholar] [CrossRef]
- Rutqvist, J.; Tsang, C.F. Multiphysics processes in partially saturated fractured rock: Experiments and models from Yucca Mountain. Rev. Geophys. 2012, 50, 65–81. [Google Scholar] [CrossRef]
- Hyman, J.D.; Aldrich, G.; Viswanathan, H.; Makedonska, N.; Karra, S. Fracture size and transmissivity correlations: Implications for transport simulations in sparse three-dimensional discrete fracture networks following a truncated power law distribution of fracture size. Water Resour. Res. 2016, 52, 6472–6489. [Google Scholar] [CrossRef]
- Antonellini, M.; Mollema, P.N.; Del Sole, L. Application of analytical diffusion models to outcrop observations: Implications for mass transport by fluid flow through fractures. Water Resour. Res. 2017, 53, 5545–5566. [Google Scholar] [CrossRef]
- Maldaner, C.H.; Munn, J.D.; Coleman, T.I.; Molson, J.W.; Parker, B.L. Groundwater flow quantification in fractured rock boreholes using active distributed temperature sensing under natural gradient conditions. Water Resour. Res. 2019, 55, 3285–3306. [Google Scholar] [CrossRef]
- Ford, D.; Williams, P.D. Karst Hydrogeology and Geomorphology; John Wiley & Sons: Hoboken, NJ, USA, 2007. [Google Scholar] [CrossRef]
- Stevanović, Z. Karst Aquifers-Characterization and Engineering; Springer: Berlin/Heidelberg, Germany, 2015; Volume 44. [Google Scholar] [CrossRef]
- IGRAC. Groundwater overview. In Making the Invisible Visible; International Groundwater Resources Assessment Centre: Delft, The Netherlands, 2018; pp. 1–60. [Google Scholar]
- Wan, W.; Döll, P.; Schmied, H.M. Global-scale groundwater recharge modeling is improved by tuning against ground-based estimates for karst and non-karst areas. Water Resour. Res. 2024, 60, e2023WR036182. [Google Scholar] [CrossRef]
- Gleeson, T.; Cuthbert, M.O.; Ferguson, G.; Perrone, D. Global groundwater sustainability, resources, and systems in the Anthropocene. Annu. Rev. Earth Planet. Sci. 2020, 48, 431–463. [Google Scholar] [CrossRef]
- Bucheli, J.; Dalhaus, T.; Finger, R. The optimal drought index for designing weather index insurance. Eur. Rev. Agric. Econ. 2021, 48, 573–597. [Google Scholar] [CrossRef]
- Nath, S.; Shyanti, R.K.; Nath, Y. Influence of anthropocene climate change on biodiversity loss in different ecosystems. In Global Climate Change; Elsevier: Amsterdam, The Netherlands, 2021; pp. 63–78. [Google Scholar] [CrossRef]
- Peace, N. Impact of climate change on insect, pest, disease, and animal biodiversity. Int. J. Environ. Sci. Nat. Res. 2020, 23, 151–153. [Google Scholar] [CrossRef]
- Cuthbert, M.O.; Gleeson, T.; Moosdorf, N.; Befus, K.M.; Schneider, A.; Hartmann, J.; Lehner, B. Global patterns and dynamics of climate–groundwater interactions. Nature Clim. Chang. 2019, 9, 137–141. [Google Scholar] [CrossRef]
- Döll, P. Vulnerability to the impact of climate change on renewable groundwater resources: A global-scale assessment. Environ. Res. Lett. 2009, 4, 035006. [Google Scholar] [CrossRef]
- Green, T.R.; Taniguchi, M.; Kooi, H.; Gurdak, J.J.; Allen, D.M.; Hiscock, K.M.; Aureli, A. Beneath the surface of global change: Impacts of climate change on groundwater. J. Hydrol. 2011, 405, 532–560. [Google Scholar] [CrossRef]
