Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (16)

Search Parameters:
Keywords = live-attenuated LSDV vaccines

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2127 KiB  
Article
Development of a Multi-Locus Real-Time PCR with a High-Resolution Melting Assay to Differentiate Wild-Type, Asian Recombinant, and Vaccine Strains of Lumpy Skin Disease Virus
by Kultyarat Bhakha, Yuto Matsui, Natchaya Buakhao, Saruda Wanganurakkul, Taweewat Deemagarn, Mami Oba, Hitoshi Takemae, Tetsuya Mizutani, Naoaki Misawa, Lerdchai Chintapitaksakul, Kentaro Yamada and Nutthakarn Suwankitwat
Vet. Sci. 2025, 12(3), 213; https://doi.org/10.3390/vetsci12030213 - 1 Mar 2025
Viewed by 1828
Abstract
Lumpy skin disease virus (LSDV) affects cattle and causes significant economic damage. The live vaccine derived from an attenuated strain is effective but is associated with mild disease and skin lesions in some vaccinated cattle. Moreover, recombinant LSDV strains, particularly one with wild-type [...] Read more.
Lumpy skin disease virus (LSDV) affects cattle and causes significant economic damage. The live vaccine derived from an attenuated strain is effective but is associated with mild disease and skin lesions in some vaccinated cattle. Moreover, recombinant LSDV strains, particularly one with wild-type field and vaccine strains, have recently emerged and spread throughout Asian countries. A cost-effective LSDV typing method is required. We developed a multi-locus real-time PCR with a high-resolution melting (HRM) assay to differentiate between the wild-type, vaccine, and dominant Asian recombinant strains. Based on a multiple alignment analysis, we selected three target genes for the HRM assay, ORF095, ORF126, and ORF145, in which there are insertions/deletions and nucleotide substitutions between wild-type and vaccine strains, and designed primer sets for the assay. Using the synthetic DNA encoding these genes for the two strains, it was shown that the PCR amplicons intercalated with a saturating fluorescent dye could clearly differentiate between wild-type and vaccine strains in the HRM analysis for all three target genes. Further, using clinical samples, our method was able to identify recombinant strains harboring the wild-type ORF095 and ORF145 and the vaccine strain ORF126 genes. Thus, our HRM assay may provide rapid LSDV typing. Full article
Show Figures

Figure 1

17 pages, 3312 KiB  
Article
Neethling Strain-Based Homologous Live Attenuated LSDV Vaccines Provide Protection Against Infection with a Clade 2.5 Recombinant LSDV Strain
by Wannes Philips, Andy Haegeman, Nina Krešić, Laurent Mostin and Nick De Regge
Vaccines 2025, 13(1), 8; https://doi.org/10.3390/vaccines13010008 - 25 Dec 2024
Cited by 4 | Viewed by 1302
Abstract
Background: Vaccination is the main control measure to prevent Lumpy skin disease (LSD), and Neethling-based homologous vaccines have been shown to be safe and effective against infection with classical clade 1.2 strains. In 2017, recombinant clade 2 LSDV strains originating from a badly [...] Read more.
Background: Vaccination is the main control measure to prevent Lumpy skin disease (LSD), and Neethling-based homologous vaccines have been shown to be safe and effective against infection with classical clade 1.2 strains. In 2017, recombinant clade 2 LSDV strains originating from a badly produced and insufficiently controlled vaccine were first detected in Russia. A clade 2.5 recombinant strain spread from Russia throughout Southeast Asia and caused a massive epidemic. In this study, the efficacy of three different Neethling strain-based vaccines against the recombinant clade 2.5 LSDV strain was evaluated. Methods: For each vaccine, seven bulls were vaccinated and followed for three weeks to evaluate vaccine safety. Thereafter, vaccinated animals and non-vaccinated controls were challenged with a virulent clade 2.5 strain and followed for three more weeks to evaluate vaccine efficacy. Results: Only limited adverse effects were observed after vaccination, and all vaccinated animals seroconverted and showed an LSDV-specific cellular immune response after vaccination. After the challenge, the vaccinated animals developed almost no clinical signs, and no viremia or nasal excretion was detected. This was in sharp contrast with the non-vaccinated controls, where 8 out of 13 animals developed clinical disease with clear nodules. Most of these animals also had a prolonged period of fever, a clear viremia and excreted virus. Conclusions: Neethling-based LSDV vaccines can thus be considered safe and are effective not only against clade 1.2 LSDV strains, as was proven earlier, but also against a clade 2.5 recombinant strain. Full article
Show Figures

