Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (43)

Search Parameters:
Keywords = liquid damper

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 6016 KB  
Article
Numerical Simulation of Sloshing Tanks with Shallow Water Model Using Low Numerical Diffusion Schemes and Its Application to Tuned Liquid Dampers
by Mahdiyar Khanpour, Abdolmajid Mohammadian, Hamidreza Shirkhani and Reza Kianoush
Water 2025, 17(18), 2703; https://doi.org/10.3390/w17182703 - 12 Sep 2025
Viewed by 424
Abstract
The initial part of this study fills a notable research gap by investigating the substantial impact of numerical diffusion errors from different schemes on sloshing tank models. Multiple numerical models were developed: first- and higher-order upwind schemes equipped with precise wall treatment using [...] Read more.
The initial part of this study fills a notable research gap by investigating the substantial impact of numerical diffusion errors from different schemes on sloshing tank models. Multiple numerical models were developed: first- and higher-order upwind schemes equipped with precise wall treatment using ghost nodes, MacCormack and central methods that are explicit second-order finite difference methods, and Preissmann and staggered methods employed in full-implicit and semi-implicit modes. Furthermore, the separation of variables technique was proposed for simulating sloshing tanks and deriving an analytical equation for the tank’s natural period. An analytical solution to the perturbation was employed to examine the numerical diffusion of the schemes. Subsequently, two sloshing tests, resonant and near-resonant excitations, were employed to determine the numerical diffusion and calibrate the physical diffusion coefficients, respectively. Finally, an efficient and accurate numerical scheme was applied to a linear shallow water model including physical diffusion and coupled with a single degree of freedom (SDOF), to simulate tuned liquid dampers (TLDs). It shows that the efficiency of TLD is associated with a compact domain around resonance excitation. Contrary to SDOF alone, when SDOF interacts with TLD the impact of structural damping on reducing the response is minimal in resonance excitation. Full article
(This article belongs to the Section Hydraulics and Hydrodynamics)
Show Figures

Figure 1

20 pages, 4721 KB  
Article
Evaluation of the Fluid Properties Modification Through Magnetic Fields for Their Application on Tuned Liquid Dampers: An Experimental Approach
by Andrea Vázquez-Greciano, César De Santos-Berbel, Antonio Aznar López and Jesús M. Ortiz Herrera
Appl. Sci. 2025, 15(8), 4194; https://doi.org/10.3390/app15084194 - 10 Apr 2025
Viewed by 599
Abstract
Tuned Liquid Dampers (TLDs) are dissipative devices that mitigate vibrations through the out-of-phase movement of a fluid, typically water, inside a container relative to a main structure. Water’s low density and viscosity have led to modifications to enhance their effectiveness. Fluid properties, such [...] Read more.
Tuned Liquid Dampers (TLDs) are dissipative devices that mitigate vibrations through the out-of-phase movement of a fluid, typically water, inside a container relative to a main structure. Water’s low density and viscosity have led to modifications to enhance their effectiveness. Fluid properties, such as density or viscosity, significantly impact their performance by altering mass and damping, respectively. When magnetorheological fluids are employed, magnetic fields can modify the fluid viscosity, affecting the damping. This study experimentally examines the effect of a magnetic field and ambient parameters on the viscosity of different low-cost, custom-prepared magnetic fluids. A tube filled with magnetic liquids into which diverse non-magnetic spheres are dropped was employed, considering on- and off-states of the magnetic field generated by a pair of Helmholtz coils. The impact on the fluid viscosity variation of different measured variables was statistically analyzed. It was found that in all cases, the variations in ambient temperature and relative humidity had no effect on the results. While the magnetic field had a large effect on the viscosity of the magnetic fluid, for the sunflower oil-based fluids, the spheres used or the concentration of iron filings had a greater effect on the viscosity than the presence of the magnetic field. Full article
Show Figures