- Maxwell, R.M.; Condon, L.E. Connections between groundwater flow and transpiration partitioning. Science 2016, 353, 377–380. [Google Scholar] [CrossRef]
- Maxwell, R.M.; Kollet, S.J. Interdependence of groundwater dynamics and land-energy feedbacks under climate change. Nat. Geosci. 2008, 1, 665–669. [Google Scholar] [CrossRef]
- Colin, J.; Decharme, B.; Cattiaux, J.; Saint-Martin, D. Groundwater Feedbacks on Climate Change in the CNRM Global Climate Model. J. Climate 2023, 36, 7599–7617. [Google Scholar] [CrossRef]
- Berry, B. Inductive Approach to the Regionalization of Economic Development. Res. Pap. Univ. Chicago Dep. Geogr. 1960, 6, 83–84. [Google Scholar] [CrossRef]
- Pearson, K. Mathematical contributions to the theory of evolution. III. Regression, heredity, and panmixia. Phil. Trans. R. Soc. A 1896, 187, 253–318. [Google Scholar]
- Schober, P.; Boer, C.; Schwarte, L.A. Correlation Coefficients: Appropriate Use and Interpretation. Anesth. Analg. 2018, 126, 1763–1768. [Google Scholar] [CrossRef] [PubMed]
- Royston, P. Remark AS R94, a remark on Algorithm AS 181, the W-test for normality. J. R. Stat. Soc. Ser. C Appl. Stat. 1995, 44, 547–551. [Google Scholar] [CrossRef]
- Alibou, J. Impact des Changements Climatiques sur les Ressources en eau et les Zones Humides du Maroc; Centre d’Etudes et de Recherches sur les Systèmes Hydrauliques et Environnementaux, EHTP: Maroc, Rabat, 2002. [Google Scholar]
- European Environment Agency (EEA). Climate Change, Impacts and Vulnerability in Europe (2012)—An Indicator-Based Report. Report No 12/2012. Available online: http://www.eea.europa.eu/publications/climate-impacts-and-vulnerability-2012 (accessed on 14 June 2023).
- Farhat, N. Effect of relative humidity on evaporation rates in Nabatieh Region. Leb. Sci. J. 2018, 19, 59–66. [Google Scholar] [CrossRef]
- Panizza, M. Geomorfologia; Pitagora Editrice: Bologna, Italia, 2007. [Google Scholar]
- Bloomfield, J.P.; Marchant, B.P. Analysis of groundwater drought building on the standardised precipitation index approach. Hydrol. Earth Syst. Sci. 2013, 17, 4769–4787. [Google Scholar] [CrossRef]
- Apaydin, H.; Sonmez, F.K.; Yildirim, Y.E. Spatial interpolation techniques for climate data in the GAP region in Turkey. Clim. Res. 2004, 28, 31–40. [Google Scholar] [CrossRef]
- Farhat, N.; Fadel, B.; Damirji, B. A model based on GIS and climate criteria to locate optimal solar power plant sites. J. Agric. For. Meteorol. Stud. 2023, 2, 1–13. Available online: https://manuscriptscientific.com/article/5/journal-of-agriculture-and-forest-meteorology-studies/180/1 (accessed on 11 June 2023). [CrossRef]
- Holper, P. Cloud Seeding, Trying to Artificially Generate Additional Rainfall from Clouds. CSIRO, Marine and Atmospheric Research. 2001. Available online: https://www.cmar.csiro.au/e-print/open/holper_2001c.htm (accessed on 5 June 2024).
- Kelley, C.; Mohtadi, S.; Cane, M.A.; Seager, R.; Kushnir, Y. Climate change in the Fertile Crescent and implications of the recent Syrian drought. Proc. Natl. Acad. Sci. USA 2015, 112, 3241–3246. [Google Scholar] [CrossRef]
- Sgobbi, A.; Carraro, C. Climate Change Impacts and Adaptation Strategies In Italy. An Economic Assessment. Fondazione Eni Enrico Mattei. 2008. Available online: https://ideas.repec.org/p/fem/femwpa/2008.6.html (accessed on 3 April 2024).