Figure 1

21 pages, 6553 KiB  
Article
The Safety and Efficacy of New DIVA Inactivated Vaccines Against Lumpy Skin Disease in Calves
by Gaetano Federico Ronchi, Mariangela Iorio, Anna Serroni, Marco Caporale, Lilia Testa, Cristiano Palucci, Daniela Antonucci, Sara Capista, Sara Traini, Chiara Pinoni, Ivano Di Matteo, Caterina Laguardia, Gisella Armillotta, Francesca Profeta, Fabrizia Valleriani, Elisabetta Di Felice, Giovanni Di Teodoro, Flavio Sacchini, Mirella Luciani, Chiara Di Pancrazio, Michele Podaliri Vulpiani, Emanuela Rossi, Romolo Salini, Daniela Morelli, Nicola Ferri, Maria Teresa Mercante and Mauro Di Venturaadd Show full author list remove Hide full author list
Vaccines 2024, 12(12), 1302; https://doi.org/10.3390/vaccines12121302 - 21 Nov 2024
Cited by 2 | Viewed by 2223
Abstract
Background: Lumpy skin disease virus (Poxviridae family—Capripoxvirus genus) is the aetiological agent of LSD, a disease primarily transmitted by hematophagous biting, affecting principally cattle. Currently, only live attenuated vaccines are commercially available, but their use is limited to endemic areas. There [...] Read more.
Background: Lumpy skin disease virus (Poxviridae family—Capripoxvirus genus) is the aetiological agent of LSD, a disease primarily transmitted by hematophagous biting, affecting principally cattle. Currently, only live attenuated vaccines are commercially available, but their use is limited to endemic areas. There is a need for safer vaccines, especially in LSD-free countries. This research aims to develop and test a safe and efficacious inactivated vaccine. Moreover, in this study, we used keyhole limpet hemocyanin (KLH) as a positive marker to distinguish infected from vaccinated animals (DIVA). Methods: Lumpy skin disease virus was propagated on primary lamb testis cells and Madin–Darby bovine kidney cells (PLT and MDBK, respectively), and four inactivated vaccines were produced. The vaccines differed from each other with the addition or not of KLH and in cells used for virus propagation. To evaluate the safety and immunogenicity, the vaccines and two placebos were administered to six groups comprising six male calves each, and antibody response was investigated using both an enzyme-linked immunosorbent assay (ELISA) and a serum neutralization (SN) test. In addition, the LSD/γ-interferon test and KLH (IgM-IgG) ELISA were performed on the collected samples. Furthermore, the use of KLH allowed us to distinguish vaccinated animals in the ELISA results, without any interference on the strength of the immune response against the LSDV. Finally, the efficacy of one of four vaccines was investigated through a challenge, in which one group of vaccinated animals and one animal control group were infected with a live field strain of LSDV. Results: Four out of the six control animals showed severe clinical signs suggestive of LSD, and, therefore, were euthanized for overcoming the predetermined limit of clinical score. By contrast, the vaccinated animals showed only mild symptoms, suggesting a reduction in severe disease notwithstanding the incapability of the vaccine in reducing the virus shedding. Conclusion: The vaccines produced were safe and able to elicit both a humoral and a cellular immune response, characteristics that, together with the demonstrated efficacy, make our vaccine a good candidate for countering the LSD spread in disease-free countries, thus also facilitating disease containment throughout the application of a DIVA strategy. Full article
(This article belongs to the Section Veterinary Vaccines)
Show Figures

