Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,284)

Search Parameters:
Keywords = lipid bilayers

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
50 pages, 1979 KB  
Review
Circadian Regulation of Neuronal Membrane Capacitance—Mechanisms and Implications for Neural Computation and Behavior
by Agnieszka Nowacka, Maciej Śniegocki, Dominika Bożiłow and Ewa Ziółkowska
Int. J. Mol. Sci. 2025, 26(21), 10766; https://doi.org/10.3390/ijms262110766 - 5 Nov 2025
Viewed by 355
Abstract
Neuronal membrane capacitance (Cm) has traditionally been viewed as a static biophysical property determined solely by the geometric and dielectric characteristics of the lipid bilayer. Recent discoveries have fundamentally challenged this perspective, revealing that Cm exhibits robust circadian oscillations that profoundly influence neural [...] Read more.
Neuronal membrane capacitance (Cm) has traditionally been viewed as a static biophysical property determined solely by the geometric and dielectric characteristics of the lipid bilayer. Recent discoveries have fundamentally challenged this perspective, revealing that Cm exhibits robust circadian oscillations that profoundly influence neural computation and behavior. These rhythmic fluctuations in membrane capacitance are orchestrated by intrinsic cellular clocks through coordinated regulation of molecular processes including transcriptional control of membrane proteins, lipid metabolism, ion channel trafficking, and glial-mediated extracellular matrix remodeling. The dynamic modulation of Cm directly impacts the membrane time constant (τm = RmCm), thereby altering synaptic integration windows, action potential dynamics, and network synchronization across the 24 h cycle. At the computational level, circadian Cm oscillations enable neurons to shift between temporal summation and coincidence detection modes, optimizing information processing according to behavioral demands throughout the day–night cycle. These biophysical rhythms influence critical aspects of cognition including memory consolidation, attention, working memory, and sensory processing. Disruptions in normal Cm rhythmicity are increasingly implicated in neuropsychiatric and neurodegenerative disorders, including depression, schizophrenia, Alzheimer’s disease, and epilepsy, where altered membrane dynamics compromise neural circuit stability and information transfer. The integration of circadian biophysics with chronomedicine offers promising therapeutic avenues, including chronotherapeutic strategies that target membrane properties, personalized interventions based on individual chronotypes, and environmental modifications that restore healthy biophysical rhythms. This review synthesizes evidence from molecular chronobiology, cellular electrophysiology, and systems neuroscience to establish circadian Cm regulation as a fundamental mechanism linking molecular timekeeping to neural computation and behavior. Full article
(This article belongs to the Special Issue The Importance of Molecular Circadian Rhythms in Health and Disease)
Show Figures

Figure 1

15 pages, 2146 KB  
Article
Synergistic Membrane Disruption of E. coli Tethered Lipid Bilayers by Antimicrobial Lipid Mixtures
by Tun Naw Sut, Bo Kyeong Yoon and Joshua A. Jackman
Biomimetics 2025, 10(11), 739; https://doi.org/10.3390/biomimetics10110739 - 4 Nov 2025
Viewed by 302
Abstract
Biomimetic lipid platforms provide versatile tools for mimicking various types of biological membranes and enable investigation of how industrially important amphiphiles (e.g., permeation enhancers and surfactants) interact with different membrane compositions. For example, antimicrobial lipids such as medium-chain fatty acids (FAs) and monoglycerides [...] Read more.
Biomimetic lipid platforms provide versatile tools for mimicking various types of biological membranes and enable investigation of how industrially important amphiphiles (e.g., permeation enhancers and surfactants) interact with different membrane compositions. For example, antimicrobial lipids such as medium-chain fatty acids (FAs) and monoglycerides (MGs) are promising antibiotic alternatives that disrupt bacterial membranes and their distinct mechanisms of action are a topic of ongoing interest. The potency and targeting spectrum of individual antimicrobial lipids vary and mixing different lipids can improve functional activities. Biophysical studies indicate that optimally tuned mixtures exhibit greater disruption of synthetic lipid bilayers; however, their activity against more complex bacterial membrane compositions is largely unexplored. Herein, we applied electrochemical impedance spectroscopy (EIS) to investigate how two MG/FA pairs—composed of 10-carbon long monocaprin (MC) with capric acid (CA) and 12-carbon long glycerol monolaurate (GML) with lauric acid (LA)—disrupt tethered lipid bilayers composed of Escherichia coli bacterial lipids. While MC and CA individually inhibit E. coli, MC/CA mixtures at intermediate ratios displayed synergistic membrane-disruptive activity. Mechanistic studies showed that this synergistic activity depends on the MC/CA molar ratio rather than total lipid concentration. In contrast, GML/LA mixtures had weak membrane interactions across all tested ratios and lacked synergy, which is consistent with their low activity against E. coli. Together, the EIS results reveal that an effective disruption synergy against target membranes can arise from combining individually active antimicrobial lipids with distinct membrane-interaction profiles, laying the foundation to develop potent antimicrobial lipid formulations for tackling antibiotic-resistant bacteria. Full article
(This article belongs to the Special Issue Biomimicry and Functional Materials: 5th Edition)
Show Figures

