Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = light-trapping character

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 3468 KiB  
Article
Au-Deposited Ce0.5Zr0.5O2 Nanostructures for Photocatalytic H2 Production under Visible Light
by Shaeel Ahmed Al Thabaiti, Zaheer Khan, Khloud Saeed Al-Thubaiti, Salem Mohamed Bawaked, Soad Zahir Al-Sheheri, Mohamed Mokhtar, Maqsood Ahmad Malik and Katabathini Narasimharao
Catalysts 2023, 13(10), 1340; https://doi.org/10.3390/catal13101340 - 4 Oct 2023
Cited by 1 | Viewed by 1515
Abstract
Pure Ce0.5Zr0.5O2 and Au (0.1–1.0 wt.%)-deposited Ce0.5Zr0.5O2 nanomaterials were synthesized via hydrothermal and non-aqueous precipitation methods using gold acetate as a chloride-free Au precursor. The synthesized nanostructures exhibited enhanced photocatalytic activity for hydrogen [...] Read more.
Pure Ce0.5Zr0.5O2 and Au (0.1–1.0 wt.%)-deposited Ce0.5Zr0.5O2 nanomaterials were synthesized via hydrothermal and non-aqueous precipitation methods using gold acetate as a chloride-free Au precursor. The synthesized nanostructures exhibited enhanced photocatalytic activity for hydrogen production via aqueous bioethanol photoreforming under visible light. Different characterization tools such as powder XRD, HRTEM, FT-IR, DR UV-vis, XPS and N2 gas adsorption were used to analyze the physicochemical properties of the synthesized photocatalysts. The band gap value was lowered from 3.25 eV to 2.86 eV after Au nanoparticles were deposited on the surface of Ce0.5Zr0.5O2. The 1.0 wt.% Au-deposited Ce0.5Zr0.5O2 sample exhibited the highest photocatalytic activity for H2 production (3210 μmol g−1) due to its low band gap, the presence of more oxygen vacancies and its porous character. The EIS results reveal that the deposition of 1.0 wt.% Au nanoparticles is responsible for the highest charge separation efficiency with an increased lifetime of photogenerated e/h+ species compared to the other samples. In addition, the presence of plasmonic Au is responsible for the effectiveness of the electron trap in improving the rate of H2 formation. Full article
(This article belongs to the Section Catalytic Materials)
Show Figures

Figure 1

12 pages, 2917 KiB  
Article
The Light-Trapping Character of Pit Arrays on the Surface of Solar Cells
by Baohua Zhu, Le Chen, Song Ye and Wei Luo
Photonics 2023, 10(7), 855; https://doi.org/10.3390/photonics10070855 - 24 Jul 2023
Cited by 2 | Viewed by 1759
Abstract
Surfaces with light-trapping structures are widely used in solar cells to enhance light capturing and to transform efficiency. The study of light-trapping character is important for light-trapping structures in solar cells. In the present study, the light-trapping character for the regular hemisphere pit [...] Read more.
Surfaces with light-trapping structures are widely used in solar cells to enhance light capturing and to transform efficiency. The study of light-trapping character is important for light-trapping structures in solar cells. In the present study, the light-trapping character for the regular hemisphere pit arrays (RHPAs) in solar cells was intensively investigated in terms of reducing light reflection, suppressing light escape, and increasing the length of the optical path. Results show that the RHPAs can decrease surface reflectivity by ~54% compared with the plane structure, and can reflect ~33% of the light that has not been absorbed back into the absorption layer of the solar cell. The total optical path of the cell with the RHPAs structure remarkably increased from 2ω to 4ω. To verify the theoretical research conclusions, we produced the glass structure samples with different aspect ratios by using micro/nanometer-processing technology. The reflection ratios for silicon wafers covered by plane and RHPAs glass samples were tested. The test results were compared with the theoretical calculation results, which showed consistency. Full article
(This article belongs to the Topic Advances in Solar Technologies)
Show Figures