Figure 1

13 pages, 4791 KB  
Communication
Simulating the Structure of Magnetic Fluid Using Dissipative Particle Dynamics Method
by Xiaoxi Tian, Fanian Lai and Yu Ying
Materials 2025, 18(8), 1697; https://doi.org/10.3390/ma18081697 - 8 Apr 2025
Viewed by 641
Abstract
Magnetic fluids (MF), composed of ferromagnetic nanoparticles, surfactants, and a carrier liquid, exhibit tunable physical properties under external magnetic fields due to the formation of chain-like nanoparticle structures. Using dissipative particle dynamics (DPD), we simulate the structural evolution of these fluids and establish [...] Read more.
Magnetic fluids (MF), composed of ferromagnetic nanoparticles, surfactants, and a carrier liquid, exhibit tunable physical properties under external magnetic fields due to the formation of chain-like nanoparticle structures. Using dissipative particle dynamics (DPD), we simulate the structural evolution of these fluids and establish a computational model incorporating magnetic nanoparticles and solvent particles. Our simulations confirm qualitative agreement with the literature results, validating the chosen time integration methods. Through radial distribution function analysis, we further demonstrate how the mass of solvent molecules and magnetic interaction strength govern the fluid’s microstructure. This work provides insights into the design of magnetic fluids for applications such as targeted drug delivery, adaptive dampers, and advanced magneto-rheological devices. Full article
Show Figures

Figure 1

13 pages, 6324 KB  
Article
Experimental Comparison of the Performance of Shear Frame with TLD and TLCD Under Harmonic Ground Motion
by Yunus Emre Kebeli, Ersin Aydın, Baki Öztürk and Hüseyin Çetin
Buildings 2024, 14(12), 3843; https://doi.org/10.3390/buildings14123843 - 30 Nov 2024
Cited by 2 | Viewed by 1228
Abstract
Today, various systems are used to reduce vibrations in civil engineering structures. Among these systems, tuned liquid dampers are the preferred passive systems due to their ability to be designed in different geometries, their low cost, their ease of installation, and their low [...] Read more.
Today, various systems are used to reduce vibrations in civil engineering structures. Among these systems, tuned liquid dampers are the preferred passive systems due to their ability to be designed in different geometries, their low cost, their ease of installation, and their low maintenance costs. This study examines the effectiveness of tuned liquid dampers (TLD) and tuned liquid column dampers (TLCD) under identical geometric conditions and harmonic ground motion to assess which is more efficient in controlling the behavior of a three-storey steel shear frame model equipped with these systems. A small-scale, three-storey shear frame model placed on a uniaxial shaking table was subjected to harmonic motion with a 5 mm amplitude, 1.4 Hz frequency, and 10 cycles. The chosen frequency aligns with the resonance frequency of the undamped building model’s first mode. Both TLD and TLCD tanks, positioned atop the structure, share a geometry of 30 cm in length and 10 cm in width, with variable liquid heights of 5, 10, 15, and 20 cm. Mounting TLD and TLCD models with four different liquid heights on the undamped model resulted in nine distinct setups. In this designed scenario, the TLDs and TLCDs on the undamped shear frame were compared according to liquid heights at rest. To identify the best-performing system based on liquid height, response displacement–frequency graphs were generated for all models within a frequency range of 0.5–2.5 Hz, and damping ratios were calculated using the half-power bandwidth method. Additionally, harmonic ground motion experiments at the resonance frequency compared both acceleration and displacement values over time for damped and undamped models. Peak acceleration and displacement values on each floor were also analyzed. The results highlight which system proves more effective based on damping ratio, acceleration, and displacement values under equivalent conditions. Full article
Show Figures