Figure 1

12 pages, 1773 KiB  
Article
The Development of a Multivalent Capripoxvirus-Vectored Vaccine Candidate to Protect against Sheeppox, Goatpox, Peste des Petits Ruminants, and Rift Valley Fever
by Hani Boshra, Graham A. D. Blyth, Thang Truong, Andrea Kroeker, Pravesh Kara, Arshad Mather, David Wallace and Shawn Babiuk
Vaccines 2024, 12(7), 805; https://doi.org/10.3390/vaccines12070805 - 20 Jul 2024
Viewed by 3929
Abstract
Capripoxviruses are the causative agents of sheeppox, goatpox, and lumpy skin disease (LSD) in cattle, which cause economic losses to the livestock industry in Africa and Asia. Capripoxviruses are currently controlled using several live attenuated vaccines. It was previously demonstrated that a lumpy [...] Read more.
Capripoxviruses are the causative agents of sheeppox, goatpox, and lumpy skin disease (LSD) in cattle, which cause economic losses to the livestock industry in Africa and Asia. Capripoxviruses are currently controlled using several live attenuated vaccines. It was previously demonstrated that a lumpy skin disease virus (LSDV) field isolate from Warmbaths (WB) South Africa, ORF 005 (IL-10) gene-deleted virus (LSDV WB005KO), was able to protect sheep and goats against sheeppox and goatpox. Subsequently, genes encoding the protective antigens for peste des petits ruminants (PPR) and Rift Valley fever (RVF) viruses have been inserted in the LSDV WB005KO construct in three different antigen forms (native, secreted, and fusion). These three multivalent vaccine candidates were evaluated for protection against PPR using a single immunization of 104 TCID50 in sheep. The vaccine candidates with the native and secreted antigens protected sheep against PPR clinical disease and decreased viral shedding, as detected using real-time RT-PCR in oral and nasal swabs. An anamnestic antibody response, measured using PPR virus-neutralizing antibody response production, was observed in sheep following infection. The vaccine candidates with the antigens expressed in their native form were evaluated for protection against RVF using a single immunization with doses of 104 or 105 TCID50 in sheep and goats. Following RVF virus infection, sheep and goats were protected against clinical disease and no viremia was detected in serum compared to control animals, where viremia was detected one day following infection. Sheep and goats developed RVFV-neutralizing antibodies prior to infection, and the antibody responses increased following infection. These results demonstrate that an LSD virus-vectored vaccine candidate can be used in sheep and goats to protect against multiple viral infections. Full article
(This article belongs to the Special Issue Animal Virus Infection, Immunity and Vaccines)
Show Figures

Figure 1

8 pages, 1209 KiB  
Communication
Different Neutralizing Antibody Responses of Heterologous Sera on Sheeppox and Lumpy Skin Disease Viruses
by Francisco J. Berguido, Richard Thiga Kangethe, Wendy Shell, Viskam Wijewardana, Reingard Grabherr, Giovanni Cattoli and Charles Euloge Lamien
Viruses 2024, 16(7), 1127; https://doi.org/10.3390/v16071127 - 14 Jul 2024
Cited by 1 | Viewed by 1438
Abstract
Sheeppox virus (SPPV), goatpox virus (GTPV), and lumpy skin disease virus (LSDV) are the three members of the genus Capripoxvirus within the Poxviridae family and are the etiologic agents of sheeppox (SPP), goatpox (GTP), and lumpy skin disease (LSD), respectively. LSD, GTP, and [...] Read more.
Sheeppox virus (SPPV), goatpox virus (GTPV), and lumpy skin disease virus (LSDV) are the three members of the genus Capripoxvirus within the Poxviridae family and are the etiologic agents of sheeppox (SPP), goatpox (GTP), and lumpy skin disease (LSD), respectively. LSD, GTP, and SPP are endemic in Africa and Asia, causing severe disease outbreaks with significant economic losses in livestock. Incursions of SPP and LSD have occurred in Europe. Vaccination with live attenuated homologous and heterologous viruses are routinely implemented to control these diseases. Using the gold standard virus neutralization test, we studied the ability of homologous and heterologous sera to neutralize the SPPV and LSDV. We found that LSD and SPP sera effectively neutralize their homologous viruses, and GTP sera can neutralize SPPV. However, while LSD sera effectively neutralizes SPPV, SPP and GTP sera cannot neutralize the LSDV to the same extent. We discuss the implications of these observations in disease assay methodology and heterologous vaccine efficacy. Full article
(This article belongs to the Section Viral Immunology, Vaccines, and Antivirals)
Show Figures