- Friedrich, T.; Timmermann, A.; Tigchelaar, M.; Timm, O.E.; Ganopolski, A. Nonlinear climate sensitivity and its implications for future greenhouse warming. Sci. Adv. 2016, 2, e1501923. [Google Scholar] [CrossRef]
- McEnvoy, D.; Huntington, J.L.; Hobbins, M.T.; Wood, A.; Morton, C.; Anderson, M.; Hain, C.; Verdin, J. The Evaporative Demand Drought Index. Part II: CONUS-Wide Assessment against Common Drought Indicators. J. Hydrometeorol. 2016, 17, 1763–1779. [Google Scholar] [CrossRef]
- Flageollet, J.C. Atlas du réchauffement climatique 1971–2010. Physio-Géo 2012, 6. [Google Scholar] [CrossRef]
- Schleussner, C.-F.; Lissner, T.; Fischer, E.; Wohland, J.; Perrette, M.; Golly, A.; Rogelj, J.; Childers, K.; Schewe, J.; Frieler, K.; et al. Differential climate impacts for policy-relevant limits to global warming: The case of 1.5 °C and 2 °C. Earth Syst. Dynam. 2016, 7, 327–351. [Google Scholar] [CrossRef]
- Cushman, J.H.; Tartakovsky, D.M. (Eds.) The Handbook of Groundwater Engineering, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar] [CrossRef]
- Bergaoui, K.; Mitchell, D.; Otto, F.; Allen, M.; Zaaboul, R.; McDonnell, R. The Contribution of Human-Induced Climate Change to the Drought of 2014 in the Southern Levant Region. Bull. Am. Meteorol. Soc. 2015, 96, S66–S70. [Google Scholar] [CrossRef]
- Rodríguez, A. Water Resource Distribution and Tectonics in the Tulum Valley, Western Central Argentina. Int. J. Hydrol. 2018, 2, 55–59. [Google Scholar] [CrossRef]
- Shaban, A.; Keyrouz, L. The geological controls of geothermal groundwater sources in Lebanon. Int. J. Energy Environ. 2013, 4, 787–796. Available online: https://www.ijee.ieefoundation.org/vol4/issue5/IJEE_04_v4n5.pdf (accessed on 5 January 2024).
- Freund, R.; Garfunkel, Z.; Zak, I.; Goldberg, M.; Weisbrod, T.; Derin, B. The shear along the Dead Sea rift. Philos. Trans. R. Soc. London Ser. A 1970, 267, 107–130. Available online: https://www.jstor.org/stable/73612 (accessed on 2 March 2023).
- Quennell, A.M. Tectonics of the Dead Sea rift. In Proceedings of the 20th International Geological Congress, Mexico City, Mexico, 4–11 September 1956; pp. 385–403. [Google Scholar]
- Sanlaville, P. Etude Géomorphologique de la Région Littorale du Liban; Université Libanaise: Beirut, Lebanon, 1977. [Google Scholar]
- PNUD. Programme des Nations Unies pour le Développement. In Rapport Final Intitulé: “Liban Etude des Eaux Souterraines”; NATIONS UNIES: New York, NY, USA, 1970. [Google Scholar]
- Brown, S.R. Simple mathematical model of a rough fracture. J. Geophys. Res. Solid Earth 1995, 100, 5941–5952. [Google Scholar] [CrossRef]
- Yang, Z.; Xue, S.; Zheng, X.; Chen, Y.F. Partitioning dynamics of gravity-driven unsaturated flow through simple T-shaped fracture intersections. Water Resour. Res. 2019, 55, 7130–7142. [Google Scholar] [CrossRef]
- Guo, J.; Zhan, L.; Gou, B.; Zhang, R.; Liu, C.; Li, X.; Ren, J. Formation of fractures in carbonate rocks by pad acid fracturing with different states of carbon dioxide. Petroleum Explor. Dev. 2021, 48, 744–751. [Google Scholar] [CrossRef]
- Shaban, A.; Khawlie, M.; Abdallah, C. Use of remote sensing and GIS to determine recharge potential zones: The case of Occidental Lebanon. Hydrogeol. J. 2006, 14, 433–443. [Google Scholar] [CrossRef]
- Dubertret, L. Carte géologique de la Syrie et de Liban au 1/50000me; Minister des Travaux Publics: Beyrouth, Lebanon, 1953. [Google Scholar]
- Shaban, A.; Farhat, N.; Fadel, B.; Sheib, A.; Bitar, A.; Darwish, D. LithoSFR Model for Mapping Groundwater Potential Zones Using Remote Sensing and GIS. Water 2024, 16, 1951. [Google Scholar] [CrossRef]
- Shaban, A.; Bou Kheir, R.; Froidefond, J.; Khawlie, M.; Girard, M. Characterisation of morphometric factors of hydrographic networks corresponding to the infiltration capacities of rocks in western Lebanon. Z. Für Geomorphol. 2004, 48, 79–94. [Google Scholar] [CrossRef]
- Nader, F. The Petroleum prospectivity of Lebanon: An overview. J. Petrol. Geol. 2011, 34, 135–156. [Google Scholar] [CrossRef]