Figure 1

23 pages, 5618 KB  
Article
The Fluid Behavior of a Non-Orifice TLCD under Harmonic Excitation: From Experiments to Analytical Solution
by Sefer Arda Serbes, Tahsin Engin, Muaz Kemerli, Egemen Kayrakoğlu and Ahmet Aydın
Buildings 2024, 14(9), 2782; https://doi.org/10.3390/buildings14092782 - 4 Sep 2024
Viewed by 1205
Abstract
Tuned liquid column damper (TLCD) is a well-known liquid damper designed to absorb the vibration of structures used in many applications, such as high-story buildings, wind turbines, and offshore platforms, requiring an accurate mathematical determination of the liquid level to model the TLCD [...] Read more.
Tuned liquid column damper (TLCD) is a well-known liquid damper designed to absorb the vibration of structures used in many applications, such as high-story buildings, wind turbines, and offshore platforms, requiring an accurate mathematical determination of the liquid level to model the TLCD structure system motion. The mathematical model of a TLCD is a nonlinear ordinary differential equation, unlike the structure, due to the term containing a viscous damping coefficient, and cannot be solved analytically. In this study, the fluid behavior of a TLCD without an orifice, directly connected to a shaking table under harmonic excitation, was investigated experimentally and a new linearization coefficient was proposed to be used in the mathematical model. First, the nonlinear mathematical model was transformed to a nondimensional form to better analyze the parameter relations, focusing on the steady-state amplitude of the liquid level during the harmonic excitation. The experimental data were then processed using the fourth-order Runge–Kutta method, and a correlation to calculate the viscous damping coefficient was proposed in the dimensionless form. Accordingly, a novel empirical model was proposed for the dimensionless steady-state amplitude of the liquid level using this correlation. Finally, with the help of the proposed correlation and the empirical model, an original linearization coefficient was introduced which does not need experimental data. The nonlinear mathematical model was linearized by using the developed linearization coefficient and solved analytically using the Laplace transform method. The study presents a generalized method for the analytical determination of the liquid level in a non-orifice TLCD under harmonic excitation, using a correlation and an empirical model proposed for the first time in this study, providing a novel and simple solution to be used in the examination of various TLCD structure systems. Full article
(This article belongs to the Special Issue Structural Vibration Control Research)
Show Figures

Figure 1

22 pages, 4494 KB  
Article
Analysis of Inherent Frequencies to Mitigate Liquid Sloshing in Overhead Double-Baffle Damper
by Ashraf Ali, Mohamed Ismail, Madhan Kumar, Daniel Breaz and Kadhavoor R. Karthikeyan
Mathematics 2024, 12(17), 2727; https://doi.org/10.3390/math12172727 - 31 Aug 2024
Viewed by 1950
Abstract
A disco-rectangular volume-fraction-of-fluid (VOF) model tank of a prismatic size is considered here for investigating the severe effect of overhead baffles made of three different materials, nylon, polyamide, and polylactic acid. In this work, the overdamped, undamped, and nominal damped motion of baffles [...] Read more.
A disco-rectangular volume-fraction-of-fluid (VOF) model tank of a prismatic size is considered here for investigating the severe effect of overhead baffles made of three different materials, nylon, polyamide, and polylactic acid. In this work, the overdamped, undamped, and nominal damped motion of baffles and their effect are studied. In this research, the behaviour of different material baffles based on the sloshing effect and natural frequency of each baffle excited in damped, undamped, and overdamped cases is studied. VOF modelling is carried out in moving Yeoh model mesh with fluid–structure interaction between the water models for various baffle plates. The results of the water volume distribution and baffle displacement operating between a sloshing time of 0 and 1 s are recorded. Also, a strong investigation is carried out for the water volume suspended on overhead baffles by three different material selections. Full article
(This article belongs to the Special Issue Computational Fluid Dynamics with Applications)
Show Figures

Figure 1

18 pages, 12354 KB  
Article
Investigating Large-Scale Tuned Liquid Dampers through Real-Time Hybrid Simulations
by Ali Ashasi Sorkhabi, Barry Qiu and Oya Mercan
Buildings 2024, 14(7), 2017; https://doi.org/10.3390/buildings14072017 - 2 Jul 2024
Cited by 2 | Viewed by 2203
Abstract
As buildings become taller and slenderer, managing their vibrational response and mitigating it pose significant challenges in design. Tuned liquid dampers (TLDs) are liquid (usually water)-filled tanks that can mitigate structural vibrations by leveraging the sloshing motion of the contained fluid. However, the [...] Read more.
As buildings become taller and slenderer, managing their vibrational response and mitigating it pose significant challenges in design. Tuned liquid dampers (TLDs) are liquid (usually water)-filled tanks that can mitigate structural vibrations by leveraging the sloshing motion of the contained fluid. However, the dynamic behavior of TLDs and their interaction with structures is complex. While most research on TLDs has focused on mitigating wind-induced vibrations, less attention has been paid to their seismic control of structural responses. Moreover, existing literature on the experimental research involving TLDs mostly pertains to small-scale models. This study aims to experimentally explore the effectiveness of large-scale TLDs in mitigating vibrations in both linear and nonlinear structures under seismic loads. A real-time hybrid simulation is employed as the experimental method, where only the TLD is physically constructed and tested, while the rest of the system is simulated numerically in a coupled manner, allowing for obtaining the dynamic response of the structure equipped with the TLD in real time. This approach offers the flexibility to significantly scale up the TLD size for physical testing while exploring various TLD-structure scenarios by numerically adjusting the structural properties within the simulation. Full article
(This article belongs to the Special Issue Advances in Research on Structural Dynamics and Health Monitoring)
Show Figures