Figure 1

19 pages, 1852 KiB  
Article
Evaluation of a Combined Live Attenuated Vaccine against Lumpy Skin Disease, Contagious Bovine Pleuropneumonia and Rift Valley Fever
by Zohra Bamouh, Amal Elarkam, Soufiane Elmejdoub, Jihane Hamdi, Zineb Boumart, Greg Smith, Matthew Suderman, Mahder Teffera, Hezron Wesonga, Stephen Wilson, Douglas M. Watts, Shawn Babiuk, Brad Pickering and Mehdi Elharrak
Vaccines 2024, 12(3), 302; https://doi.org/10.3390/vaccines12030302 - 13 Mar 2024
Cited by 1 | Viewed by 2919
Abstract
The use of effective vaccines is among the most important strategies for the prevention and progressive control of transboundary infectious animal diseases. However, the use of vaccine is often impeded by the cost, a lack of cold chains and other factors. In resource-limited [...] Read more.
The use of effective vaccines is among the most important strategies for the prevention and progressive control of transboundary infectious animal diseases. However, the use of vaccine is often impeded by the cost, a lack of cold chains and other factors. In resource-limited countries in Africa, one approach to improve coverage and reduce cost is to vaccinate against multiple diseases using combined vaccines. Therefore, the objective of this study was to evaluate a combined vaccine for the prevention and control of Lumpy Skin Disease (LSD), Contagious Bovine Pleuropneumonia (CBPP) and Rift Valley fever (RVF). The LSD and CBPP were formulated as a combined vaccine, and the RVF was formulated separately as live attenuated vaccines. These consisted of a Mycoplasma MmmSC T1/44 strain that was propagated in Hayflick-modified medium, RVF virus vaccine, C13T strain prepared in African green monkey cells (Vero), and the LSDV Neethling vaccine strain prepared in primary testis cells. The vaccines were tested for safety via the subcutaneous route in both young calves and pregnant heifers with no side effect, abortion or teratogenicity. The vaccination of calves induced seroconversions for all three vaccines starting from day 7 post-vaccination (PV), with rates of 50% for LSD, 70% for CBPP and 100% for RVF, or rates similar to those obtained with monovalent vaccines. The challenge of cattle vaccinated with the LSD/CBPP and the RVF vaccine afforded full protection against virulent strains of LSDV and RVFV. A satisfactory level of protection against a CBPP challenge was observed, with 50% of protection at 6 months and 81% at 13 months PV. A mass vaccination trial was performed in four regions of Burkina Faso that confirmed safety and specific antibody responses induced by the vaccines. The multivalent LSD/CBPP+RVF vaccine provides a novel and beneficial approach to the control of the three diseases through one intervention and, therefore, reduces the cost and improves vaccination coverage. Full article
(This article belongs to the Special Issue New Trends in Vaccine Characterization, Formulations, and Development)
Show Figures

Figure 1

15 pages, 2059 KiB  
Article
Complete Genomic Characterization of Lumpy Skin Disease Virus Isolates from Beef Cattle in Lopburi Province, Central Thailand, during 2021–2022
by Nutthakarn Suwankitwat, Taweewat Deemagarn, Kultyarat Bhakha, Tapanut Songkasupa, Ratchaneekorn Vitoonpong, Pannaporn Trakunjaroonkit, Sureenipa Rodphol, Bandit Nuansrichay, Lerdchai Chintapitaksakul, Khanin Wongsarattanasin, Oh-Kyu Kwon, Hae-Eun Kang and Yeun-Kyung Shin
Vet. Sci. 2024, 11(1), 10; https://doi.org/10.3390/vetsci11010010 - 22 Dec 2023
Viewed by 4125
Abstract
Lumpy skin disease (LSD) is a viral infection that impacts the cattle industry. The most efficient approach to prevent disease involves the utilization of live-attenuated LSD vaccines (LAVs), which stands out as the most successful method. However, LAVs might be subjected to changes [...] Read more.
Lumpy skin disease (LSD) is a viral infection that impacts the cattle industry. The most efficient approach to prevent disease involves the utilization of live-attenuated LSD vaccines (LAVs), which stands out as the most successful method. However, LAVs might be subjected to changes to their genomes during replication that increase viral infectivity or virulence. The objective of this study was to monitor alterations in the genetic characteristics of the lumpy skin disease virus (LSDV) in beef cattle following the administration of LAVs in Lopburi Province of Central Thailand. A total of four skin samples from LSD cases were collected from non-vaccinated animals that exhibited LSD clinical symptoms from two distinct districts, spanning three subdistricts within the region. The samples of cattle were analyzed using real-time PCR targeting the LSDV074 p32 gene, the virus was isolated, and the entire genome sequences were evaluated through a single nucleotide polymorphisms (SNPs) analysis, and phylogenetic trees were assembled. The investigations revealed that LSDVs from two isolates from Chai Badan district exhibited significant mutations in the open reading frame (ORF) 023 putative protein, while another two isolates from Lam Sonthi district had a change in the untranslated region (UTR). For a result, the most proficient disease diagnosis and control should be evaluated on viral genetics on a regular basis. Full article
(This article belongs to the Special Issue Genetic Detection and Analysis of Domestic Animal Viruses)
Show Figures