- Condon, L.E.; Maxwell, R.M. Evaluating the relationship between topography and groundwater using outputs from a continental-scale integrated hydrology model. Water Resour. Res. 2015, 51, 6602–6621. [Google Scholar] [CrossRef]
- Gleeson, T.; Marklund, L.; Smith, L.; Manning, A.H. Classifying the water table at regional to continental scales. Geophys. Res. Lett. 2011, 38, L05401. [Google Scholar] [CrossRef]
- Farhat, N.; Makke, H.; Fadel, B.; Ayoub, M.; Koubeissi, A. Remote sensing and GIS to assess land degradation in Wadi El Hjeir, Lebanon. Plants Environ. 2022, 4, 10–15. [Google Scholar] [CrossRef]
- Zhou, C.; Chen, Y.; Hu, R.; Yang, Z. Groundwater flow through fractured rocks and seepage control in geotechnical engineering: Theories and practices. J. Rock Mech. Geotech. Eng. 2022, 15, 1–36. [Google Scholar] [CrossRef]
- Guerre, A. Étude hydrogéologique préliminaire des karsts libanais. Hannon 1969, 4, 64–92. [Google Scholar]
- Hakim, B. Recherches Hydrologiques et Hydrochimiques sur Quelques Karsts Méditerranéens: Liban, Syrie et Maroc; Publications de l’Université Libanaise; Section des Études Géographiques Lebanon: Beirut, Lebanon, 1985; Volume II, 701p. [Google Scholar]
- Edgell, H.S. Karst and hydrogeology of Lebanon. Carbonates Evaporites 1997, 12, 220–235. [Google Scholar] [CrossRef]
- Azar, D. Contribution à L'étude de la Source Karstique d'Afka; Université Saint-Joseph: Liban, Lebanon, 2000. [Google Scholar]
- Babaeian, E.; Sadeghi, M.; Jones, S.B.; Montzka, C.; Vereecken, H.; Tuller, M. Ground, Proximal, and Satellite Remote Sensing of Soil Moisture. Rev. Geophys. 2019, 57, 530–616. [Google Scholar] [CrossRef]
- Chen, Y.F.; Ling, X.M.; Liu, M.M.; Hu, R.; Yang, Z. Statistical distribution of hydraulic conductivity of rocks in deep-incised valleys, southwest China. J. Hydrol. 2018, 566, 216–226. [Google Scholar] [CrossRef]
- Pierdicca, N.; Fascetti, F.; Pulvirenti, L.; Crapolicchio, R. Error characterization of soil moisture satellite products: Retrieving error cross-correlation through extended quadruple collocation. IEEE J. Sel. Topics Appl. Earth Obs. Rem. Sens. 2017, 10, 4522–4530. [Google Scholar] [CrossRef]
- Gruber, A.; Su, C.; Zwieback, S.; Crow, W.; Dorigo, W.; Wagner, W. Recent advances in (soil moisture) triple collocation analysis. Int. J. Appl. Earth Obs. Geoinf. 2016, 45, 200–211. [Google Scholar] [CrossRef]
- Kerr, Y.H.; Al-Yaari, A.; Rodríguez-Fernández, N.; Parrens, M.; Molero, B.; Leroux, D.; Bircher, S.; Mahmoodi, A.; Mialon, A.; Richaume, P.; et al. Overview of SMOS performance in terms of global soil moisture monitoring after six years in operation. Remote Sens. Environ. 2016, 180, 40–63. [Google Scholar] [CrossRef]
- Bartalis, Z.; Wagner, W.; Naeimi, V.; Hasenauer, S.; Scipal, K.; Bonekamp, H. Initial soil moisture retrievals from the METOP-A Advanced Scatterometer (ASCAT). Geophys. Res. Lett. 2018, 34, L20401. [Google Scholar] [CrossRef]
- Bartalis, Z.; Scipal, K.; Wagner, W. Azimuthal anisotropy of scatterometer measurements over land. IEEE Trans. Geosci. Remote Sens. 2006, 44, 2083–2092. [Google Scholar] [CrossRef]
- Wagner, W.; Dorigo, W.; de Jeu, R.; Fernandez, D.; Benveniste, J.; Haas, E.; Ertl, M. Fusion of active and passive microwave observations to create an essential climate variable data record on soil moisture. ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci. 2012, 7, 315–321. [Google Scholar] [CrossRef]
- Ceballos, A.; Scipal, K.; Wagner, W.; Martínez-Fernández, J. Validation of ERS scatterometer-derived soil moisture data in the central part of the Duero Basin, Spain. Hydrol. Process. 2005, 19, 1549–1566. [Google Scholar] [CrossRef]
- Lei, S.J.; Bian, Z.F.; Daniels, J.L.; Liu, D.L. Improved spatial resolution in soil moisture retrieval at arid mining areas using apparent thermal inertia. Trans. Nonferrous Met. Soc. China 2014, 24, 1866–1873. [Google Scholar] [CrossRef]
- Rahimzadeh-Bajgiran, P.; Berg, A.A.; Champagne, C.; Omasa, K. Estimation of soil moisture using optical/thermal infrared remote sensing in the Canadian Prairies. ISPRS J. Photogramm. Remote Sens. 2013, 83, 94–103. [Google Scholar] [CrossRef]