Figure 1

25 pages, 11561 KB  
Article
Simulation of Sloped-Bed Tuned Liquid Dampers Using a Nonlinear Shallow Water Model
by Mahdiyar Khanpour, Abdolmajid Mohammadian, Hamidreza Shirkhani and Reza Kianoush
Water 2024, 16(10), 1394; https://doi.org/10.3390/w16101394 - 14 May 2024
Cited by 1 | Viewed by 1614
Abstract
This research aims to develop an efficient and accurate model for simulating tuned liquid dampers (TLDs) with sloped beds. The model, based on nonlinear shallow water equations, is enhanced by introducing new terms tailored to each specific case. It employs the central upwind [...] Read more.
This research aims to develop an efficient and accurate model for simulating tuned liquid dampers (TLDs) with sloped beds. The model, based on nonlinear shallow water equations, is enhanced by introducing new terms tailored to each specific case. It employs the central upwind method and Minmod limiter functions for flux and interface variable assessment, ensuring both high accuracy and reasonable computational cost. While acceleration, slope, and dissipation are treated as explicit sources, an implicit scheme is utilized for dispersion discretization to enhance the model’s stability, resulting in matrix equations. Time discretization uses the fourth-order Runge–Kutta scheme for precision. The performance of the model has been evaluated using several test cases including dam-breaks on flat and inclined beds and run-up and run-down simulations over parabolic beds, which are relevant to sloshing in tanks with sloped beds. It accurately predicts phenomena such as asymmetric sloshing waves, especially in sloped beds, where pronounced waves occur. Dispersion and dissipation terms are crucial for capturing these effects and maintaining stable wave patterns. An initial perturbation method assesses the tank’s natural period and numerical diffusion. Furthermore, the model integrates with a single-degree-of-freedom (SDOF) system to create a TLD model, demonstrating enhanced damping effects with sloped beds. Full article
(This article belongs to the Special Issue Advances in Hydraulic and Water Resources Research (2nd Edition))
Show Figures

Figure 1

23 pages, 9936 KB  
Article
Experimental Testing on Tuned Liquid Dampers for Implementation in Industrial Chimneys
by Giancarlo Marulli and Carlos Moutinho
Sensors 2024, 24(9), 2800; https://doi.org/10.3390/s24092800 - 27 Apr 2024
Viewed by 1635
Abstract
A TLD is a passive damping device that works by dissipating energy through the sloshing of the liquid and the effect of wave breaking, thereby controlling the vibrations of the structure. One of the applications where TLDs are of great interest is in [...] Read more.
A TLD is a passive damping device that works by dissipating energy through the sloshing of the liquid and the effect of wave breaking, thereby controlling the vibrations of the structure. One of the applications where TLDs are of great interest is in the case of industrial chimneys since these structures often have a very low natural frequency, which can be easily achieved in a control device of this type. The main objective of this study is to evaluate the behaviour of an annular TLD composed of multiple cells through laboratory tests and investigate if it is adequate to design it as an agglomeration of smaller rectangular TLDs. The influence of the amplitude of displacement on the behaviour of the annular TLD will also be analysed. The tests were performed on a shaking table and recurring with pendulums of the same length but of different masses. Three reservoirs were studied as TLDs: a rectangular one, a cell of an annular TLD and a quarter-ring of an annular TLD. This study concluded that the analytical methods developed in previous studies were, in general, adequate for the design of a rectangular TLD and that it was reasonable to design the annular TLD studied as a combination of rectangular ones, as its cells were a close match to a rectangle of similar dimensions. It was also concluded that a compartmentalised annular TLD is an adequate solution for the vibration control of structures with high displacements. Full article
(This article belongs to the Special Issue Novel Sensors for Structural Health Monitoring)
Show Figures

