Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (307)

Search Parameters:
Keywords = lightweight unmanned aerial vehicle (UAV)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 4331 KiB  
Article
Research on Lightweight Tracking of Small-Sized UAVs Based on the Improved YOLOv8N-Drone Architecture
by Yongjuan Zhao, Qiang Ma, Guannan Lei, Lijin Wang and Chaozhe Guo
Drones 2025, 9(8), 551; https://doi.org/10.3390/drones9080551 - 5 Aug 2025
Abstract
Traditional unmanned aerial vehicle (UAV) detection and tracking methods have long faced the twin challenges of high cost and poor efficiency. In real-world battlefield environments with complex backgrounds, occlusions, and varying speeds, existing techniques struggle to track small UAVs accurately and stably. To [...] Read more.
Traditional unmanned aerial vehicle (UAV) detection and tracking methods have long faced the twin challenges of high cost and poor efficiency. In real-world battlefield environments with complex backgrounds, occlusions, and varying speeds, existing techniques struggle to track small UAVs accurately and stably. To tackle these issues, this paper presents an enhanced YOLOv8N-Drone-based algorithm for improved target tracking of small UAVs. Firstly, a novel module named C2f-DSFEM (Depthwise-Separable and Sobel Feature Enhancement Module) is designed, integrating Sobel convolution with depthwise separable convolution across layers. Edge detail extraction and multi-scale feature representation are synchronized through a bidirectional feature enhancement mechanism, and the discriminability of target features in complex backgrounds is thus significantly enhanced. For the feature confusion problem, the improved lightweight Context Anchored Attention (CAA) mechanism is integrated into the Neck network, which effectively improves the system’s adaptability to complex scenes. By employing a position-aware weight allocation strategy, this approach enables adaptive suppression of background interference and precise focus on the target region, thereby improving localization accuracy. At the level of loss function optimization, the traditional classification loss is replaced by the focal loss (Focal Loss). This mechanism effectively suppresses the contribution of easy-to-classify samples through a dynamic weight adjustment strategy, while significantly increasing the priority of difficult samples in the training process. The class imbalance that exists between the positive and negative samples is then significantly mitigated. Experimental results show the enhanced YOLOv8 boosts mean average precision (Map@0.5) by 12.3%, hitting 99.2%. In terms of tracking performance, the proposed YOLOv8 N-Drone algorithm achieves a 19.2% improvement in Multiple Object Tracking Accuracy (MOTA) under complex multi-scenario conditions. Additionally, the IDF1 score increases by 6.8%, and the number of ID switches is reduced by 85.2%, indicating significant improvements in both accuracy and stability of UAV tracking. Compared to other mainstream algorithms, the proposed improved method demonstrates significant advantages in tracking performance, offering a more effective and reliable solution for small-target tracking tasks in UAV applications. Full article
Show Figures

Figure 1

24 pages, 4519 KiB  
Article
Aerial Autonomy Under Adversity: Advances in Obstacle and Aircraft Detection Techniques for Unmanned Aerial Vehicles
by Cristian Randieri, Sai Venkata Ganesh, Rayappa David Amar Raj, Rama Muni Reddy Yanamala, Archana Pallakonda and Christian Napoli
Drones 2025, 9(8), 549; https://doi.org/10.3390/drones9080549 - 4 Aug 2025
Viewed by 164
Abstract
Unmanned Aerial Vehicles (UAVs) have rapidly grown into different essential applications, including surveillance, disaster response, agriculture, and urban monitoring. However, for UAVS to steer safely and autonomously, the ability to detect obstacles and nearby aircraft remains crucial, especially under hard environmental conditions. This [...] Read more.
Unmanned Aerial Vehicles (UAVs) have rapidly grown into different essential applications, including surveillance, disaster response, agriculture, and urban monitoring. However, for UAVS to steer safely and autonomously, the ability to detect obstacles and nearby aircraft remains crucial, especially under hard environmental conditions. This study comprehensively analyzes the recent landscape of obstacle and aircraft detection techniques tailored for UAVs acting in difficult scenarios such as fog, rain, smoke, low light, motion blur, and disorderly environments. It starts with a detailed discussion of key detection challenges and continues with an evaluation of different sensor types, from RGB and infrared cameras to LiDAR, radar, sonar, and event-based vision sensors. Both classical computer vision methods and deep learning-based detection techniques are examined in particular, highlighting their performance strengths and limitations under degraded sensing conditions. The paper additionally offers an overview of suitable UAV-specific datasets and the evaluation metrics generally used to evaluate detection systems. Finally, the paper examines open problems and coming research directions, emphasising the demand for lightweight, adaptive, and weather-resilient detection systems appropriate for real-time onboard processing. This study aims to guide students and engineers towards developing stronger and intelligent detection systems for next-generation UAV operations. Full article
Show Figures