- Champagne, C.; McNairn, H.; Berg, A. Monitoring agricultural soil moisture extremes in Canada using passive microwave remote sensing. Remote Sens. Environ. 2011, 115, 2434–2444. [Google Scholar] [CrossRef]
- Verstraeten, W.W.; Veroustraete, F.; Van der Sande, C.J.; Grootaers, I.; Feyen, J. Soil moisture retrieval using thermal inertia, determined with visible and thermal spaceborne data, validated for European forests. Remote Sens. Environ. 2006, 101, 299–314. [Google Scholar] [CrossRef]
- Sadeghi, M.; Jones, B.S.; Philpot, W.D. A linear physically-based model for remote sensing of soil moisture using shortwave infrared bands. Remote Sens. Environ. 2015, 164, 66–76. [Google Scholar] [CrossRef]
- Yang, Z.; Neuweiler, I.; Méheust, Y.; Fagerlund, F.; Niemi, A. Fluid trapping during capillary displacement in fractures. Adv. Water Resour. 2016, 95, 264–275. [Google Scholar] [CrossRef]
- Al-Yaari, A.; Wigneron, J.; Ducharne, A.; Kerr, Y.; De Rosnay, P.; De Jeu, R.; Govind, A.; Al Bitar, A.; Albergel, C.; Muñoz-Sabater, J.; et al. Global-scale evaluation of two satellite-based passive microwave soil moisture datasets (SMOS and AMSR-E) with respect to Land Data Assimilation System estimates. Remote Sens. Environ. 2014, 149, 181–195. [Google Scholar] [CrossRef]
- Gutman, G.; Ignatov, A. The derivation of the green vegetation fraction from NOAA/AVHRR data for use in numerical weather prediction models. Int. J. Remote Sens. 1998, 19, 1533–1543. [Google Scholar] [CrossRef]
- ARSET—Application of NASA SPoRT-Land Information System (SPoRT-LIS) Soil Moisture Data for Drought. NASA Applied Remote Sensing Training Program. 2023. Available online: http://appliedsciences.nasa.gov/get-involved/training/english/arset-application-nasa-sport-land-information-system-sport-lis-soil (accessed on 25 May 2024).
- Khawlie, M. The Impacts of Climate Change on Water Resources of Lebanon-Eastern Mediterranean; Fondazione Eni Enrico Mattei FEEM: Milan, Italy, 2001. [Google Scholar] [CrossRef]
- Todd, D.K. Discussion of infiltration galleries. Proc. Amer. Soc. Civil Engrs. 1955, 81, 7–9. [Google Scholar]
- Dole, B. Use of fluoresceine in the study of underground water. U.S. Geol. Surv. Water-Supply Pap. 1906, 160, 73–86. [Google Scholar]
- Darcy, H. Les Fontaines Publiques de la ville de Dijon; V. Dahmont: Paris, France, 1856. [Google Scholar]
- Leap, D.I.; Belmonte, P.M. Influence of pore pressure on apparent dispersivity of a fissured dolomitic aquifer. Groundwater 1991, 30, 87–95. [Google Scholar] [CrossRef]
- Gallagher, A.S. Aquatic Habitat Assessment; American Fisheries Society: Bethesda, MD, USA, 1999; pp. 25–34. ISBN 1-888569-18-2. [Google Scholar]
- Glennon, A.; Groves, C. An examination of perennial stream drainage patterns within the Mammoth Cave watershed, Kentucky. J. Cave Karst Stud. 2002, 64, 82–91. [Google Scholar]
- Schumm, S.A. The Fluvial System; Wiley: New York, NY, USA, 1977; 338p. [Google Scholar] [CrossRef]
- Furbish, D.J. Spatial autoregressive structure in meander evolution. Geol. Soc. Am. Bull. 1991, 103, 1576–1589. [Google Scholar] [CrossRef]
- Horton, R.E. Erosional development of streams and their drainage basins; hydro-physical approach to quantitative morphology. Bull. Geol. Soc. Am. 1945, 56, 275–370. [Google Scholar] [CrossRef]
- Berkowitz, B. Characterizing flow and transport in fractured geological media: A review. Adv. Water Resour. 2002, 25, 861–884. [Google Scholar] [CrossRef]
- Meakin, P.; Tartakovsky, A.M. Modeling and simulation of pore-scale multiphase fluid flow and reactive transport in fractured and porous media. Rev. Geophys. 2009, 47. [Google Scholar] [CrossRef]
- Lei, Q.; Latham, J.P.; Tsang, C.F. The use of discrete fracture networks for modelling coupled geomechanical and hydrological behaviour of fractured rocks. Comput. Geotech. 2017, 85, 151–176. [Google Scholar] [CrossRef]
- Brashears, M.L. Recharging ground-water reservoirs with wells and basins. Min. Eng. 1953, 5, 1029–1032. Available online: https://www.jstor.org/stable/i40056498 (accessed on 19 September 2023).