Figure 1

16 pages, 6820 KiB  
Article
Harnessing Attenuation-Related Mutations of Viral Genomes: Development of a Serological Assay to Differentiate between Capripoxvirus-Infected and -Vaccinated Animals
by Francisco J. Berguido, Tesfaye Rufael Chibssa, Angelika Loitsch, Yang Liu, Kiril Krstevski, Igor Djadjovski, Eeva Tuppurainen, Tamaš Petrović, Dejan Vidanović, Philippe Caufour, Tirumala Bharani K. Settypalli, Clemens Grünwald-Gruber, Reingard Grabherr, Adama Diallo, Giovanni Cattoli and Charles Euloge Lamien
Viruses 2023, 15(12), 2318; https://doi.org/10.3390/v15122318 - 25 Nov 2023
Viewed by 2390
Abstract
Sheeppox, goatpox, and lumpy skin disease caused by the sheeppox virus (SPPV), goatpox virus (GTPV), and lumpy skin disease virus (LSDV), respectively, are diseases that affect millions of ruminants and many low-income households in endemic countries, leading to great economic losses for the [...] Read more.
Sheeppox, goatpox, and lumpy skin disease caused by the sheeppox virus (SPPV), goatpox virus (GTPV), and lumpy skin disease virus (LSDV), respectively, are diseases that affect millions of ruminants and many low-income households in endemic countries, leading to great economic losses for the ruminant industry. The three viruses are members of the Capripoxvirus genus of the Poxviridae family. Live attenuated vaccines remain the only efficient means for controlling capripox diseases. However, serological tools have not been available to differentiate infected from vaccinated animals (DIVA), though crucial for proper disease surveillance, control, and eradication efforts. We analysed the sequences of variola virus B22R homologue gene for SPPV, GTPV, and LSDV and observed significant differences between field and vaccine strains in all three capripoxvirus species, resulting in the truncation and absence of the B22R protein in major vaccines within each of the viral species. We selected and expressed a protein fragment present in wildtype viruses but absent in selected vaccine strains of all three species, taking advantage of these alterations in the B22R gene. An indirect ELISA (iELISA) developed using this protein fragment was evaluated on well-characterized sera from vaccinated, naturally and experimentally infected, and negative cattle and sheep. The developed wildtype-specific capripox DIVA iELISA showed >99% sensitivity and specificity for serum collected from animals infected with the wildtype virus. To the best of our knowledge, this is the first wildtype-specific, DIVA-capable iELISA for poxvirus diseases exploiting changes in nucleotide sequence alterations in vaccine strains. Full article
(This article belongs to the Special Issue Capripox Viruses: A Continuing Transboundary Threat to Animal Health)
Show Figures

Figure 1

15 pages, 1753 KiB  
Article
Cross-Protection of an Inactivated and a Live-Attenuated Lumpy Skin Disease Virus Vaccine against Sheeppox Virus Infections in Sheep
by Janika Wolff, Martin Beer and Bernd Hoffmann
Vaccines 2023, 11(4), 763; https://doi.org/10.3390/vaccines11040763 - 29 Mar 2023
Cited by 5 | Viewed by 3011
Abstract
Sheeppox virus (SPPV) (genus Capripoxvirus, family Poxviridae) infections are a highly virulent and contagious disease of sheep with a high morbidity and mortality, especially in naïve populations and young animals. For the control of SPPV, homologous and heterologous live-attenuated vaccines are commercially available. [...] Read more.
Sheeppox virus (SPPV) (genus Capripoxvirus, family Poxviridae) infections are a highly virulent and contagious disease of sheep with a high morbidity and mortality, especially in naïve populations and young animals. For the control of SPPV, homologous and heterologous live-attenuated vaccines are commercially available. In our study, we compared a commercially available live-attenuated lumpy skin disease virus (LSDV) vaccine strain (Lumpyvax) with our recently developed inactivated LSDV vaccine candidate regarding their protective efficacy against SPPV in sheep. Both vaccines were proven to be safe in sheep, and neither clinical signs nor viremia could be detected after vaccination and challenge infection. However, the local replication of the challenge virus in the nasal mucosa of previously vaccinated animals was observed. Because of the advantages of an inactivated vaccine and its heterologous protection efficacy against SPPV in sheep, our inactivated LSDV vaccine candidate is a promising additional tool for the prevention and control of SPPV outbreaks in the future. Full article
(This article belongs to the Special Issue Veterinary Vaccines)
Show Figures