Figure 1

20 pages, 1971 KiB  
Article
FFG-YOLO: Improved YOLOv8 for Target Detection of Lightweight Unmanned Aerial Vehicles
by Tongxu Wang, Sizhe Yang, Ming Wan and Yanqiu Liu
Appl. Syst. Innov. 2025, 8(4), 109; https://doi.org/10.3390/asi8040109 - 4 Aug 2025
Viewed by 228
Abstract
Target detection is essential in intelligent transportation and autonomous control of unmanned aerial vehicles (UAVs), with single-stage detection algorithms used widely due to their speed. However, these algorithms face limitations in detecting small targets, especially in aerial photography from unmanned aerial vehicles (UAVs), [...] Read more.
Target detection is essential in intelligent transportation and autonomous control of unmanned aerial vehicles (UAVs), with single-stage detection algorithms used widely due to their speed. However, these algorithms face limitations in detecting small targets, especially in aerial photography from unmanned aerial vehicles (UAVs), where small targets are often occluded, multi-scale semantic information is easily lost, and there is a trade-off between real-time processing and computational resources. Existing algorithms struggle to effectively extract multi-dimensional features and deep semantic information from images and to balance detection accuracy with model complexity. To address these limitations, we developed FFG-YOLO, a lightweight small-target detection method for UAVs based on YOLOv8. FFG-YOLO incorporates three modules: a feature enhancement block (FEB), a feature concat block (FCB), and a global context awareness block (GCAB). These modules strengthen feature extraction from small targets, resolve semantic bias in multi-scale feature fusion, and help differentiate small targets from complex backgrounds. We also improved the positioning accuracy of small targets using the Wasserstein distance loss function. Experiments showed that FFG-YOLO outperformed other algorithms, including YOLOv8n, in small-target detection due to its lightweight nature, meeting the stringent real-time performance and deployment requirements of UAVs. Full article
Show Figures

Figure 1

26 pages, 2560 KiB  
Article
Benchmarking YOLO Models for Marine Search and Rescue in Variable Weather Conditions
by Aysha Alshibli and Qurban Memon
Automation 2025, 6(3), 35; https://doi.org/10.3390/automation6030035 - 2 Aug 2025
Viewed by 130
Abstract
Deep learning with unmanned aerial vehicles (UAVs) is transforming maritime search and rescue (SAR) by enabling rapid object identification in challenging marine environments. This study benchmarks the performance of YOLO models for maritime SAR under diverse weather conditions using the SeaDronesSee and AFO [...] Read more.
Deep learning with unmanned aerial vehicles (UAVs) is transforming maritime search and rescue (SAR) by enabling rapid object identification in challenging marine environments. This study benchmarks the performance of YOLO models for maritime SAR under diverse weather conditions using the SeaDronesSee and AFO datasets. The results show that while YOLOv7 achieved the highest mAP@50, it struggled with detecting small objects. In contrast, YOLOv10 and YOLOv11 deliver faster inference speeds but compromise slightly on precision. The key challenges discussed include environmental variability, sensor limitations, and scarce annotated data, which can be addressed by such techniques as attention modules and multimodal data fusion. Overall, the research results provide practical guidance for deploying efficient deep learning models in SAR, emphasizing specialized datasets and lightweight architectures for edge devices. Full article
(This article belongs to the Section Intelligent Control and Machine Learning)
Show Figures