- Jansa, V. Artificial Replenishment of Underground Water; International Water Supply Association: Paris, France, 1952; 105p. [Google Scholar]
- Butler, R.G.; Orlob, G.T.; McGauhey, P.H. Underground Movement of Bacterial and Chemical Pollutants. J. Am. Water Works Assoc. 1954, 46, 97–111. Available online: http://www.jstor.org/stable/41253595 (accessed on 19 September 2023). [CrossRef]
- Ferris, J.G. Water spreading and recharge wells. In Proc. Indiana Water Conserv. Conf.; Indiana Dept. Conserv.: Indianapolis, IN, USA, 1950; pp. 52–59. [Google Scholar]
- Neuman, S.P. Trends, prospects and challenges in quantifying flow and transport through fractured rocks. Hydrogeol. J. 2005, 13, 124–147. [Google Scholar] [CrossRef]
- Hu, R.; Zhou, C.X.; Wu, D.S.; Yang, Z.; Chen, Y.F. Roughness control on multiphase flow in rock fractures. Geophys. Res. Lett. 2019, 46, 12002–12011. [Google Scholar] [CrossRef]
- Olsson, R.; Barton, N. An improved model for hydromechanical coupling during shearing of rock joints. Int. J. Rock Mech. Min. Sci. 2001, 38, 317–329. [Google Scholar] [CrossRef]
- Da Silva, J.A.; Kang, P.K.; Yang, Z.; Cueto-Felgueroso, L.; Juanes, R. Impact of confining stress on capillary pressure behavior during drainage through rough fractures. Geophys. Res. Lett. 2019, 46, 7424–7436. [Google Scholar] [CrossRef]
- Sonderegger, A. Hydraulic phenomena and the effect of spreading of flood water southern california. Trans. Am. Soc. Civ. Eng. 1918, 82, 802–825. [Google Scholar] [CrossRef]
- Ruiz, C.; Recreo, F.; Prado, P.; Campos, R.; Pelayo, M.; de la Losa, A.; Hurtado, A.; Lomba, L.; Pérez del Villar, L.; Martínez, R.; et al. Almacenamiento geológico de CO2. Criterios de selección de emplazamientos. Inf. Técnicos CIEMAT 2007, 1106, 100. [Google Scholar]
- Chen, Y.F.; Ye, Y.; Hu, R.; Yang, Z.; Zhou, C.B. Modeling unsaturated flow in fractured rocks with scaling relationships between hydraulic parameters. J. Rock Mech. Geotech. Eng. 2022, 14, 1697–1709. [Google Scholar] [CrossRef]
- Biot, M.A. General theory of three-dimensional consolidation. J. Appl. Phys. 1941, 12, 155–164. [Google Scholar] [CrossRef]
- Hu, R.; Chen, Y.F.; Liu, H.H.; Zhou, C.B. A coupled two-phase fluid flow and elastoplastic deformation model for unsaturated soils: Theory, implementation, and application. Int. J. Numer. Anal. Methods Geomech. 2016, 40, 1023–1058. [Google Scholar] [CrossRef]
- Zhou, C.; Chen, Y.; Jiang, Q.; Lu, W. A generalized multi-field coupling approach and its application to stability and deformation control of a high slope. J. Rock Mech. Geotech. Eng. 2011, 3, 193–206. [Google Scholar] [CrossRef]
- Schumm, S.A.; Dumont, J.F.; Holbrook, J.M. Active Tectonics and Alluvial Rivers; Cambridge University Press: New York, NY, USA, 2002; pp. 210–243. Available online: https://ui.adsabs.harvard.edu/link_gateway/2002JQS....17..800S/doi:10.1002/jqs.698 (accessed on 13 March 2024).