Graphical abstract

19 pages, 1123 KB  
Review
Extracellular Vesicles in Calcific Aortic Valve Disease: From Biomarkers to Drug Delivery Applications
by Alberto Cook-Calvete, Maria Delgado-Marin, Blanca Fernandez-Rodriguez, Carlos Zaragoza and Marta Saura
Biomolecules 2025, 15(11), 1548; https://doi.org/10.3390/biom15111548 - 4 Nov 2025
Viewed by 507
Abstract
Calcific aortic valve disease (CAVD) is a progressive disorder where molecular alterations occur long before visible calcification, making early biomarkers essential. Extracellular vesicles (EVs) have gained attention as stable biomarkers due to their lipid bilayer, which protects proteins, lipids, and RNAs, ensuring reliable [...] Read more.
Calcific aortic valve disease (CAVD) is a progressive disorder where molecular alterations occur long before visible calcification, making early biomarkers essential. Extracellular vesicles (EVs) have gained attention as stable biomarkers due to their lipid bilayer, which protects proteins, lipids, and RNAs, ensuring reliable detection even in archived samples. This review highlights the role of EVs as biomarkers and delivery tools in CAVD. EVs derived from valvular endothelial, interstitial, and immune cells carry disease-specific signatures, including osteogenic proteins (BMP-2, Annexins), inflammatory miRNAs (miR-30b, miR-122-5p), and lipid mediators. These reflect early pathogenic processes before macroscopic calcification develops. Their presence in minimally invasive samples such as blood, urine, or saliva facilitates diagnosis, while their stability supports long-term monitoring of disease progression and therapeutic response. Advances in purification and single-EV analysis increase specificity, though challenges remain in standardizing methods and distinguishing CAVD-derived EVs from those in atherosclerosis. Beyond diagnostics, engineered EVs show promise as therapeutic carriers. Delivery of anti-calcific miRNAs or combined RNA cargos has reduced calcification and inflammation in preclinical models. Overall, EVs act as molecular mirrors of CAVD, enabling early diagnosis, risk stratification, and novel therapeutic strategies. Yet, clinical translation requires technical refinement and validation of the disease-specific signatures. Full article
(This article belongs to the Special Issue Molecular and Cellular Mechanisms of Aortic Diseases)
Show Figures

Graphical abstract

41 pages, 6759 KB  
Review
Essential Oils as Green Antibacterial Modifiers of Polymeric Materials
by Kamila Majewska-Smolarek and Anna Kowalewska
Polymers 2025, 17(21), 2924; https://doi.org/10.3390/polym17212924 - 31 Oct 2025
Viewed by 684
Abstract
The need for new strategies to reduce the susceptibility of polymeric materials to bacterial colonization is growing, especially with the emergence of drug-resistant bacterial strains. Antimicrobial agents used to modify polymers should not only be effective against microorganisms in both planktonic and biofilm [...] Read more.
The need for new strategies to reduce the susceptibility of polymeric materials to bacterial colonization is growing, especially with the emergence of drug-resistant bacterial strains. Antimicrobial agents used to modify polymers should not only be effective against microorganisms in both planktonic and biofilm states but also be safe and environmentally friendly. Phytochemicals, which are components of essential oils, may be a suitable choice to help combat microbial resistance to antibiotics. Furthermore, they meet the requirements of green chemistry. Essential oils synthesized by plants as secondary metabolites are capable of combating both Gram-positive and Gram-negative bacteria by disrupting lipid bilayers, affecting efflux pumps, compromising the integrity of bacterial cell membranes, and inhibiting the quorum-sensing system. They are also effective as adjuvants in antibiotic therapies. In this review, we outline the mechanism of action of various essential oil components that resulted in enhanced eradication of planktonic bacteria and biofilms. We summarize the use of these antimicrobial agents in macromolecular systems (nanovessels, fibers, nanocomposites, and blends) and provide an overview of the relationship between the chemical structure of phytochemicals and their antimicrobial activity, as well as their influence on the properties of polymeric systems, with a special focus on green active packaging materials. Full article
(This article belongs to the Section Smart and Functional Polymers)
Show Figures