Figure 1

22 pages, 6482 KiB  
Article
Surface Damage Detection in Hydraulic Structures from UAV Images Using Lightweight Neural Networks
by Feng Han and Chongshi Gu
Remote Sens. 2025, 17(15), 2668; https://doi.org/10.3390/rs17152668 - 1 Aug 2025
Viewed by 160
Abstract
Timely and accurate identification of surface damage in hydraulic structures is essential for maintaining structural integrity and ensuring operational safety. Traditional manual inspections are time-consuming, labor-intensive, and prone to subjectivity, especially for large-scale or inaccessible infrastructure. Leveraging advancements in aerial imaging, unmanned aerial [...] Read more.
Timely and accurate identification of surface damage in hydraulic structures is essential for maintaining structural integrity and ensuring operational safety. Traditional manual inspections are time-consuming, labor-intensive, and prone to subjectivity, especially for large-scale or inaccessible infrastructure. Leveraging advancements in aerial imaging, unmanned aerial vehicles (UAVs) enable efficient acquisition of high-resolution visual data across expansive hydraulic environments. However, existing deep learning (DL) models often lack architectural adaptations for the visual complexities of UAV imagery, including low-texture contrast, noise interference, and irregular crack patterns. To address these challenges, this study proposes a lightweight, robust, and high-precision segmentation framework, called LFPA-EAM-Fast-SCNN, specifically designed for pixel-level damage detection in UAV-captured images of hydraulic concrete surfaces. The developed DL-based model integrates an enhanced Fast-SCNN backbone for efficient feature extraction, a Lightweight Feature Pyramid Attention (LFPA) module for multi-scale context enhancement, and an Edge Attention Module (EAM) for refined boundary localization. The experimental results on a custom UAV-based dataset show that the proposed damage detection method achieves superior performance, with a precision of 0.949, a recall of 0.892, an F1 score of 0.906, and an IoU of 87.92%, outperforming U-Net, Attention U-Net, SegNet, DeepLab v3+, I-ST-UNet, and SegFormer. Additionally, it reaches a real-time inference speed of 56.31 FPS, significantly surpassing other models. The experimental results demonstrate the proposed framework’s strong generalization capability and robustness under varying noise levels and damage scenarios, underscoring its suitability for scalable, automated surface damage assessment in UAV-based remote sensing of civil infrastructure. Full article
Show Figures

Figure 1

24 pages, 1530 KiB  
Article
A Lightweight Robust Training Method for Defending Model Poisoning Attacks in Federated Learning Assisted UAV Networks
by Lucheng Chen, Weiwei Zhai, Xiangfeng Bu, Ming Sun and Chenglin Zhu
Drones 2025, 9(8), 528; https://doi.org/10.3390/drones9080528 - 28 Jul 2025
Viewed by 407
Abstract
The integration of unmanned aerial vehicles (UAVs) into next-generation wireless networks greatly enhances the flexibility and efficiency of communication and distributed computation for ground mobile devices. Federated learning (FL) provides a privacy-preserving paradigm for device collaboration but remains highly vulnerable to poisoning attacks [...] Read more.
The integration of unmanned aerial vehicles (UAVs) into next-generation wireless networks greatly enhances the flexibility and efficiency of communication and distributed computation for ground mobile devices. Federated learning (FL) provides a privacy-preserving paradigm for device collaboration but remains highly vulnerable to poisoning attacks and is further challenged by the resource constraints and heterogeneous data common to UAV-assisted systems. Existing robust aggregation and anomaly detection methods often degrade in efficiency and reliability under these realistic adversarial and non-IID settings. To bridge these gaps, we propose FedULite, a lightweight and robust federated learning framework specifically designed for UAV-assisted environments. FedULite features unsupervised local representation learning optimized for unlabeled, non-IID data. Moreover, FedULite leverages a robust, adaptive server-side aggregation strategy that uses cosine similarity-based update filtering and dimension-wise adaptive learning rates to neutralize sophisticated data and model poisoning attacks. Extensive experiments across diverse datasets and adversarial scenarios demonstrate that FedULite reduces the attack success rate (ASR) from over 90% in undefended scenarios to below 5%, while maintaining the main task accuracy loss within 2%. Moreover, it introduces negligible computational overhead compared to standard FedAvg, with approximately 7% additional training time. Full article
(This article belongs to the Special Issue IoT-Enabled UAV Networks for Secure Communication)
Show Figures