Figure 1

20 pages, 5542 KB  
Article
Assessment of Hydrodynamic Performance and Motion Suppression of Tension Leg Floating Platform Based on Tuned Liquid Multi-Column Damper
by Fuyin Cui, Shuling Chen, Hongbin Hao, Changzhi Han, Ruidong Ni and Yueyue Zhuo
J. Mar. Sci. Eng. 2024, 12(2), 328; https://doi.org/10.3390/jmse12020328 - 14 Feb 2024
Viewed by 1683
Abstract
To address the unstable motion of a tension leg platform (TLP) for floating wind turbines in various sea conditions, an improved method of incorporating a tuned liquid multi-column damper (TLMCD) into the TLP foundation is proposed. In order to evaluate the control effect [...] Read more.
To address the unstable motion of a tension leg platform (TLP) for floating wind turbines in various sea conditions, an improved method of incorporating a tuned liquid multi-column damper (TLMCD) into the TLP foundation is proposed. In order to evaluate the control effect of TLMCD on the motion response of the floating foundation, a multiphase flow solver based on a viscous flow CFD method and overlapping grid technique is applied to model the coupled multi-body dynamics interaction problem involving liquid tanks, waves, and a spring mooring system. This method has been proven to accurately capture the high-frequency motions of the structure and account for complex viscous interferences affecting the geometric motions. Additionally, the volume of fluid (VOF) method and the first-order linear superposition method are used to model the focused wave, enabling a simulation of the effects of transient wave loads on the floating foundation. The results show that the tuned damping effect of TLMCD on the TLP is mainly in the pitch motion, with the maximum pitch amplitude control volume ratio of TLMCD reaching up to 86% and the maximum surge amplitude control volume ratio of TLMCD reaching up to 25.2% under the operating conditions. These findings highlight the potential for additional research on and implementation of TLMCD technology. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

14 pages, 12867 KB  
Article
Experimental Investigation to Evaluate the Dynamic Properties of a Scaled Rectangular Tuned Liquid Damper Using High-Speed Videos
by Rigoberto Nava-González, Adrián Pozos-Estrada, Roberto Gómez-Martínez and Oscar Pozos-Estrada
Buildings 2024, 14(2), 331; https://doi.org/10.3390/buildings14020331 - 24 Jan 2024
Viewed by 1432
Abstract
The use of tuned liquid dampers (TLDs) as an alternative to reduce the response of flexible structures with a low amount of structural damping is a viable option. The correct characterization of the dynamic properties of the TLD plays an important role in [...] Read more.
The use of tuned liquid dampers (TLDs) as an alternative to reduce the response of flexible structures with a low amount of structural damping is a viable option. The correct characterization of the dynamic properties of the TLD plays an important role in the performance of the TLD-main structure system. This work presents the results of an experimental study to evaluate the dynamic properties of a scaled rectangular TLD using high-speed videos. For the experimental investigation, a scaled rectangular TLD is subjected to lateral displacement of the sinusoidal type with amplitudes that range from 5 to 40 mm and frequency equal to 0.625 Hz. The dynamic properties of the TLD system are identified with the use of high-speed videos with a duration of 28.96 s and recorded at 500 frames per second (fps). The recorded videos are analyzed with the software Tracker to extract time histories of wave elevation at predefined locations. The frequency and damping of the TLD system are identified from the time histories of wave elevation through Fourier analysis and free-vibration decay. The findings of this study revealed that the identified dynamic properties of the TLD by using high-speed videos presented small differences with respect to the target values, with errors that range from 0.93 to 2.9% for frequency and from 1.6 to 8.8% for damping, indicating that the use of high-speed videos can be an alternative to evaluate the dynamic properties of TLD systems. Full article
(This article belongs to the Special Issue Wind Load Effects on High-Rise and Long-Span Structures)
Show Figures

