Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = local electrochemical impedance mapping

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 20981 KB  
Article
Sensitivity Analysis of Localized Electrochemical Impedance Spectroscopy Towards Tomography-on-a-Chip
by Lilia Bató, Péter Fürjes, János M. Bozorádi, Vladimir Tadić, Péter Odry and Zoltán Vizvári
Sensors 2025, 25(20), 6393; https://doi.org/10.3390/s25206393 - 16 Oct 2025
Viewed by 521
Abstract
Electrical impedance measurements are traditionally macroscopic screening techniques designed to obtain information about the macroscopic internal structure of biological systems. In order to overcome the limitations that the technology detects, mainly with the bulk properties, a miniaturization is employed by developing a complex [...] Read more.
Electrical impedance measurements are traditionally macroscopic screening techniques designed to obtain information about the macroscopic internal structure of biological systems. In order to overcome the limitations that the technology detects, mainly with the bulk properties, a miniaturization is employed by developing a complex microfluidic system to achieve cell-scale information. In this work, a microelectrode array was incorporated into a microfluidic chip, allowing localized Electrochemical Impedance Spectroscopy (EIS) measurements, providing impedance data obtained in the spatial and frequency domains simultaneously. The height of the capillary in the microfluidic system was also systematically modified; hence, three types of channels with heights of 10 μm, 30 μm, and 50 μm were developed and studied. The EIS data collection was implemented using two different strategies (two- and four-electrode techniques). Sensitivity analysis was conducted using a microbead solution, where the linear mapping of the number of microbeads along the channel was achieved by EIS. Based on the findings, a complete overview of each measurement implementation was obtained, which is well explained by the physical background presented in the paper. In the case where the capillary height (10 μm) is comparable to the diameter of the microbeads (6 μm), the four-electrode technique detected the beads in a wider frequency range (approximately between 500 Hz and 50 kHz), while the two-electrode technique detected the beads in a narrower frequency range (approximately between 30 kHz and 300 kHz) with correlation greater than 0.9. In all other cases, a medium (or weak) correlation was found between the impedance data and the longitudinal bead distribution. Based on the results, the technology is ready for further development and adaptation for cell culture purposes. Full article
(This article belongs to the Special Issue Advanced Electrochemical Sensors: Design and Applications)
Show Figures

Figure 1

20 pages, 6904 KB  
Article
In Vitro Corrosion Resistance and Mechanical Properties of Ag-SiO2-TiO2 Coatings Electrophoretically Deposited on NiTi Alloy
by Bożena Łosiewicz, Julian Kubisztal, Adrian Barylski and Karolina Dudek
Coatings 2025, 15(10), 1176; https://doi.org/10.3390/coatings15101176 - 8 Oct 2025
Viewed by 452
Abstract
NiTi alloys are widely used in biomedical applications due to their shape memory and superelastic properties. However, their surface reactivity requires protective, biofunctional coatings. To enhance NiTi performance, its surface was modified with an Ag-SiO2-TiO2 nanocoating containing small amounts of [...] Read more.
NiTi alloys are widely used in biomedical applications due to their shape memory and superelastic properties. However, their surface reactivity requires protective, biofunctional coatings. To enhance NiTi performance, its surface was modified with an Ag-SiO2-TiO2 nanocoating containing small amounts of silica and silver. The coating’s primary phase was rutile with structural defects and a silver solid solution. It showed good adhesion, high scratch resistance, and improved corrosion behavior in Ringer’s solution, as demonstrated by EIS and cyclic polarization. EIS revealed high low-frequency impedance and two time constants, suggesting both barrier protection and slower electrochemical processes. Despite low breakdown and repassivation potentials, the coating effectively limited uniform corrosion. SEM/EDS confirmed localized degradation and partial substrate exposure, while elemental mapping showed well-dispersed silica and silver in a TiO2-rich matrix. The proposed pitting mechanism involves chloride-induced depassivation and galvanic effects. Surface potential mapping indicated electrostatic heterogeneity, mitigated by silica. The coating offers a balanced combination of corrosion protection and biofunctionality, supporting its potential for implant use. Full article
(This article belongs to the Special Issue Recent Advances in Surface Functionalisation, 2nd Edition)
Show Figures