Figure 1

39 pages, 2929 KiB  
Article
A Risk-Based Analysis of Lightweight Drones: Evaluating the Harmless Threshold Through Human-Centered Safety Criteria
by Tamer Savas
Drones 2025, 9(8), 517; https://doi.org/10.3390/drones9080517 - 23 Jul 2025
Viewed by 231
Abstract
In recent years, the rapid development of lightweight Unmanned Aerial Vehicle (UAV) technology under 250 g has begun to challenge the validity of existing mass-based safety classifications. The commonly used 250 g threshold for defining “harmless” UAVs has become a subject requiring more [...] Read more.
In recent years, the rapid development of lightweight Unmanned Aerial Vehicle (UAV) technology under 250 g has begun to challenge the validity of existing mass-based safety classifications. The commonly used 250 g threshold for defining “harmless” UAVs has become a subject requiring more detailed evaluations, especially as new models with increased speed and performance enter the market. This study aims to reassess the adequacy of the current 250 g mass limit by conducting a comprehensive analysis using human-centered injury metrics, including kinetic energy, Blunt Criterion (BC), Viscous Criterion (VC), and the Abbreviated Injury Scale (AIS). Within this scope, an extensive dataset of commercial UAV models under 500 g was compiled, with a particular focus on the sub-250 g segment. For each model, KE, BC, VC, and AIS values were calculated using publicly available technical data and validated physical models. The results were compared against established injury thresholds, such as 14.9 J (AIS-3 serious injury), 25 J (“harmless” threshold), and 33.9 J (AIS-4 severe injury). Furthermore, new recommendations were developed for regulatory authorities, including energy-based classification systems and mission-specific dynamic threshold mechanisms. According to the findings of this study, most UAVs under 250 g continue to remain below the current “harmless” threshold values. However, some next-generation high-speed UAV models are approaching or exceeding critical KE levels, indicating a need to reassess existing regulatory approaches. Additionally, the strong correlation between both BC and VC metrics with AIS outcomes demonstrates that these indicators are complementary and valuable tools for assessing injury risk. In this context, the adoption of an energy-based supplementary classification and dynamic, mission-based regulatory frameworks is recommended. Full article
Show Figures

Figure 1

19 pages, 2726 KiB  
Article
Lightweight Detection of Inserted Chirp Symbols in Radio Transmission from Commercial UAVs
by Krzysztof K. Cwalina, Piotr Rajchowski and Jarosław Sadowski
Sensors 2025, 25(15), 4552; https://doi.org/10.3390/s25154552 - 23 Jul 2025
Viewed by 245
Abstract
Most small, commercial unmanned aerial vehicles (UAVs) maintain continuous two-way radio communication with the controller. Signals emitted by the UAVs can be used for detection of their presence, but as these drones use unlicensed frequency bands that are shared with many other wireless [...] Read more.
Most small, commercial unmanned aerial vehicles (UAVs) maintain continuous two-way radio communication with the controller. Signals emitted by the UAVs can be used for detection of their presence, but as these drones use unlicensed frequency bands that are shared with many other wireless communication devices, UAV detection should rely on the unique characteristics of the transmitted signals. In this article, low-complexity methods for the detection of chirp symbols in downlink transmission from a UAV produced by DJI are proposed. The presented methods were developed with focus on the ability to detect presence of chirp symbols in radio transmission without a priori knowledge or need for center frequency estimation. Full article
(This article belongs to the Special Issue UAV Detection, Classification, and Tracking)
Show Figures