Figure 1

12 pages, 2503 KiB  
Article
The Influence of Halide Ion Substitution on Energy Structure and Luminescence Efficiency in CeBr2I and CeBrI2 Crystals
by Krzysztof Przystupa, Yaroslav M. Chornodolskyy, Jarosław Selech, Vladyslav O. Karnaushenko, Taras M. Demkiv, Orest Kochan, Stepan V. Syrotyuk and Anatolii S. Voloshinovskii
Materials 2023, 16(14), 5085; https://doi.org/10.3390/ma16145085 - 19 Jul 2023
Cited by 5 | Viewed by 1256
Abstract
This study aims to determine the optimum composition of the CeBr1−xIx compound to achieve the maximum light output. It is based on calculations of the band energy structure of crystals, specifically taking into account the characteristics of the mutual location [...] Read more.
This study aims to determine the optimum composition of the CeBr1−xIx compound to achieve the maximum light output. It is based on calculations of the band energy structure of crystals, specifically taking into account the characteristics of the mutual location of local and band 5d states of the Ce3+ ions. The band energy structures for CeBr2I and CeBrI2 crystals were calculated using the projector augmented wave method. The valence band was found to be formed by the hybridized states of 4p Br and 5p I. The 4f states of Ce3+ are located in the energy forbidden band gap. The conduction band is formed by the localized 5d1 states, which are created by the interaction between the 5d states of Ce3+ and the 4f0 hole of the cerium ion. The higher-lying delocalized 5d2 states of Ce3+ correspond to the energy levels of the 5d states of Ce3+ in the field of the halide Cl0 (Br0) hole. The relative location of 5d1 and 5d2 bands determines the intensity of 5d–4f luminescence. The bottom of the conduction band is formed by localized 5d1 states in the CeBr2I crystal. The local character of the bottom of the conduction band in the CeBr2I crystal favors the formation of self-trapped Frenkel excitons. Transitions between the 5d1 and 4f states are responsible for 5d–4f exciton luminescence. In the CeBrI2 crystal, the conduction band is formed by mixing the localized 5d1 and delocalized 5d2 states, which leads to quenching the 5d–4f luminescence and a decrease in the light output despite the decrease in the forbidden band gap. CsBr2I is the optimum composition of the system to achieve the maximum light output. Full article
Show Figures

Figure 1

29 pages, 10983 KiB  
Article
Formation of Diagenetic Minerals in the Carboniferous Rock Complex from the Fore-Sudetic Monocline (SW Poland): Fluid Inclusion, Isotopic and Raman Constraints
by Aleksandra Kozłowska, Katarzyna Jarmołowicz-Szulc, Marta Kuberska and Krystyna Wołkowicz
Minerals 2021, 11(9), 976; https://doi.org/10.3390/min11090976 - 7 Sep 2021
Cited by 1 | Viewed by 2521
Abstract
The paper presents the latest state of knowledge on clastic sedimentary rocks from the Carboniferous complex in the SW part of the Polish Lowlands, studied to help determine their potential prospectivity for the occurrence of oil and/or gas deposits. Rocks were analyzed with [...] Read more.
The paper presents the latest state of knowledge on clastic sedimentary rocks from the Carboniferous complex in the SW part of the Polish Lowlands, studied to help determine their potential prospectivity for the occurrence of oil and/or gas deposits. Rocks were analyzed with respect to the petrographic-mineralogical characteristics of the Carboniferous deposits, their diagenesis, determinations of pressure-temperature conditions of mineral formation and the hydrocarbon occurrence. Analyses were carried out on samples from four selected boreholes in the Fore-Sudetic Monocline. After microscopic analysis of rocks and minerals in thin sections, the following techniques were used: luminescence analysis (UV, blue light), microthermometric analysis of fluid inclusions in double-sided polished wafers, cathodoluminescence analysis, electron scanning microscope studies, XRD analyses, stable isotopic analyses (carbon, oxygen) on calcite and dolomite-ankerite and Raman spectra of fluid inclusions. Orthochemical components, such as carbonates and authigenic quartz, that form cements or fill the veins cutting the sample material have been studied. Fluid inclusion data in quartz and carbonates result in homogenization temperatures of 74–233 °C. The Raman analysis gives temperature estimations for the organic matter of about 164 °C and 197 °C, depending on the borehole, which points to a low coalification degree. The post-sedimentary processes of compaction, cementation and diagenetic dissolution under eo- and meso-diagenetic conditions to temperatures of over 160 °C influenced the present character of the deposits. P-T conditions of brines and methane trapping have been estimated to be ~850–920 bars and 185–210 °C (vein calcite) and ~1140 bars and 220 °C (Fe-dolomite/ankerite). Therefore, locally, temperatures might have been higher (>200 °C), which may be a symptom of local regional metamorphism of a very low degree. Full article
Show Figures