Graphical abstract

14 pages, 799 KB  
Review
Extracellular Vesicle microRNAs in the Crosstalk Between Cancer Cells and Natural Killer (NK) Cells
by Nicolo Toldo, Yunjie Wu and Muller Fabbri
Cells 2025, 14(21), 1697; https://doi.org/10.3390/cells14211697 - 29 Oct 2025
Viewed by 1033
Abstract
The term extracellular vesicles (EVs) includes a variety of anucleated, non-self-replicative particles released by cells, whose cargo content is compartmentalized by a lipidic bilayer membrane and includes proteins, DNA, and RNA (both coding and non-coding) molecules. MicroRNAs (miRs) are small non-coding RNA involved [...] Read more.
The term extracellular vesicles (EVs) includes a variety of anucleated, non-self-replicative particles released by cells, whose cargo content is compartmentalized by a lipidic bilayer membrane and includes proteins, DNA, and RNA (both coding and non-coding) molecules. MicroRNAs (miRs) are small non-coding RNA involved in gene expression regulation that functionally participate in inter-cellular communication as EV cargo. Natural Killer (NK) cells are innate immunity lymphocytes specialized in the killing of cancer cells and virally infected cells. Increasing evidence shows that NK cell-derived EVs contribute to the anti-tumoral activity of NK cells and that such effects are, at least in part, mediated by the miR cargo of these EVs. Conversely, cancer cells release EVs whose cargo includes proteins and miRs that impair NK cell function. These interactions highlight a central role for EV miRs both in the NK-mediated cytotoxicity and as a major immune-escape mechanism for cancer cells, ultimately contributing to the overall success or failure of NK cells in eliciting their anti-tumoral activity. Full article
Show Figures

Figure 1

37 pages, 3832 KB  
Article
Ergosterol-Enriched Liposomes with Post-Processing Modifications for Serpylli Herba Polyphenol Delivery: Physicochemical, Stability and Antioxidant Assessment
by Aleksandra A. Jovanović, Predrag Petrović, Andrea Pirković, Ninoslav Mitić, Francesca Giampieri, Maurizio Battino and Dragana Dekanski
Pharmaceutics 2025, 17(11), 1362; https://doi.org/10.3390/pharmaceutics17111362 - 22 Oct 2025
Viewed by 354
Abstract
Background/Objectives: In the present study, ergosterol, a novel natural and animal-free alternative sterol, was investigated, and its effects on liposomal properties were assessed. Importantly, ergosterol’s fungal origin offers a sustainable substitute for cholesterol, aligning with current trends in natural and vegan-friendly formulations. Methods: [...] Read more.
Background/Objectives: In the present study, ergosterol, a novel natural and animal-free alternative sterol, was investigated, and its effects on liposomal properties were assessed. Importantly, ergosterol’s fungal origin offers a sustainable substitute for cholesterol, aligning with current trends in natural and vegan-friendly formulations. Methods: This study explored the effect of ergosterol content (10 mol% vs. 20 mol%) on the encapsulation efficiency (EE), physical properties, morphology, antioxidant activity, lipid peroxidation, and storage stability of Serpylli herba extract-loaded liposomes. Results: Liposomes with 20 mol% ergosterol exhibited significantly higher EE (~81.0%) than those with 10 mol% (~75.6%), along with improved resistance to UV- and freeze-drying-induced reduction in EE. Extract loading resulted in a reduced particle size, indicating favorable bilayer interactions, whereas lyophilization increased size and polydispersity, reflecting structural destabilization. However, 20 mol% ergosterol improved vesicle uniformity and surface charge stability, suggesting enhanced bilayer rigidity. Zeta potential and mobility trends supported improved colloidal stability in ergosterol-enriched systems under all tested conditions. Over 28 days at 4 °C, non-treated extract-loaded liposomes with a higher ergosterol content demonstrated enhanced vesicle integrity. During storage, UV-treated and lyophilized liposomes with 20 mol% ergosterol maintained more consistent size and charge profiles, indicating better membrane reorganization and stability. Nanoparticle tracking analysis demonstrated that ergosterol content modulates vesicle concentration in a dose-dependent manner, highlighting the role of membrane composition in liposome formation and potential dose uniformity. Transmission electron microscopy analysis of extract-loaded liposomes demonstrated well-defined vesicles with intact structural features. A study in a Franz diffusion cell revealed that ergosterol-enriched liposomes significantly delayed polyphenol release compared to free extract, confirming their potential for controlled delivery. Antioxidant activity was preserved in all liposomal systems, with higher ergosterol content supporting improved ABTS radical scavenging potential after stress treatments. FRAP assay results remained stable across formulations, with no major differences between sterol levels. TBARS analysis demonstrated that Serpylli herba extract significantly reduced UV-induced lipid peroxidation in ergosterol-enriched liposomes, underscoring its protective antioxidant role. Conclusions: Higher ergosterol content enhanced liposomal performance in terms of encapsulation, structural resilience, and antioxidant retention, particularly under UV and lyophilization stress. Ergosterol-containing liposomes exhibited improved stability, favorable particle size distribution, and high encapsulation efficiency, while maintaining the antioxidant functionality of the incorporated Serpylli herba polyphenol-rich extract. These findings highlight the potential of ergosterol-based liposomes as robust carriers for bioactive compounds in pharmaceutical and nutraceutical applications that align with current trends in green and vegan-friendly formulations. Full article
(This article belongs to the Section Physical Pharmacy and Formulation)
Show Figures