Figure 1

17 pages, 3093 KiB  
Review
Lumpy Skin Disease—An Emerging Cattle Disease in Europe and Asia
by Leah Whittle, Rosamund Chapman and Anna-Lise Williamson
Vaccines 2023, 11(3), 578; https://doi.org/10.3390/vaccines11030578 - 2 Mar 2023
Cited by 37 | Viewed by 4606
Abstract
Lumpy skin disease virus (LSDV) is a member of the Capripoxvirus genus, mainly infecting cattle and buffalo, which until relatively recently was only endemic in parts of Africa and then spread to the Middle East and lately Europe and Asia. Lumpy skin disease [...] Read more.
Lumpy skin disease virus (LSDV) is a member of the Capripoxvirus genus, mainly infecting cattle and buffalo, which until relatively recently was only endemic in parts of Africa and then spread to the Middle East and lately Europe and Asia. Lumpy skin disease (LSD) is a notifiable disease with a serious impact on the beef industry as it causes mortality of up to 10% and has impacts on milk and meat production, as well as fertility. The close serological relationship between LSDV, goat poxvirus (GTPV) and sheep poxvirus (SPPV) has led to live attenuated GTPV and SPPV vaccines being used to protect against LSD in some countries. There is evidence that the SPPV vaccine does not protect from LSD as well as the GTPV and LSDV vaccines. One of the LSD vaccines used in Eastern Europe was found to be a combination of different Capripoxviruses, and a series of recombination events in the manufacturing process resulted in cattle being vaccinated with a range of recombinant LSDVs resulting in virulent LSDV which spread throughout Asia. It is likely that LSD will become endemic throughout Asia as it will be very challenging to control the spread of the virus without widespread vaccination. Full article
(This article belongs to the Special Issue Veterinary Vaccines and Diagnostic Tools 2.0)
Show Figures

Figure 1

15 pages, 2505 KiB  
Review
An Extensive Examination of the Warning Signs, Symptoms, Diagnosis, Available Therapies, and Prognosis for Lumpy Skin Disease
by Bharti Datten, Anis Ahmad Chaudhary, Shalini Sharma, Lokender Singh, Krishna Dutta Rawat, Mohammad Saquib Ashraf, Lina M. Alneghery, Malak O. Aladwani, Hassan Ahmad Rudayni, Deen Dayal, Sanjay Kumar and Kundan Kumar Chaubey
Viruses 2023, 15(3), 604; https://doi.org/10.3390/v15030604 - 22 Feb 2023
Cited by 30 | Viewed by 7158
Abstract
The lumpy skin disease virus (LSDV) infects cattle and buffalo and causes lumpy skin disease (LSD). It affects the lymph nodes of the sick animals, causing them to enlarge and appear as lumps (cutaneous nodules) that are 2–5 cm in diameter on their [...] Read more.
The lumpy skin disease virus (LSDV) infects cattle and buffalo and causes lumpy skin disease (LSD). It affects the lymph nodes of the sick animals, causing them to enlarge and appear as lumps (cutaneous nodules) that are 2–5 cm in diameter on their heads, necks, limbs, udders, genitalia, and perinea. A high temperature, a sharp drop in milk supply, discharge from the eyes and nose, salivation, a loss of appetite, depression, damaged hides, and emaciation are further warning signs and symptoms. As per the Food and Agriculture Organization (FAO), the incubation period, or the time between an infection and symptoms, is approximately 28 days. Infected animals can transfer the virus by direct contact with the vectors, direct virus secretion from mouth or nose, shared feeding and watering troughs, and even artificial insemination. The World Organization for Animal Health (WOAH) and the FAO both warn that the spread of illnesses could lead to serious economic losses. This illness reduces cow’s milk production because oral ulcers make the animal weak and lead them to lose their appetite. There are many diagnostics available for LSDV. However, very few tests yield accurate findings. The best methods for preventing and controlling the lumpy skin condition include vaccination and movement restrictions. As a specific cure is not available, the only available treatment for this illness is supportive care for cattle. Recently, India has developed a homologous, live-attenuated vaccine, Lumpi-ProVacInd, which is specifically intended to protect animals against the LSD virus. This study’s primary goal is to accumulate data on symptoms, the most accurate method of diagnosis, treatments, and controls to stop infections from spreading as well as to explore future possibilities for the management of LSDV. Full article
Show Figures