Figure 1

19 pages, 9453 KB  
Article
Vibration Suppression of a Flexible Beam Structure Coupled with Liquid Sloshing via ADP Control Based on FBG Strain Measurement
by Chunyang Kong, Dangjun Zhao and Buge Liang
Actuators 2023, 12(12), 471; https://doi.org/10.3390/act12120471 - 17 Dec 2023
Cited by 1 | Viewed by 2094
Abstract
In this study, an adaptive dynamic programming (ADP) control strategy based on the strain measurement of a fiber Bragg grating (FGB) sensor array is proposed for the vibration suppression of a complicated flexible-sloshing coupled system, which usually exists in aerospace engineering, such as [...] Read more.
In this study, an adaptive dynamic programming (ADP) control strategy based on the strain measurement of a fiber Bragg grating (FGB) sensor array is proposed for the vibration suppression of a complicated flexible-sloshing coupled system, which usually exists in aerospace engineering, such as launch vehicles with a large amount of liquid propellant as well as a flexible beam structure. To simplify the flexible-sloshing coupled dynamics model, the equivalent spring-mass-damper (SMD) model of liquid sloshing is employed, and a finite-element method (FEM) dynamic model for the beam structure coupled with the liquid sloshing is mathematically established. Then, a strain-based vibration dynamic model is derived by employing a transformation matrix based on the relationship between displacement and strain of the beam structure. To facilitate the design of a strain-based control, a tracking differentiator is designed to provide the strains’ derivative signals as partial states’ estimations. Feeding the system with the strain measurements and their derivatives’ estimations, an ADP controller with an action-dependent heuristic dynamic programming structure is proposed to suppress the vibration of the flexible-sloshing coupled system, and the corresponding Lyapunov stability of the closed-loop system is theoretically guaranteed. Numerical results show the proposed method can effectively suppress coupled vibration depending on limited strain measurements irrespective of external disturbances. Full article
(This article belongs to the Special Issue Dynamics and Control of Aerospace Systems)
Show Figures

Figure 1

16 pages, 4137 KB  
Article
A Thermal Anemometry Method for Studying the Unsteady Gas Dynamics of Pipe Flows: Development, Modernisation, and Application
by Leonid Plotnikov
Sensors 2023, 23(24), 9750; https://doi.org/10.3390/s23249750 - 11 Dec 2023
Cited by 5 | Viewed by 2216
Abstract
A detailed study of the gas-dynamic behaviour of both liquid and gas flows is urgently required for a variety of technical and process design applications. This article provides an overview of the application and an improvement to thermal anemometry methods and tools. The [...] Read more.
A detailed study of the gas-dynamic behaviour of both liquid and gas flows is urgently required for a variety of technical and process design applications. This article provides an overview of the application and an improvement to thermal anemometry methods and tools. The principle and advantages of a hot-wire anemometer operating according to the constant-temperature method are described. An original electronic circuit for a constant-temperature hot-wire anemometer with a filament protection unit is proposed for measuring the instantaneous velocity values of both stationary and pulsating gas flows in pipelines. The filament protection unit increases the measuring system’s reliability. The designs of the hot-wire anemometer and filament sensor are described. Based on development tests, the correct functioning of the measuring system was confirmed, and the main technical specifications (the time constant and calibration curve) were determined. A measuring system for determining instantaneous gas flow velocity values with a time constant from 0.5 to 3.0 ms and a relative uncertainty of 5.1% is proposed. Based on pilot studies of stationary and pulsating gas flows in different gas-dynamic systems (a straight pipeline, a curved channel, a system with a poppet valve or a damper, and the external influence on the flow), the applications of the hot-wire anemometer and sensor are identified. Full article
(This article belongs to the Section Industrial Sensors)
Show Figures