- Hickin, E.J.; Nanson, G.C. The character of channel migration on the Beatton river, northeast British Columbia, Canada. Geol. Soc. Am. Bull. 1975, 86, 487–494. [Google Scholar] [CrossRef]
- Adham, M.I.; Jahan, C.S.; Mazumder, Q.H. Study on groundwater recharge potentiality of Barind Tract, Rajshahi District, Bangladesh using GIS and Remote Sensing technique. J. Geol. Soc. India 2010, 75, 432–438. [Google Scholar] [CrossRef]
- Bouwer, H. Artificial recharge of groundwater: Hydrogeology and engineering. Hydrogeol. J. 2002, 10, 121–142. [Google Scholar] [CrossRef]
- Chowdhury, A.; Jha, M.K.; Chowdary, V.M. Delineation of groundwater recharge zones and identification of artificial recharge sites in West Medinipur district, West Bengal, using RS, GIS and MCDM techniques. Environ. Earth Sci. 2010, 59, 1209–1222. [Google Scholar] [CrossRef]
- Christy, R.M.; Lakshmanan, E. Percolation pond as a method of managed aquifer recharge in a coastal saline aquifer: A case study on the criteria for site selection and its impacts. J. Earth Syst. Sci. 2017, 126, 66. [Google Scholar] [CrossRef]
- Russo, T.A.; Fisher, A.T.; Lockwood, B.S. Assessment of Managed Aquifer Recharge Site Suitability Using a GIS and Modeling. Groundwater 2015, 53, 389–400. [Google Scholar] [CrossRef]
- Dar, T.; Rai, N.; Bhat, A. Delineation of potential groundwater recharge zones using analytical hierarchy process (AHP). Geol. Ecol. Landsc. 2021, 5, 292–307. [Google Scholar] [CrossRef]
- Gesim, N.A.; Okazaki, T. Identification of groundwater artificial recharge sites in Herat city, Afghanistan, using Fuzzy logic. Int. J. Eng. Technol. Res. 2018, 8, 40–45. [Google Scholar]
- Heil, J.; Häring, V.; Marschner, B.; Stumpe, B. Advantages of fuzzy k-means over k-means clustering in the classification of diffuse reflectance soil spectra: A case study with West African soils. Geoderma 2019, 337, 11–21. [Google Scholar] [CrossRef]
- Javadi, S.; Saatsaz, M.; Hashemy Shahdany, S.M.; Neshat, A.; Ghordoyee Milan, S.; Akbari, S. A new hybrid framework of site selection for groundwater recharge. Geosci. Front. 2021, 12, 101144. [Google Scholar] [CrossRef]
- Laverty, F.B. Ground-water recharge. J. Amer. Water Works Assoc. 1952, 44, 677–681. [Google Scholar] [CrossRef]
- Prabhu, M.V.; Venkateswaran, S. Delineation of Artificial Recharge Zones Using Geospatial Techniques in Sarabanga Sub Basin Cauvery River, Tamil Nadu. Aquat. Procedia 2014, 4, 1265–1274. [Google Scholar] [CrossRef]
- Schiavo, M. The role of different sources of uncertainty on the stochastic quantification of subsurface discharges in heterogeneous aquifers. J. Hydrol. 2023, 617, 128930. [Google Scholar] [CrossRef]
- Ge, Y.; Li, X.; Cai, X.; Deng, X.; Wu, F.; Li, Z.; Luan, W. Converting UN Sustainable Development Goals (SDGs) to Decision-Making Objectives and Implementation Options at the River Basin Scale. Sustainability 2018, 10, 1056. [Google Scholar] [CrossRef]
- Gattinoni, P.; Scesi, L. Short review of some methods for groundwater flow assessment in fractured rock masses. Acque Sotter. Ital. J. Groundw. 2018, 7, 7–17. [Google Scholar] [CrossRef]
Parameter | Satellite | Sensors | Spatial/Temporal Resolutions and Coverage |
---|---|---|---|
Precipitation | Combined TRMM and GPMs With Multiple Satellite Constellation IMERG | Microwave radiometer (TMI, GMI) and RADAR (PR, DPR), microwave imagers and sounders calibrated with GPM sensor data | 0.1° × 0.1° 30 min, daily, monthly, 06/2000 to present |