Figure 1

19 pages, 3526 KB  
Article
Selective Endocytosis-Mediated Omicron S1-RBD Internalization Revealed by Reconstitution of ACE2-S1-RBD Interaction on Micropatterned Membrane Substrates
by Angelin M. Philip, S. M. Nasir Uddin, Zeyaul Islam, Prasanna R. Kolatkar and Kabir H. Biswas
Int. J. Mol. Sci. 2025, 26(20), 10216; https://doi.org/10.3390/ijms262010216 - 21 Oct 2025
Viewed by 311
Abstract
The SARS-CoV-2 spike protein, through its receptor binding domain (S1-RBD), binds to the angiotensin-converting enzyme 2 (ACE2) receptor on the host cell membrane, leading to viral infection. Several mutations in S1-RBD in SARS-CoV-2 variants are known to enhance infection through an increased affinity [...] Read more.
The SARS-CoV-2 spike protein, through its receptor binding domain (S1-RBD), binds to the angiotensin-converting enzyme 2 (ACE2) receptor on the host cell membrane, leading to viral infection. Several mutations in S1-RBD in SARS-CoV-2 variants are known to enhance infection through an increased affinity for ACE2. While many reports are available describing the SARS-CoV-2 infection mechanism, there is a dearth of studies towards understanding the initial interaction of the S1-RBD with ACE2 on living host cells and the role of endocytosis and cytoskeleton in the process. Here, we reconstituted the interaction between S1-RBD- and ACE2-expressing host cells in a hybrid live cell-supported lipid bilayer (SLB) platform enabling live monitoring of the interaction between S1-RBD on SLBs and the ACE2 receptor on living cells and showed that cells depleted Omicron S1-RBD from SLB corrals, likely through endocytosis. Specifically, interaction of living host cells with S1-RBD-functionalized SLB substrates resulted in the enrichment of S1-RBD and ACE2 at the cell–SLB interface. Interaction of host cells with wild type (WT), Omicron, and Omicron Revertant S1-RBD functionalized on micron-scale SLB corrals, which mimic viral membranes but are flat, also resulted in their enrichment. However, cells interacting with Omicron S1-RBD revealed a depletion of the protein from many corrals, which was generally not observed with the WT S1-RBD and was reduced with the Omicron Revertant, which contains the Q493R mutation reversion, S1-RBD. Further, S1-RBD depletion coincided with the localization of the early endosomal marker EEA1. Importantly, treatment of cells with the clathrin inhibitor, pitstop 2, but not the myosin II inhibitor, blebbistatin, significantly reduced Omicron S1-RBD depletion. Collectively, these observations suggest that the SARS-CoV-2 Omicron variant has evolved, through mutations in its S1-RBD, to take advantage of the cellular endocytic pathway for enhanced infection, which is not observed with the parental SARS-CoV-2 and appears to be lost in the Omicron Revertant variant. Additionally, these results underscore the significance of the hybrid live cell–SLB platform in studying SARS-CoV-2 S1-RBD-ACE2 interaction and the potential impact of mutations in the S1-RBD on adapting to a specific cellular entry mechanism. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