Figure 1

26 pages, 78396 KiB  
Article
SWRD–YOLO: A Lightweight Instance Segmentation Model for Estimating Rice Lodging Degree in UAV Remote Sensing Images with Real-Time Edge Deployment
by Chunyou Guo and Feng Tan
Agriculture 2025, 15(15), 1570; https://doi.org/10.3390/agriculture15151570 - 22 Jul 2025
Viewed by 323
Abstract
Rice lodging severely affects crop growth, yield, and mechanized harvesting efficiency. The accurate detection and quantification of lodging areas are crucial for precision agriculture and timely field management. However, Unmanned Aerial Vehicle (UAV)-based lodging detection faces challenges such as complex backgrounds, variable lighting, [...] Read more.
Rice lodging severely affects crop growth, yield, and mechanized harvesting efficiency. The accurate detection and quantification of lodging areas are crucial for precision agriculture and timely field management. However, Unmanned Aerial Vehicle (UAV)-based lodging detection faces challenges such as complex backgrounds, variable lighting, and irregular lodging patterns. To address these issues, this study proposes SWRD–YOLO, a lightweight instance segmentation model that enhances feature extraction and fusion using advanced convolution and attention mechanisms. The model employs an optimized loss function to improve localization accuracy, achieving precise lodging area segmentation. Additionally, a grid-based lodging ratio estimation method is introduced, dividing images into fixed-size grids to calculate local lodging proportions and aggregate them for robust overall severity assessment. Evaluated on a self-built rice lodging dataset, the model achieves 94.8% precision, 88.2% recall, 93.3% mAP@0.5, and 91.4% F1 score, with real-time inference at 16.15 FPS on an embedded NVIDIA Jetson Orin NX device. Compared to the baseline YOLOv8n-seg, precision, recall, mAP@0.5, and F1 score improved by 8.2%, 16.5%, 12.8%, and 12.8%, respectively. These results confirm the model’s effectiveness and potential for deployment in intelligent crop monitoring and sustainable agriculture. Full article
Show Figures

Figure 1

22 pages, 6496 KiB  
Article
Real-Time Search and Rescue with Drones: A Deep Learning Approach for Small-Object Detection Based on YOLO
by Francesco Ciccone and Alessandro Ceruti
Drones 2025, 9(8), 514; https://doi.org/10.3390/drones9080514 - 22 Jul 2025
Viewed by 669
Abstract
Unmanned aerial vehicles are increasingly used in civil Search and Rescue operations due to their rapid deployment and wide-area coverage capabilities. However, detecting missing persons from aerial imagery remains challenging due to small object sizes, cluttered backgrounds, and limited onboard computational resources, especially [...] Read more.
Unmanned aerial vehicles are increasingly used in civil Search and Rescue operations due to their rapid deployment and wide-area coverage capabilities. However, detecting missing persons from aerial imagery remains challenging due to small object sizes, cluttered backgrounds, and limited onboard computational resources, especially when managed by civil agencies. In this work, we present a comprehensive methodology for optimizing YOLO-based object detection models for real-time Search and Rescue scenarios. A two-stage transfer learning strategy was employed using VisDrone for general aerial object detection and Heridal for Search and Rescue-specific fine-tuning. We explored various architectural modifications, including enhanced feature fusion (FPN, BiFPN, PB-FPN), additional detection heads (P2), and modules such as CBAM, Transformers, and deconvolution, analyzing their impact on performance and computational efficiency. The best-performing configuration (YOLOv5s-PBfpn-Deconv) achieved a mAP@50 of 0.802 on the Heridal dataset while maintaining real-time inference on embedded hardware (Jetson Nano). Further tests at different flight altitudes and explainability analyses using EigenCAM confirmed the robustness and interpretability of the model in real-world conditions. The proposed solution offers a viable framework for deploying lightweight, interpretable AI systems for UAV-based Search and Rescue operations managed by civil protection authorities. Limitations and future directions include the integration of multimodal sensors and adaptation to broader environmental conditions. Full article
Show Figures