Soil Moisture | SMAP | L Band Microwave Radiometer | 9 km × 9 km and 36 km × 36 km every 2–3 days, 3/2015 to present |
NDVI | Based on MODIS Terra Vegetation Indices 16-Day Global 250 m, long-term mean | MODerate-resolution imaging spectroradiometer (MODIS) | 2350 km swath 12/1999–present; generated from the MODIS/061/MOD13Q1 |
Landsat 8 | Operational land imager (OLI and OLI2) | 30 m, 185 km swath, every 16 days, 02/2013–present | |
Landsat 9 | Thermal infrared sensor (TIRS and TIRS2) | 30 m, 185 km swath, every 16 days, 09/2021–present | |
Sentinel 2A and 2B | Multi-spectral imager (MSI) | 290 km swath; 10 m, 20 m, 60 m; every 5 days, 6/23/2015 and 3/7/2017–present |
year | 1975 | 1976 | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 | 1983 | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 |
degree | 22.5 | 20.1 | 25.1 | 22.3 | 22.6 | 22.5 | 22.4 | 20.7 | 23.2 | 23.2 | 23.4 | 23.8 | 23.2 | 23.6 | 23.2 | 23.1 | 24.1 | 22.6 | 23.2 | 24.4 | 24.4 | 23.3 | 23.5 |
year | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 |
degree | 23.9 | 24.9 | 24.1 | 24.6 | 24.4 | 24.4 | 24.3 | 25.0 | 24.1 | 24.0 | 24.8 | 24.8 | 25.6 | 25.6 | 25.3 | 24.1 | 24.1 | 24.3 | 24.7 | 23.6 | 25.9 | 24.5 | 25.6 |
Time | Age | Code | Name and Nature of Rocks | Area/km2 | Permeability % from Annual Precipitation Amount |
---|---|---|---|---|---|
Secondary | Jurassic | J7 | Portlandian oolitic limestone | 13 | 15–35 |
Cretaceous | bc | Neocomian–Barremian basalt | 6.7 | 0 | |
C1 | Neocomian–Barremian sandstone | 31.4 | 10–20 | ||
C2b | Abtian dolomite | 16.7 | 30–35 | ||
C3 | Albian marly limestone and marl | 15 | 1–3 | ||
C4 | Cenomanian dolomitic limestone | 388.6 | 34–41 | ||
C6 | Senonian marl | 119 | 2–3 | ||
Tertiary | Paleogene | E2 | Upper Eocene marly and chalky limestone | 307.5 | 20–35 |
Neogene | Mcg | Miocene conglomeritic limestone | 16.4 | 9–20 | |
Quaternary | Q | Quaternary deposits | 11.6 | 5–10 | |
Total | 926 |
Rock Formation | Average Thickness (b) | Area | Hydraulic Properties | ||||
---|---|---|---|---|---|---|---|
Porosity (Ø) | Permeability (P) % from Annual Precipitation | Moisture Content (ɱ) | Hydraulic Conductivity (k) | Transmissivity T = k×b | |||
(m) | km2 | % | % | % | m/s | m2/s | |
Eocene | 300 | 330 | 35–41 | 38 | 7–9 | 10−4 | 3 × 10−3 |
Basin area | 400 km2 | Total number of streams (permanent and intermittent) | 506 | Average stream length | 0.77 km |
Basin perimeter | 125.2 km | Shorter stream | 0.02 km | H max | 1181 m |
Main channel length | 32 km | Longer stream | 3.2 km | H min | 30 m |
Stream axial length | 25 km | Length of all streams | 387 km | Basin length | 40 km |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Farhat, N. Enhancing Drought Resilience through Groundwater Engineering by Utilizing GIS and Remote Sensing in Southern Lebanon. Hydrology 2024, 11, 156. https://doi.org/10.3390/hydrology11090156
Farhat N. Enhancing Drought Resilience through Groundwater Engineering by Utilizing GIS and Remote Sensing in Southern Lebanon. Hydrology. 2024; 11(9):156. https://doi.org/10.3390/hydrology11090156
Chicago/Turabian StyleFarhat, Nasser. 2024. "Enhancing Drought Resilience through Groundwater Engineering by Utilizing GIS and Remote Sensing in Southern Lebanon" Hydrology 11, no. 9: 156. https://doi.org/10.3390/hydrology11090156
APA StyleFarhat, N. (2024). Enhancing Drought Resilience through Groundwater Engineering by Utilizing GIS and Remote Sensing in Southern Lebanon. Hydrology, 11(9), 156. https://doi.org/10.3390/hydrology11090156