Figure 1

18 pages, 4115 KiB  
Article
Duration of Immunity Induced after Vaccination of Cattle with a Live Attenuated or Inactivated Lumpy Skin Disease Virus Vaccine
by Andy Haegeman, Ilse De Leeuw, Laurent Mostin, Willem Van Campe, Wannes Philips, Mehdi Elharrak, Nick De Regge and Kris De Clercq
Microorganisms 2023, 11(1), 210; https://doi.org/10.3390/microorganisms11010210 - 13 Jan 2023
Cited by 12 | Viewed by 9179
Abstract
Vaccines have proven themselves as an efficient way to control and eradicate lumpy skin disease (LSD). In addition to the safety and efficacy aspects, it is important to know the duration for which the vaccines confer protective immunity, as this impacts the design [...] Read more.
Vaccines have proven themselves as an efficient way to control and eradicate lumpy skin disease (LSD). In addition to the safety and efficacy aspects, it is important to know the duration for which the vaccines confer protective immunity, as this impacts the design of an efficient control and eradication program. We evaluated the duration of immunity induced by a live attenuated vaccine (LSDV LAV) and an inactivated vaccine (LSDV Inac), both based on LSDV. Cattle were vaccinated and challenged after 6, 12 and 18 months for LSDV LAV or after 6 and 12 months for the LSDV Inac. The LSDV LAV elicited a strong immune response and protection for up to 18 months, as no clinical signs or viremia could be observed after a viral LSDV challenge in any of the vaccinated animals. A good immune response and protection were similarly seen for the LSDV Inac after 6 months. However, two animals developed clinical signs and viremia when challenged after 12 months. In conclusion, our data support the annual booster vaccination when using the live attenuated vaccine, as recommended by the manufacturer, which could potentially even be prolonged. In contrast, a bi-annual vaccination seems necessary when using the inactivated vaccine. Full article
Show Figures

Figure 1

11 pages, 2563 KiB  
Article
Lumpy Skin Disease Virus with Four Knocked Out Genes Was Attenuated In Vivo and Protects Cattle from Infection
by Olga Chervyakova, Aisha Issabek, Kulyaisan Sultankulova, Arailym Bopi, Nurlan Kozhabergenov, Zamira Omarova, Ali Tulendibayev, Nurdos Aubakir and Mukhit Orynbayev
Vaccines 2022, 10(10), 1705; https://doi.org/10.3390/vaccines10101705 - 12 Oct 2022
Cited by 10 | Viewed by 3716
Abstract
Vaccination with live attenuated vaccines is a key element in the prevention of lumpy skin disease. The mechanism of virus attenuation by long-term passaging in sensitive systems remains unclear. Targeted inactivation of virulence genes is the most promising way to obtain attenuated viruses. [...] Read more.
Vaccination with live attenuated vaccines is a key element in the prevention of lumpy skin disease. The mechanism of virus attenuation by long-term passaging in sensitive systems remains unclear. Targeted inactivation of virulence genes is the most promising way to obtain attenuated viruses. Four virulence genes in the genome of the lumpy skin disease virus (LSDV) Dermatitis nodulares/2016/Atyrau/KZ were sequentially knocked out by homologous recombination under conditions of temporary dominant selection. The recombinant LSDV Atyrau-5BJN(IL18) with a knockout of the LSDV005, LSDV008, LSDV066 and LSDV142 genes remained genetically stable for ten passages and efficiently replicated in cells of lamb testicles, saiga kidney and bovine kidney. In vivo experiments with cattle have shown that injection of the LSDV Atyrau-5BJN(IL18) at a high dose does not cause disease in animals or other deviations from the physiological norm. Immunization of cattle with the LSDV Atyrau-5BJN(IL18) induced the production of virus-neutralizing antibodies in titers of 4–5 log2. The challenge did not cause disease in immunized animals. The knockout of four virulence genes resulted in attenuation of the virulent LSDV without loss of immunogenicity. The recombinant LSDV Atyrau-5BJN(IL18) is safe for clinical use, immunogenic and protects animals from infection with the virulent LSDV. Full article
(This article belongs to the Special Issue Animal Vaccines)
Show Figures