18 pages, 9549 KB  
Article
Fused Membrane-Targeted Nanoscale Gene Delivery System Based on an Asymmetric Membrane Structure for Ischemic Stroke
by Jing Shi, Xinyi Zhao, Yue Zhang, Zitong Zhao, Jing Wang, Jia Mi, Zhaowei Xu, Chunhua Yang, Jing Qin and Hong Zhang
Pharmaceutics 2025, 17(10), 1357; https://doi.org/10.3390/pharmaceutics17101357 - 21 Oct 2025
Viewed by 383
Abstract
Background: Bone marrow-derived mesenchymal stem cell exosomes (EXOs) are attractive in biotechnology and biomedical research, as they possess natural cell-targeting properties and can cross biological barriers by influencing the SDF-1/CXCR4 axis. Lipid calcium phosphate (LCP) consists of a calcium phosphate core and [...] Read more.
Background: Bone marrow-derived mesenchymal stem cell exosomes (EXOs) are attractive in biotechnology and biomedical research, as they possess natural cell-targeting properties and can cross biological barriers by influencing the SDF-1/CXCR4 axis. Lipid calcium phosphate (LCP) consists of a calcium phosphate core and an asymmetric phospholipid bilayer containing abundant Ca2+ ions. AMD3100 modification of targeted LCP (T-LCP) can achieve targeted delivery to ischemic lesions via specific binding to CXCR4 receptors on various neuronal cell surfaces. Methods: Herein, a fused membrane formulation that simultaneously possesses EXO characteristics and enables targeted modification with AMD3100 was produced. The characteristics of biologically derived EXOs, artificially designed T-LCP, and the fused membrane formulation, including targeted delivery and gene loading efficiency, were then compared. Results: The fusion of artificially designed T-LCP with EXOs of natural origin is feasible and combines the advantages of both to achieve more prominent targeted delivery effects. Conclusions: MiRNA210-based gene therapy was effective in this study and provides a strategy for therapeutic efficacy in delivery systems with different targeting efficiencies. Full article
(This article belongs to the Section Gene and Cell Therapy)
Show Figures

Graphical abstract

17 pages, 4604 KB  
Article
Modulation of Antimicrobial Peptide–Membrane Interactions by Lysyl-Phosphatidylglycerol in Staphylococcus aureus: An FTIR Spectroscopy Study
by Andrea Vásquez, Sofía Echeverri-Gaviria and Marcela Manrique-Moreno
Sci. Pharm. 2025, 93(4), 49; https://doi.org/10.3390/scipharm93040049 - 15 Oct 2025
Viewed by 496
Abstract
Changes in membrane lipid composition constitute a key bacterial resistance mechanism. In Staphylococcus aureus, phosphatidylglycerol undergoes lysine modification to form lysyl-phosphatidylglycerol, a cationic lipid that reduces the net negative surface charge and thereby enhances resistance to cationic antimicrobial peptides. In this study, [...] Read more.
Changes in membrane lipid composition constitute a key bacterial resistance mechanism. In Staphylococcus aureus, phosphatidylglycerol undergoes lysine modification to form lysyl-phosphatidylglycerol, a cationic lipid that reduces the net negative surface charge and thereby enhances resistance to cationic antimicrobial peptides. In this study, we examined the influence of lysyl-PG on the membrane activity of three antimicrobial peptides with distinct physicochemical characteristics: LL-37, F5W Magainin II, and NA-CATH:ATRA-1-ATRA-1. Model membranes composed of phosphatidylglycerol and cardiolipin were supplemented with increasing molar fractions of lysyl-phosphatidylglycerol, and peptide–membrane interactions were characterized using Fourier-transform infrared spectroscopy. Membrane fluidity was evaluated through shifts in the symmetric methylene stretching bands, while changes in interfacial polarity were assessed via the carbonyl and phosphate asymmetric stretching bands. LL-37 induced pronounced disruption of anionic bilayers, an effect progressively attenuated by lysyl-phosphatidylglycerol, particularly within the hydrophobic core. F5W Magainin perturbed both hydrophobic and interfacial regions across a broader range of lysyl-phosphatidylglycerol concentrations, whereas NA-CATH:ATRA-1-ATRA-1 primarily targeted interfacial domains, with minimal disruption of acyl chain order. Increasing lysyl-PG content modulated the extent of bilayer disorder and dehydration at the hydrophobic–hydrophilic interface, with each peptide exhibiting a distinct interaction profile. Collectively, these findings provide mechanistic insights into lysyl-PG-mediated modulation of peptide activity and highlight the role of lipid remodeling as a bacterial defense strategy. Full article
Show Figures