Graphical abstract

22 pages, 8722 KB  
Review
Field-Effect Sensors Combined with the Scanned Light Pulse Technique: From Artificial Olfactory Images to Chemical Imaging Technologies
by Tatsuo Yoshinobu, Ko-ichiro Miyamoto, Torsten Wagner and Michael J. Schöning
Chemosensors 2024, 12(2), 20; https://doi.org/10.3390/chemosensors12020020 - 28 Jan 2024
Cited by 3 | Viewed by 2920
Abstract
The artificial olfactory image was proposed by Lundström et al. in 1991 as a new strategy for an electronic nose system which generated a two-dimensional mapping to be interpreted as a fingerprint of the detected gas species. The potential distribution generated by the [...] Read more.
The artificial olfactory image was proposed by Lundström et al. in 1991 as a new strategy for an electronic nose system which generated a two-dimensional mapping to be interpreted as a fingerprint of the detected gas species. The potential distribution generated by the catalytic metals integrated into a semiconductor field-effect structure was read as a photocurrent signal generated by scanning light pulses. The impact of the proposed technology spread beyond gas sensing, inspiring the development of various imaging modalities based on the light addressing of field-effect structures to obtain spatial maps of pH distribution, ions, molecules, and impedance, and these modalities have been applied in both biological and non-biological systems. These light-addressing technologies have been further developed to realize the position control of a faradaic current on the electrode surface for localized electrochemical reactions and amperometric measurements, as well as the actuation of liquids in microfluidic devices. Full article
Show Figures

Figure 1

26 pages, 6324 KB  
Article
Functional Enhancement and Characterization of an Electrophysiological Mapping Electrode Probe with Carbonic, Directional Macrocontacts
by Radu C. Popa, Cosmin-Andrei Serban, Andrei Barborica, Ana-Maria Zagrean, Octavian Buiu, Niculae Dumbravescu, Alexandru-Catalin Paslaru, Cosmin Obreja, Cristina Pachiu, Marius Stoian, Catalin Marculescu, Antonio Radoi, Silviu Vulpe and Marian Ion
Sensors 2023, 23(17), 7497; https://doi.org/10.3390/s23177497 - 29 Aug 2023
Viewed by 2063
Abstract
Electrophysiological mapping (EM) using acute electrode probes is a common procedure performed during functional neurosurgery. Due to their constructive specificities, the EM probes are lagging in innovative enhancements. This work addressed complementing a clinically employed EM probe with carbonic and circumferentially segmented macrocontacts [...] Read more.
Electrophysiological mapping (EM) using acute electrode probes is a common procedure performed during functional neurosurgery. Due to their constructive specificities, the EM probes are lagging in innovative enhancements. This work addressed complementing a clinically employed EM probe with carbonic and circumferentially segmented macrocontacts that are operable both for neurophysiological sensing (“recording”) of local field potentials (LFP) and for test stimulation. This paper illustrates in-depth the development that is based on the direct writing of functional materials. The unconventional fabrication processes were optimized on planar geometry and then transferred to the cylindrically thin probe body. We report and discuss the constructive concept and architecture of the probe, characteristics of the electrochemical interface deduced from voltammetry and chronopotentiometry, and the results of in vitro and in vivo recording and pulse stimulation tests. Two- and three-directional macrocontacts were added on probes having shanks of 550 and 770 μm diameters and 10–23 cm lengths. The graphitic material presents a ~2.7 V wide, almost symmetric water electrolysis window, and an ultra-capacitive charge transfer. When tested with clinically relevant 150 μs biphasic current pulses, the interfacial polarization stayed safely away from the water window for pulse amplitudes up to 9 mA (135 μC/cm2). The in vivo experiments on adult rat models confirmed the high-quality sensing of LFPs. Additionally, the in vivo-prevailing increase in the electrode impedance and overpotential are discussed and modeled by an ionic mobility-reducing spongiform structure; this restricted diffusion model gives new applicative insight into the in vivo-uprisen stimulation overpotential. Full article
Show Figures

Figure 1

26 pages, 6088 KB  
Article
Enhancing the Corrosion Protection of AA2024-T3 Alloy by Surface Treatments Based on Piperazine-Modified Hybrid Sol–Gel Films
by Diógenes J. Carbonell, Rodrigo Montoya, Victoria J. Gelling, Juan Carlos Galván and Antonia Jiménez-Morales
Metals 2020, 10(4), 539; https://doi.org/10.3390/met10040539 - 21 Apr 2020
Cited by 4 | Viewed by 4931
Abstract
The aim of this study was to develop new chrome-free surface pretreatments for AA2024-T3 aluminum alloy. These pretreatments were based on hybrid organic–inorganic sol–gel thin films prepared from mixtures of γ-methacryloxypropyltrimethoxysilane (MAPTMS) and tetramethylorthosilicate (TMOS). Different MAPTMS/TMOS molar ratios were used for optimizing [...] Read more.
The aim of this study was to develop new chrome-free surface pretreatments for AA2024-T3 aluminum alloy. These pretreatments were based on hybrid organic–inorganic sol–gel thin films prepared from mixtures of γ-methacryloxypropyltrimethoxysilane (MAPTMS) and tetramethylorthosilicate (TMOS). Different MAPTMS/TMOS molar ratios were used for optimizing the physical–chemical characteristics of the sol–gel films. The formulation of a set of these sols was modified by incorporating piperazine (1,4-diazacyclohexane) as a corrosion inhibitor. The resulting sol–gel films were characterized by using Fourier transform infrared spectroscopy (FTIR), liquid-state 29Si nuclear magnetic resonance spectroscopy (29Si-NMR) and viscosity measurements. The corrosion performance of the sol–gel films was analyzed by using electrochemical impedance spectroscopy (EIS) and local electrochemical impedance mapping (LEIM). The characterization techniques indicated that piperazine behaved as a catalyst for the condensation reaction during the formation of the MAPTMS/TMOS organopolysiloxane network and produces an increase of the crosslinking degree of the sol–gel films. EIS and LEIM results showed that piperazine is an effective corrosion inhibitor, which can be used to enhance the active corrosion protection performance of sol–gel films. Full article
(This article belongs to the Special Issue Surface Chemistry and Corrosion of Light Alloys)
Show Figures