Figure 1

13 pages, 7473 KiB  
Article
Electron Transport in Naphthalene Diimide Derivatives
by Jaroslaw Jung, Arkadiusz Selerowicz, Paulina Maczugowska, Krzysztof Halagan, Renata Rybakiewicz-Sekita, Malgorzata Zagorska and Anna Stefaniuk-Grams
Materials 2021, 14(14), 4026; https://doi.org/10.3390/ma14144026 - 19 Jul 2021
Cited by 7 | Viewed by 3366
Abstract
Two naphthalene diimides derivatives containing two different (alkyl and alkoxyphenyl) N-substituents were studied, namely, N,N′-bis(sec-butyl)-1,4,5,8-naphthalenetetracarboxylic acid diimide (NDI-s-Bu) and N,N′-bis(4-n-hexyloxyphenyl)-1,4,5,8-naphthalenetetracarboxylic acid diimide (NDI-4-n-OHePh). These compounds are known to exhibit electron transport due to their electron-deficient [...] Read more.
Two naphthalene diimides derivatives containing two different (alkyl and alkoxyphenyl) N-substituents were studied, namely, N,N′-bis(sec-butyl)-1,4,5,8-naphthalenetetracarboxylic acid diimide (NDI-s-Bu) and N,N′-bis(4-n-hexyloxyphenyl)-1,4,5,8-naphthalenetetracarboxylic acid diimide (NDI-4-n-OHePh). These compounds are known to exhibit electron transport due to their electron-deficient character evidenced by high electron affinity (EA) values, determined by electrochemical methods and a low-lying lowest unoccupied molecular orbital (LUMO) level, predicted by density functional theory (DFT) calculations. These parameters make the studied organic semiconductors stable in operating conditions and resistant to electron trapping, facilitating, in this manner, electron transport in thin solid layers. Current–voltage characteristics, obtained for the manufactured electron-only devices operating in the low voltage range, yielded mobilities of 4.3 × 10−4 cm2V−1s−1 and 4.6 × 10−6 cm2V−1s−1 for (NDI-s-Bu) and (NDI-4-n-OHePh), respectively. Their electron transport characteristics were described using the drift–diffusion model. The studied organic semiconductors can be considered as excellent candidates for the electron transporting layers in organic photovoltaic cells and light-emitting diodes Full article
(This article belongs to the Special Issue Recent Development in Dye-Sensitized and Organic Solar Cells)
Show Figures

Figure 1

18 pages, 15445 KiB  
Article
Life in the Current: Anatomy and Morphology of Utricularia neottioides
by Bartosz J. Płachno, Lubomír Adamec, Piotr Świątek, Małgorzata Kapusta and Vitor F. O. Miranda
Int. J. Mol. Sci. 2020, 21(12), 4474; https://doi.org/10.3390/ijms21124474 - 23 Jun 2020
Cited by 14 | Viewed by 5032
Abstract
Rheophytism is extremely rare in the Utricularia genus (there are four strictly rheophytic species out of a total of about 260). Utricularia neottioides is an aquatic rheophytic species exclusively growing attached to bedrocks in the South American streams. Utricularia neottioides was considered to [...] Read more.
Rheophytism is extremely rare in the Utricularia genus (there are four strictly rheophytic species out of a total of about 260). Utricularia neottioides is an aquatic rheophytic species exclusively growing attached to bedrocks in the South American streams. Utricularia neottioides was considered to be trap-free by some authors, suggesting that it had given up carnivory due to its specific habitat. Our aim was to compare the anatomy of rheophytic U. neottioides with an aquatic Utricularia species with a typical linear monomorphic shoot from the section Utricularia, U. reflexa, which grows in standing or very slowly streaming African waters. Additionally, we compared the immunodetection of cell wall components of both species. Light microscopy, histochemistry, scanning, and transmission electron microscopy were used to address our aims. In U. neottioides, two organ systems can be distinguished: organs (stolons, inflorescence stalk) which possess sclerenchyma and are thus resistant to water currents, and organs without sclerenchyma (leaf-like shoots), which are submissive to the water streaming/movement. Due to life in the turbulent habitat, U. neottioides evolved specific characters including an anchor system with stolons, which have asymmetric structures, sclerenchyma and they form adhesive trichomes on the ventral side. This anchor stolon system performs additional multiple functions including photosynthesis, nutrient storage, vegetative reproduction. In contrast with typical aquatic Utricularia species from the section Utricularia growing in standing waters, U. neottioides stems have a well-developed sclerenchyma system lacking large gas spaces. Plants produce numerous traps, so they should still be treated as a fully carnivorous plant. Full article
Show Figures