Figure 1

18 pages, 5137 KiB  
Article
Comparative Analysis of Energy Efficiency and Position Stability of Sub-250 g Quadcopter and Bicopter with Similar Mass Under Varying Conditions
by Artur Kierzkowski, Mateusz Woźniak and Paweł Bury
Energies 2025, 18(14), 3728; https://doi.org/10.3390/en18143728 - 14 Jul 2025
Viewed by 339
Abstract
This paper investigates the energy efficiency and positional stability of two types of ultralight unmanned aerial vehicles (UAVs)—bicopter and quadcopter—both with mass below 250 g, under varying flight conditions. The study is motivated by increasing interest in low-weight drones due to their regulatory [...] Read more.
This paper investigates the energy efficiency and positional stability of two types of ultralight unmanned aerial vehicles (UAVs)—bicopter and quadcopter—both with mass below 250 g, under varying flight conditions. The study is motivated by increasing interest in low-weight drones due to their regulatory flexibility and application potential in constrained environments. A comparative methodology was adopted, involving the construction of both UAV types using identical components where possible, including motors, sensors, and power supply, differing only in propulsion configuration. Experimental tests were conducted in wind-free and wind-induced environments to assess power consumption and stability. The data were collected through onboard blackbox logging, and positional deviation was tracked via video analysis. Results show that while the quadcopter consistently demonstrated lower energy consumption (by 6–22%) and higher positional stability, the bicopter offered advantages in simplicity of frame design and reduced component count. However, the bicopter required extensive manual tuning of PID parameters due to the inherent instability introduced by servo-based control. The findings highlight the potential of bicopters in constrained applications, though they emphasize the need for precise control strategies and high-performance servos. The study fills a gap in empirical analysis of energy consumption in lightweight bicopter UAVs. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

23 pages, 10698 KiB  
Article
Unmanned Aerial Vehicle-Based RGB Imaging and Lightweight Deep Learning for Downy Mildew Detection in Kimchi Cabbage
by Yang Lyu, Xiongzhe Han, Pingan Wang, Jae-Yeong Shin and Min-Woong Ju
Remote Sens. 2025, 17(14), 2388; https://doi.org/10.3390/rs17142388 - 10 Jul 2025
Viewed by 396
Abstract
Downy mildew is a highly destructive fungal disease that significantly reduces both the yield and quality of kimchi cabbage. Conventional detection methods rely on manual scouting, which is labor-intensive and prone to subjectivity. This study proposes an automated detection approach using RGB imagery [...] Read more.
Downy mildew is a highly destructive fungal disease that significantly reduces both the yield and quality of kimchi cabbage. Conventional detection methods rely on manual scouting, which is labor-intensive and prone to subjectivity. This study proposes an automated detection approach using RGB imagery acquired by an unmanned aerial vehicle (UAV), integrated with lightweight deep learning models for leaf-level identification of downy mildew. To improve disease feature extraction, Simple Linear Iterative Clustering (SLIC) segmentation was applied to the images. Among the evaluated models, Vision Transformer (ViT)-based architectures outperformed Convolutional Neural Network (CNN)-based models in terms of classification accuracy and generalization capability. For late-stage disease detection, DeiT-Tiny recorded the highest test accuracy (0.948) and macro F1-score (0.913), while MobileViT-S achieved the highest diseased recall (0.931). In early-stage detection, TinyViT-5M achieved the highest test accuracy (0.970) and macro F1-score (0.918); however, all models demonstrated reduced diseased recall under early-stage conditions, with DeiT-Tiny achieving the highest recall at 0.774. These findings underscore the challenges of identifying early symptoms using RGB imagery. Based on the classification results, prescription maps were generated to facilitate variable-rate pesticide application. Overall, this study demonstrates the potential of UAV-based RGB imaging for precision agriculture, while highlighting the importance of integrating multispectral data and utilizing domain adaptation techniques to enhance early-stage disease detection. Full article
(This article belongs to the Special Issue Advances in Remote Sensing for Crop Monitoring and Food Security)
Show Figures