Figure 1

14 pages, 1482 KiB  
Article
High Efficiency of Low Dose Preparations of an Inactivated Lumpy Skin Disease Virus Vaccine Candidate
by Janika Wolff, Martin Beer and Bernd Hoffmann
Vaccines 2022, 10(7), 1029; https://doi.org/10.3390/vaccines10071029 - 27 Jun 2022
Cited by 6 | Viewed by 2924
Abstract
Capripox virus-induced diseases are commonly described as the most serious poxvirus diseases of production animals, as they have a significant impact on national and global economies. Therefore, they are classified as notifiable diseases under the guidelines of the World Organization for Animal Health [...] Read more.
Capripox virus-induced diseases are commonly described as the most serious poxvirus diseases of production animals, as they have a significant impact on national and global economies. Therefore, they are classified as notifiable diseases under the guidelines of the World Organization for Animal Health (OIE). Controlling lumpy skin disease viral infections is based on early detection, slaughter of affected herds, and ring vaccinations. Until now, only live attenuated vaccines have been commercially available, which often induce adverse effects in vaccinated animals. Furthermore, their application leads to the loss of the “disease-free” status of the respective country. For these reasons, inactivated vaccines have increasingly generated interest. Since 2016, experimental studies have been published showing the high efficacy of inactivated capripox virus vaccines. In the present study, we examined the minimum protective dose of a BEI-inactivated LSDV-Serbia field strain adjuvanted with a low-molecular-weight copolymer adjuvant. Unexpectedly, even the lowest dose tested, with a virus titer of 104 CCID50 before inactivation, was able to provide complete clinical protection in all vaccinated cattle. Moreover, none of the vaccinated cattle showed viremia or viral shedding, indicating the high efficacy of the prototype vaccine even with a relatively low antigen amount. Full article
(This article belongs to the Special Issue Vaccines in Farm Animals)
Show Figures

Figure 1

16 pages, 1031 KiB  
Article
The Importance of Quality Control of LSDV Live Attenuated Vaccines for Its Safe Application in the Field
by Andy Haegeman, Ilse De Leeuw, Meruyert Saduakassova, Willem Van Campe, Laetitia Aerts, Wannes Philips, Akhmetzhan Sultanov, Laurent Mostin and Kris De Clercq
Vaccines 2021, 9(9), 1019; https://doi.org/10.3390/vaccines9091019 - 13 Sep 2021
Cited by 33 | Viewed by 4565
Abstract
Vaccination is an effective approach to prevent, control and eradicate diseases, including lumpy skin disease (LSD). One of the measures to address farmer hesitation to vaccinate is guaranteeing the quality of vaccine batches. The purpose of this study was to demonstrate the importance [...] Read more.
Vaccination is an effective approach to prevent, control and eradicate diseases, including lumpy skin disease (LSD). One of the measures to address farmer hesitation to vaccinate is guaranteeing the quality of vaccine batches. The purpose of this study was to demonstrate the importance of a quality procedure via the evaluation of the LSD vaccine, Lumpivax (Kevevapi). The initial PCR screening revealed the presence of wild type LSD virus (LSDV) and goatpox virus (GTPV), in addition to vaccine LSDV. New phylogenetic PCRs were developed to characterize in detail the genomic content and a vaccination/challenge trial was conducted to evaluate the impact on efficacy and diagnostics. The characterization confirmed the presence of LSDV wild-, vaccine- and GTPV-like sequences in the vaccine vial and also in samples taken from the vaccinated animals. The analysis was also suggestive for the presence of GTPV-LSDV (vaccine/wild) recombinants. In addition, the LSDV status of some of the animal samples was greatly influenced by the differentiating real-PCR used and could result in misinterpretation. Although the vaccine was clinically protective, the viral genomic content of the vaccine (being it multiple Capripox viruses and/or recombinants) and the impact on the diagnostics casts serious doubts of its use in the field. Full article
(This article belongs to the Special Issue Lumpy Skin Disease Control and Vaccines)
Show Figures

Figure 1

Back to TopTop