Graphical abstract

15 pages, 9311 KiB  
Article
The Novel Z-Scheme Ternary-Component Ag/AgI/α-MoO3 Catalyst with Excellent Visible-Light Photocatalytic Oxidative Desulfurization Performance for Model Fuel
by Yanzhong Zhen, Jie Wang, Feng Fu, Wenhao Fu and Yucang Liang
Nanomaterials 2019, 9(7), 1054; https://doi.org/10.3390/nano9071054 - 23 Jul 2019
Cited by 50 | Viewed by 5796
Abstract
The novel ternary-component Ag/AgI/α-MoO3 (AAM) photocatalyst was successfully fabricated by a facile hydrothermal method combined with a charge-induced physical adsorption and photo-reduced deposition technique. X-ray diffraction, scanning/transmission electron microscope, X-ray photoelectron, UV-vis diffuse reflectance, photoluminescence and electrochemical impedance spectroscopy were employed to [...] Read more.
The novel ternary-component Ag/AgI/α-MoO3 (AAM) photocatalyst was successfully fabricated by a facile hydrothermal method combined with a charge-induced physical adsorption and photo-reduced deposition technique. X-ray diffraction, scanning/transmission electron microscope, X-ray photoelectron, UV-vis diffuse reflectance, photoluminescence and electrochemical impedance spectroscopy were employed to characterize the composition, morphology, light-harvesting properties and charge transfer character of the as-synthesized catalysts. The ternary-component AAM heterojunctions exhibited an excellent visible-light photocatalytic oxidative desulfurization activity, in which the AAM-35 (35 represents weight percent of AgI in AAM sample) possessed the highest photocatalytic activity of the conversion of 97.5% in 2 h. On the basis of band structure analysis, radical trapping experiments and electron spin resonance (ESR) spectra results, two different catalytic mechanisms were suggested to elucidate how the photogenerated electron-hole pairs can be effectively separated for the enhancement of photocatalytic performance for dual composites AM-35 and ternary composites AAM-35 during the photocatalytic oxidative desulfurization (PODS) of thiophene. This investigation demonstrates that Z-scheme Ag/AgI/α-MoO3 will be a promising candidate material for refractory sulfur aromatic pollutant’s removal in fossil fuel. Full article
Show Figures

Graphical abstract

14 pages, 1644 KiB  
Article
EPR Investigations of G-C3N4/TiO2 Nanocomposites
by Dana Dvoranová, Milan Mazúr, Ilias Papailias, Tatiana Giannakopoulou, Christos Trapalis and Vlasta Brezová
Catalysts 2018, 8(2), 47; https://doi.org/10.3390/catal8020047 - 26 Jan 2018
Cited by 43 | Viewed by 9999
Abstract
The g-C3N4/TiO2 nanopowders prepared by the annealing of melamine and TiO2 P25 at 550 °C were investigated under dark and upon UV or visible-light photoactivation using X- and Q-band electron paramagnetic resonance (EPR) spectroscopy. The EPR spectra [...] Read more.
The g-C3N4/TiO2 nanopowders prepared by the annealing of melamine and TiO2 P25 at 550 °C were investigated under dark and upon UV or visible-light photoactivation using X- and Q-band electron paramagnetic resonance (EPR) spectroscopy. The EPR spectra of powders monitored at room temperature and 100 K showed the impact of the initial loading ratio of melamine/TiO2 on the character of paramagnetic centers observed. For the photocatalysts synthesized using a lower titania content, the paramagnetic signals characteristic for the g-C3N4/TiO2 nanocomposites were already found before exposure. The samples annealed using the higher TiO2 loading revealed the photoinduced generation of paramagnetic nitrogen bulk centers (g-tensor components g1 = 2.005, g2 = 2.004, g3 = 2.003 and hyperfine couplings from the nitrogen A1 = 0.23 mT, A2 = 0.44 mT, A3 = 3.23 mT) typical for N-doped TiO2. The ability of photocatalysts to generate reactive oxygen species (ROS) upon in situ UV or visible-light photoexcitation was tested in water or dimethyl sulfoxide by EPR spin trapping using 5,5-dimethyl 1-pyrroline N-oxide. The results obtained reflect the differences in photocatalyst nanostructures caused by the differing initial ratio of melamine/TiO2; the photocatalyst prepared by the high-temperature treatment of melamine/TiO2 wt. ratio of 1:3 revealed an adequate photoactivity in both spectral regions. Full article
Show Figures

Figure 1

Back to TopTop