Figure 1

16 pages, 1854 KB  
Article
Electrostatic Targeting of Cancer Cell Membrane Models by NA-CATH:ATRA-1-ATRA-1: A Biophysical Perspective
by Maria C. Klaiss-Luna, Małgorzata Jemioła-Rzemińska, Marcela Manrique-Moreno and Kazimierz Strzałka
Membranes 2025, 15(10), 303; https://doi.org/10.3390/membranes15100303 - 6 Oct 2025
Viewed by 627
Abstract
Breast cancer continues to be the leading cancer diagnosis among women worldwide, affecting populations in both industrialized and developing regions. Given the rising number of diagnosed cases each year, there is an urgent need to explore novel compounds with potential anticancer properties. One [...] Read more.
Breast cancer continues to be the leading cancer diagnosis among women worldwide, affecting populations in both industrialized and developing regions. Given the rising number of diagnosed cases each year, there is an urgent need to explore novel compounds with potential anticancer properties. One group of such candidates includes cationic peptides, which have shown promise due to their unique membrane-targeting mechanisms that are difficult for cancer cells to resist. This study presents an initial biophysical assessment of NA-CATH:ATRA-1-ATRA-1, a synthetic peptide modeled after NA-CATH, originally sourced from the venom of the Chinese cobra (Naja atra). The peptide’s interactions with lipid bilayers mimicking cancerous and healthy cell membranes were examined using differential scanning calorimetry and Fourier-transform infrared spectroscopy. Findings revealed a pronounced affinity of NA-CATH:ATRA-1-ATRA-1 for eukaryotic membrane lipids, particularly phosphatidylserine, indicating that its mechanism likely involves electrostatic attraction to negatively charged lipids characteristic of cancer cell membranes. Such biophysical insights are vital for understanding how membrane-active peptides could be harnessed in future cancer therapies. Full article
(This article belongs to the Collection Feature Papers in Membranes in Life Sciences)
Show Figures

Figure 1

19 pages, 6403 KB  
Article
Membrane Composition Modulates Vp54 Binding: A Combined Experimental and Computational Study
by Wenhan Guo, Rui Dong, Ayoyinka O. Okedigba, Jason E. Sanchez, Irina V. Agarkova, Elea-Maria Abisamra, Andrew Jelinsky, Wayne Riekhof, Laila Noor, David D. Dunigan, James L. Van Etten, Daniel G. S. Capelluto, Chuan Xiao and Lin Li
Pathogens 2025, 14(10), 1000; https://doi.org/10.3390/pathogens14101000 - 3 Oct 2025
Viewed by 569
Abstract
The recruitment of peripheral membrane proteins is tightly regulated by membrane lipid composition and local electrostatic microenvironments. Our experimental observations revealed that Vp54, a viral matrix protein, exhibited preferential binding to lipid bilayers enriched in anionic lipids such as phosphatidylglycerol (PG) and phosphatidylserine [...] Read more.
The recruitment of peripheral membrane proteins is tightly regulated by membrane lipid composition and local electrostatic microenvironments. Our experimental observations revealed that Vp54, a viral matrix protein, exhibited preferential binding to lipid bilayers enriched in anionic lipids such as phosphatidylglycerol (PG) and phosphatidylserine (PS), compared to neutral phosphatidylcholine/phosphatidylethanolamine liposomes, and this occurred in a curvature-dependent manner. To elucidate the molecular basis of this selective interaction, we performed a series of computational analyses including helical wheel projection, electrostatic potential calculations, electric field lines simulations, and electrostatic force analysis. Our results showed that the membrane-proximal region of Vp54 adopted an amphipathic α-helical structure with a positively charged interface. In membranes containing PG or PS, electrostatic potentials at the interface were significantly more negative, enhancing attraction with Vp54. Field line and force analyses further confirmed that both the presence and spatial clustering of anionic lipids intensify membrane–Vp54 electrostatic interactions. These computational findings align with experimental binding data, jointly demonstrating that membrane lipid composition and organization critically modulate Vp54 recruitment. Together, our findings highlight the importance of electrostatic complementarity and membrane heterogeneity in peripheral protein targeting and provide a framework applicable to broader classes of membrane-binding proteins. Full article
Show Figures