Graphical abstract

16 pages, 4325 KB  
Article
One-Step Fabrication and Localized Electrochemical Characterization of Continuous Al-Alloyed Intermetallic Surface Layer on Magnesium Alloy
by Zhenxuan Fu, Xu Chen, Bin Liu, Jie Liu, Xiaopeng Han, Yida Deng, Wenbin Hu and Cheng Zhong
Coatings 2018, 8(4), 148; https://doi.org/10.3390/coatings8040148 - 18 Apr 2018
Cited by 14 | Viewed by 6263
Abstract
A continuous intermetallic compound coating was fabricated on AZ91D magnesium alloy via heat treatment at 400 °C in AlCl3-NaCl molten salts for 10 h. The microstructure and composition of the coating were characterized by scanning electron microscope and energy dispersive X-ray [...] Read more.
A continuous intermetallic compound coating was fabricated on AZ91D magnesium alloy via heat treatment at 400 °C in AlCl3-NaCl molten salts for 10 h. The microstructure and composition of the coating were characterized by scanning electron microscope and energy dispersive X-ray spectrometry. The results showed that the coating has a two-layer structure (the outer Mg2Al3 phase layer and the inner Mg17Al12 phase layer) up to 37 μm thick with compact and planar interfaces between the layers and the substrate. The corrosion property of the coating was investigated using electrochemical impedance spectroscopy (EIS) and two localized electrochemical techniques, i.e., localized electrochemical impedance spectroscopy (LEIS) and scanning vibrating electrode technique (SVET). The charge transfer resistance (Rct) of the Al-alloyed coating was 2119 Ω cm2. The localized impedance and current density maps obtained through LEIS and SVET indicate not only significantly improved corrosion resistance (the impedance modulus increased by one order of magnitude and the current density decreased to approximately 3.8%, compared with the substrate) but also defect-free surface condition. Full article
Show Figures

Graphical abstract

18 pages, 933 KB  
Article
A Study of Calcareous Deposits on Cathodically Protected Mild Steel in Artificial Seawater
by Yuanfeng Yang, James David Scantlebury and Elena Victorovna Koroleva
Metals 2015, 5(1), 439-456; https://doi.org/10.3390/met5010439 - 12 Mar 2015
Cited by 59 | Viewed by 8954
Abstract
Calcareous deposits were formed on steel under conditions of cathodic protection in artificial seawater at applied constant current densities ranging from 50 to 400 mA·m2. The calcareous layers were characterized using a Field Emission Gun Scanning Electron Microscope (FEG SEM) [...] Read more.
Calcareous deposits were formed on steel under conditions of cathodic protection in artificial seawater at applied constant current densities ranging from 50 to 400 mA·m2. The calcareous layers were characterized using a Field Emission Gun Scanning Electron Microscope (FEG SEM) in conjunction with Energy Dispersive X-Ray Analysis (EDX), and Electrochemical Impedance Spectroscopy (EIS). At cathodic current densities of 50–100 mA·m2 where corrosion was still occurring, a clear correlation existed between the iron containing corrosion product and the overlying magnesium hydroxide layer. This revealed that the mapping of magnesium rich areas on a steel surface can be used in the identification of local corrosion sites. At current densities of 150–200 mA·m2, a layered deposit was shown to occur consisting of an inner magnesium-containing layer and an outer calcium-containing layer. At current densities of 300–400 mA·m2, intense hydrogen bubbling through macroscopic pores in the deposits gave rise to cracking of the deposited film. Under such conditions deposits do not have a well-defined double layer structure. There is also preferential formation of magnesium-rich compounds near the steel surface at the early stages of polarisation and within the developing pores and cracks of calcareous deposits later on. Based on SEM/EDX investigation of calcareous depositions the impedance model was proposed and used to monitor in situ variations in steel corrosion resistance, and to calculate the thickness of formed deposits using the length of oxygen diffusion paths. Full article
Show Figures

Figure 1

Back to TopTop