Figure 1

31 pages, 773 KB  
Review
Thermal Conductivity and Temperature Dependency of Magnetorheological Fluids and Application Systems—A Chronological Review
by Seung-Bok Choi
Micromachines 2023, 14(11), 2096; https://doi.org/10.3390/mi14112096 - 13 Nov 2023
Cited by 11 | Viewed by 3193
Abstract
Many studies on magnetorheological fluid (MRF) have been carried out over the last three decades, highlighting several salient advantages, such as a fast phase change, easy control of the yield stress, and so forth. In particular, several review articles of MRF technology have [...] Read more.
Many studies on magnetorheological fluid (MRF) have been carried out over the last three decades, highlighting several salient advantages, such as a fast phase change, easy control of the yield stress, and so forth. In particular, several review articles of MRF technology have been reported over the last two decades, summarizing the development of MRFs and their applications. As specific examples, review articles have been published that include the optimization of the particles and carrier liquid to achieve minimum off-state viscosity and maximum yield stress at on-state, the formulation of many constitutive models including the Casson model and the Herschel–Bulkley (H–B) model, sedimentation enhancement using additives and nanosized particles, many types of dampers for automotive suspension and civil structures, medical and rehabilitation devices, MRF polishing technology, the methods of magnetic circuit design, and the synthesis of various controllers. More recently, the effect of the temperature and thermal conductivity on the properties of MRFs and application systems are actively being investigated by several works. However, there is no review article on this issue so far, despite the fact that the thermal problem is one of the most crucial factors to be seriously considered for the development of advanced MRFs and commercial products of application systems. In this work, studies on the thermal conductivity and temperature in MRFs themselves and their temperature-dependent application systems are reviewed, respectively, and principal results are summarized, emphasizing the following: how to reduce the temperature effect on the field-dependent properties of MRFs and how to design an application system that minimizes the thermal effect. It is noted here that the review summary is organized in a chronological format using tables. Full article
Show Figures

Figure 1

23 pages, 24821 KB  
Article
Flow Ripple Reduction in Reciprocating Pumps by Multi-Phase Rectification
by Gürhan Özkayar, Zhilin Wang, Joost Lötters, Marcel Tichem and Murali Krishna Ghatkesar
Sensors 2023, 23(15), 6967; https://doi.org/10.3390/s23156967 - 5 Aug 2023
Cited by 4 | Viewed by 2800
Abstract
Reciprocating piezoelectric micropumps enable miniaturization in microfluidics for lab-on-a-chip applications such as organs-on-chips (OoC). However, achieving a steady flow when using these micropumps is a significant challenge because of flow ripples in the displaced liquid, especially at low frequencies or low flow rates [...] Read more.
Reciprocating piezoelectric micropumps enable miniaturization in microfluidics for lab-on-a-chip applications such as organs-on-chips (OoC). However, achieving a steady flow when using these micropumps is a significant challenge because of flow ripples in the displaced liquid, especially at low frequencies or low flow rates (<50 µL/min). Although dampers are widely used for reducing ripples in a flow, their efficiency depends on the driving frequency of the pump. Here, we investigated multi-phase rectification as an approach to minimize ripples at low flow rates by connecting piezoelectric micropumps in parallel. The efficiency in ripple reduction was evaluated with an increasing number (n) of pumps connected in parallel, each actuated by an alternating voltage waveform with a phase difference of 2π/n (called multi-phase rectification) at a chosen frequency. We introduce a fluidic ripple factor (RFfl.), which is the ratio of the root mean square (RMS) value of the fluctuations present in the rectified output to the average fluctuation-free value of the discharge flow, as a metric to express the quality of the flow. The fluidic ripple factor was reduced by more than 90% by using three-phase rectification when compared to one-phase rectification in the 2–60 μL/min flow rate range. Analytical equations to estimate the fluidic ripple factor for a chosen number of pumps connected in parallel are presented, and we experimentally confirmed up to four pumps. The analysis shown can be used to design a frequency-independent multi-phase fluid rectifier to the desired ripple level in a flow for reciprocating pumps. Full article
(This article belongs to the Special Issue The Development of Piezoelectric Sensors and Actuators)
Show Figures

Figure 1

Back to TopTop