Figure 1

25 pages, 11253 KiB  
Article
YOLO-UIR: A Lightweight and Accurate Infrared Object Detection Network Using UAV Platforms
by Chao Wang, Rongdi Wang, Ziwei Wu, Zetao Bian and Tao Huang
Drones 2025, 9(7), 479; https://doi.org/10.3390/drones9070479 - 7 Jul 2025
Viewed by 557
Abstract
Within the field of remote sensing, Unmanned Aerial Vehicle (UAV) infrared object detection plays a pivotal role, especially in complex environments. However, existing methods face challenges such as insufficient accuracy or low computational efficiency, particularly in the detection of small objects. This paper [...] Read more.
Within the field of remote sensing, Unmanned Aerial Vehicle (UAV) infrared object detection plays a pivotal role, especially in complex environments. However, existing methods face challenges such as insufficient accuracy or low computational efficiency, particularly in the detection of small objects. This paper proposes a lightweight and accurate UAV infrared object detection model, YOLO-UIR, for small object detection from a UAV perspective. The model is based on the YOLO architecture and mainly includes the Efficient C2f module, lightweight spatial perception (LSP) module, and bidirectional feature interaction fusion (BFIF) module. The Efficient C2f module significantly enhances feature extraction capabilities by combining local and global features through an Adaptive Dual-Stream Attention Mechanism. Compared with the existing C2f module, the introduction of Partial Convolution reduces the model’s parameter count while maintaining high detection accuracy. The BFIF module further enhances feature fusion effects through cross-level semantic interaction, thereby improving the model’s ability to fuse contextual features. Moreover, the LSP module efficiently combines features from different distances using Large Receptive Field Convolution Layers, significantly enhancing the model’s long-range information capture capability. Additionally, the use of Reparameterized Convolution and Depthwise Separable Convolution ensures the model’s lightweight nature, making it highly suitable for real-time applications. On the DroneVehicle and HIT-UAV datasets, YOLO-UIR achieves superior detection performance compared to existing methods, with an mAP of 71.1% and 90.7%, respectively. The model also demonstrates significant advantages in terms of computational efficiency and parameter count. Ablation experiments verify the effectiveness of each optimization module. Full article
(This article belongs to the Special Issue Intelligent Image Processing and Sensing for Drones, 2nd Edition)
Show Figures