Graphical abstract

15 pages, 2497 KB  
Article
Structures, Interactions, and Antimicrobial Activity of the Shortest Thanatin Peptide from Anasa tristis
by Swaleeha Jaan Abdullah, Jia Sheng Guan, Yuguang Mu and Surajit Bhattacharjya
Int. J. Mol. Sci. 2025, 26(19), 9571; https://doi.org/10.3390/ijms26199571 - 30 Sep 2025
Viewed by 645
Abstract
Antimicrobial peptides (AMPs), also referred to as host defense peptides, are promising molecules in the development of the next generation of antibiotics against drug-resistant bacterial pathogens. Thanatin comprises a family of naturally occurring cationic AMPs derived from several species of insects. The first [...] Read more.
Antimicrobial peptides (AMPs), also referred to as host defense peptides, are promising molecules in the development of the next generation of antibiotics against drug-resistant bacterial pathogens. Thanatin comprises a family of naturally occurring cationic AMPs derived from several species of insects. The first thanatin, 21 residues long, was identified from the spined soldier bug, and more thanatin peptides have been discovered in recent studies. The 16-residue thanatin from Anasa tristis, or Ana-thanatin, represents the shortest sequence in the family. However, the antimicrobial activity and mechanistic process underpinning bacterial cell killing have yet to be reported for Ana-thanatin peptide. In this work, we examined the antibacterial activity, structures, and target interactions of Ana-thanatin. Our results demonstrated that Ana-thanatin exerts potent antibiotic activity against strains of Gram-negative and Gram-positive bacteria. Biophysical studies demonstrated that Ana-thanatin interacts with LPS outer membrane and can permeabilize the OM barrier in the process. Atomic-resolution structures of the peptide in free solution and in complex with lipopolysaccharide (LPS) micelle were solved by NMR, determining canonical β-sheet structures. Notably, in complex with LPS, the β-sheet structure of the peptide was better defined in terms of the packing of amino acid residues. Further, MD simulations demonstrated rapid binding of the Ana-thanatin peptide with the LPS molecules within the lipid bilayers. These studies have revealed structural features which could be responsible for LPS-OM disruption of the Gram-negative bacteria. In addition, NMR heteronuclear single quantum coherence (HSQC) studies have demonstrated that Ana-thanatin can strongly interact with the LPS transport periplasmic protein LptAm, potentially inhibiting OM biogenesis. Taken together, we surmise that the Ana-thanatin peptide could serve as a template for the further development of novel antibiotics. Full article
(This article belongs to the Collection Feature Papers in Molecular Biophysics)
Show Figures

Figure 1

15 pages, 737 KB  
Review
Activity of Peptides Modulating the Action of p2x Receptors: Focus on the p2x7 Receptor
by Jonathas Albertino De Souza Oliveira Carneiro, Guilherme Pegas Teixeira, Leandro Rocha and Robson Xavier Faria
Pharmaceuticals 2025, 18(10), 1452; https://doi.org/10.3390/ph18101452 - 28 Sep 2025
Viewed by 570
Abstract
P2X receptors are a family of ATP-gated ion channels widely distributed in various tissues, especially in neuronal cells and hematopoietic cells. ATP activates P2X receptors, causing the opening of an ionic channel with preferential permeability to the passage of mono- and divalent cations. [...] Read more.
P2X receptors are a family of ATP-gated ion channels widely distributed in various tissues, especially in neuronal cells and hematopoietic cells. ATP activates P2X receptors, causing the opening of an ionic channel with preferential permeability to the passage of mono- and divalent cations. High concentrations of ATP stimulate the P2X7 subtype through prolonged activation, which opens pores and causes inflammation, proalgesic effects, and cell death. Peptides, including antimicrobials (antimicrobial peptides), are present in several organisms, such as amphibians, mammals, fish, arachnids, and plants, where they act as the first line of defense. Thus, these peptides have the capacity to eliminate a wide spectrum of microorganisms, such as bacteria, fungi, and some viruses. In general, the mechanism of action of antimicrobial peptides involves interactions with the lipid bilayer of the cell membrane, which can lead to an increase in the internal liquid content of liposomes. However, many peptides can act on ion channels, such as those of the P2X family, especially the P2X7 receptor. We investigated the action of peptides that directly modulate P2X7 receptors, such as beta-amyloid, LL-37/hCap18, Pep19-2.5, rCRAMP, ADESG, and polymyxin B. Additionally, we evaluated peptides that modulate the activity of P2X family receptor subtypes. In this review, we intend to describe the relationships between peptides with distinct characteristics and how they modulate the functionality of P2X receptors. Full article
(This article belongs to the Special Issue P2X Receptors and Their Pharmacology)
Show Figures

Figure 1

36 pages, 3064 KB  
Review
Phylogenetic Aspects of Higher Plant Lipid Fatty Acid Profile
by Alexander Voronkov and Tatiana Ivanova
Int. J. Mol. Sci. 2025, 26(19), 9424; https://doi.org/10.3390/ijms26199424 - 26 Sep 2025
Viewed by 497
Abstract
Humans have been using lipids for many centuries; these are oils found in plants, particularly in seeds. However, relatively recently, it has become clear that lipids are the primary metabolites of any living organism. Fatty acids (FAs) are a structural component of lipids, [...] Read more.
Humans have been using lipids for many centuries; these are oils found in plants, particularly in seeds. However, relatively recently, it has become clear that lipids are the primary metabolites of any living organism. Fatty acids (FAs) are a structural component of lipids, and their role in building the framework of the lipid bilayer cannot be overstated. They participate in maintaining homeostasis by controlling membrane permeability. Changes in the FA composition of lipid bilayers can modulate the transition of the membrane from a liquid crystalline to a gel-like state. Thus, knowledge of a plant’s FA profile can aid in understanding the physiological mechanisms underlying their interaction with the environment and the ways in which they adapt to various stress factors. Throughout the colonization of terrestrial habitats, plants evolved, and new phylogenetic groups appeared; at present, some features of the FA composition of their individual representatives are known. However, the overall change in the composition of lipid FAs during the evolution of higher plants is still not understood. Our analysis of the literature showed that the FA diversity tends to decrease from mosses to angiosperms, mainly due to a reduction in polyunsaturated very-long-chain FAs, while the average acyl chain length remains unchanged. It is important to recognize the trends in this process in order to understand the adaptive capabilities of higher plants. This knowledge can be useful not only from a fundamental point of view, but also in practical human activities. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

25 pages, 1153 KB  
Review
Exosomal miRNAs: Key Regulators of the Tumor Microenvironment and Cancer Stem Cells
by Shuangmin Wang, Sikan Jin, Jidong Zhang and Xianyao Wang
Int. J. Mol. Sci. 2025, 26(19), 9323; https://doi.org/10.3390/ijms26199323 - 24 Sep 2025
Viewed by 1257
Abstract
Exosomes are lipid bilayer vesicles approximately 30–150 nm in diameter that serve as key mediators of intercellular communication. By transporting diverse bioactive molecules, including proteins and nucleic acids, they play a crucial role in tumor initiation and progression. Among their functional cargo, exosomal [...] Read more.
Exosomes are lipid bilayer vesicles approximately 30–150 nm in diameter that serve as key mediators of intercellular communication. By transporting diverse bioactive molecules, including proteins and nucleic acids, they play a crucial role in tumor initiation and progression. Among their functional cargo, exosomal microRNAs (miRNAs) are central to epigenetic regulation and intercellular signaling, significantly influencing tumor biology. This review provides a comprehensive overview of the multifaceted roles of exosomal miRNAs in remodeling the tumor microenvironment (TME) and regulating cancer stem cells (CSCs). Specifically, exosomal miRNAs modulate various immune cells (such as macrophages, T cells, and NK cells) as well as cancer-associated fibroblasts (CAFs), thereby promoting immune evasion, angiogenesis, epithelial–mesenchymal transition (EMT), and metastatic progression. At the same time, they enhance CSC stemness, self-renewal, and therapeutic resistance, ultimately driving tumor recurrence and dissemination. Furthermore, exosome-mediated miRNA signaling acts as a critical force in malignant progression. Finally, we discuss the clinical potential of exosomal miRNAs as diagnostic and prognostic biomarkers, therapeutic targets, and vehicles for targeted drug delivery, highlighting their translational value and future directions in cancer research. Full article
(This article belongs to the Special Issue Role of MicroRNAs in Human Diseases: 2nd Edition)
Show Figures

Figure 1

Back to TopTop