Figure 1

31 pages, 20469 KiB  
Article
YOLO-SRMX: A Lightweight Model for Real-Time Object Detection on Unmanned Aerial Vehicles
by Shimin Weng, Han Wang, Jiashu Wang, Changming Xu and Ende Zhang
Remote Sens. 2025, 17(13), 2313; https://doi.org/10.3390/rs17132313 - 5 Jul 2025
Cited by 1 | Viewed by 736
Abstract
Unmanned Aerial Vehicles (UAVs) face a significant challenge in balancing high accuracy and high efficiency when performing real-time object detection tasks, especially amidst intricate backgrounds, diverse target scales, and stringent onboard computational resource constraints. To tackle these difficulties, this study introduces YOLO-SRMX, a [...] Read more.
Unmanned Aerial Vehicles (UAVs) face a significant challenge in balancing high accuracy and high efficiency when performing real-time object detection tasks, especially amidst intricate backgrounds, diverse target scales, and stringent onboard computational resource constraints. To tackle these difficulties, this study introduces YOLO-SRMX, a lightweight real-time object detection framework specifically designed for infrared imagery captured by UAVs. Firstly, the model utilizes ShuffleNetV2 as an efficient lightweight backbone and integrates the novel Multi-Scale Dilated Attention (MSDA) module. This strategy not only facilitates a substantial 46.4% reduction in parameter volume but also, through the flexible adaptation of receptive fields, boosts the model’s robustness and precision in multi-scale object recognition tasks. Secondly, within the neck network, multi-scale feature extraction is facilitated through the design of novel composite convolutions, ConvX and MConv, based on a “split–differentiate–concatenate” paradigm. Furthermore, the lightweight GhostConv is incorporated to reduce model complexity. By synthesizing these principles, a novel composite receptive field lightweight convolution, DRFAConvP, is proposed to further optimize multi-scale feature fusion efficiency and promote model lightweighting. Finally, the Wise-IoU loss function is adopted to replace the traditional bounding box loss. This is coupled with a dynamic non-monotonic focusing mechanism formulated using the concept of outlier degrees. This mechanism intelligently assigns elevated gradient weights to anchor boxes of moderate quality by assessing their relative outlier degree, while concurrently diminishing the gradient contributions from both high-quality and low-quality anchor boxes. Consequently, this approach enhances the model’s localization accuracy for small targets in complex scenes. Experimental evaluations on the HIT-UAV dataset corroborate that YOLO-SRMX achieves an mAP50 of 82.8%, representing a 7.81% improvement over the baseline YOLOv8s model; an F1 score of 80%, marking a 3.9% increase; and a substantial 65.3% reduction in computational cost (GFLOPs). YOLO-SRMX demonstrates an exceptional trade-off between detection accuracy and operational efficiency, thereby underscoring its considerable potential for efficient and precise object detection on resource-constrained UAV platforms. Full article
Show Figures

Figure 1

13 pages, 353 KiB  
Article
Lightweight Object Detector Based on Images Captured Using Unmanned Aerial Vehicle
by Dike Chen, Jiacheng Sui, Ji Zhang and Hongyuan Wang
Appl. Sci. 2025, 15(13), 7482; https://doi.org/10.3390/app15137482 - 3 Jul 2025
Viewed by 223
Abstract
This study aims to investigate the flight endurance problems that unmanned aerial vehicles (UAVs) face when carrying out filming tasks, the relatively limited computational resources of xmini platforms carried by UAVs, and the need for fast decision making and responses when processing image [...] Read more.
This study aims to investigate the flight endurance problems that unmanned aerial vehicles (UAVs) face when carrying out filming tasks, the relatively limited computational resources of xmini platforms carried by UAVs, and the need for fast decision making and responses when processing image data in real-time. In this study, an improved Yolov8s-CFS model based on Yolov8s is proposed to address the need for a lightweight solution when UAVs are used to perform filming tasks. First, the Bottlenet in C2f is replaced by the FasterNet Block to achieve an overall lightweighting effect; second, in order to reduce the problem of model accuracy degradation due to excessive lightweighting, this study introduces the self-weight coordinate attention (SWCA) in the C2f-Faster module connected to each detect head. This results in the C2f-Faster-SWCA module, which provides a better solution to mitigate the model accuracy degradation that may occur due to excessive lightweighting. The experimental results show that the number of parameters in the Yolov8-CFS model is decreased by 17.4% with respect to the baseline on the Visdrone2019 dataset; in addition, its average accuracy remains at 40.1%. In summary, the Yolov8-CFS model reduces the number of parameters and model complexity while ensuring the accuracy of the model, facilitating its application in mobile deployment scenarios. Full article
Show Figures

Figure 1

Back to TopTop