The Light-Trapping Character of Pit Arrays on the Surface of Solar Cells
Abstract
1. Introduction
2. Fabrication and Simulation of the RHPA Structures
2.1. Fabrication Process and Characterization
2.2. Simulation of Optical Transmission Property
3. Light-Trapping Mechanisms and Discussions
- (a) Reducing Light Reflection
- (b) Suppression of Escaped Light
- (c) Increasing Light Path Length
4. Experimental Verification
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liu, H.; Du, Y.; Yin, X.; Bai, M.; Liu, W. Micro/Nanostructures for Light Trapping in Monocrystalline Silicon Solar Cells. J. Nanomater. 2022, 2022, 8139174. [Google Scholar] [CrossRef]
- Tang, Q.; Yao, H.; Xu, B.; Ge, J. Enhanced energy conversion efficiency of Al-BSF c-Si solar cell by a novel hierarchical structure composed of inverted pyramids with different sizes. Sol. Energy 2020, 208, 1–9. [Google Scholar] [CrossRef]
- Tang, Q.; Shen, H.; Yao, H.; Gao, K.; Ge, J.; Liu, Y. Investigation of optical and mechanical performance of inverted pyramid based ultrathin flexible c-Si solar cell for potential application on curved surface. Appl. Surf. Sci. 2020, 504, 144588. [Google Scholar] [CrossRef]
- Lee, Y.; Woo, Y.; Lee, D.-K.; Kim, I. Fabrication of quasi-hexagonal Si nanostructures and its application for flexible crystalline ultrathin Si solar cells. Sol. Energy 2020, 208, 957–965. [Google Scholar] [CrossRef]
- Liu, X.; Ji, Y.; Lu, Z.; Sun, Y.; Yang, H.; Liu, J.; Zhang, Y.; Li, D.; Cao, Y.; Li, W.; et al. Enhanced device performance of Si nanowires/Si nanocrystals heterojunction solar cells with ultrathin Al2O3 passivation. Phys. E Low-Dimens. Syst. Nanostruct. 2020, 120, 114048. [Google Scholar] [CrossRef]
- Kordrostami, Z.; Sheikholeslami, H. Optimization of light trapping in square and hexagonal grid inclined silicon nanowire solar cells. Opt. Commun. 2020, 459, 124980. [Google Scholar] [CrossRef]
- Seo, M.; Yoon, S.; Cho, H.; Lee, S.; Kim, K.; Kong, B.D.; Meyyappan, M.; Baek, C.-K. Solar Cell Using Hourglass-Shaped Silicon Nanowires for Increased Light-Trapping Path. IEEE J. Photovolt. 2020, 10, 475–479. [Google Scholar] [CrossRef]
- Yamada, Y.; Iizuka, H.; Mizoshita, N. Silicon Nanocone Arrays via Pattern Transfer of Mushroomlike SiO2 Nanopillars for Broadband Antireflective Surfaces. ACS Appl. Nano Mater. 2020, 3, 4231–4240. [Google Scholar] [CrossRef]
- Le, C.; Bowen, F.; Qinglin, K.; Wangyang, P.; Hu, K.; Zhang, W. Quasi-hemispherical pit array textured surface for increasing the efficiency of thinfilm solar cells. AIP Adv. 2022, 12, 015111. [Google Scholar]
- Xing, Y.P.; Zhang, K.L.; Zhao, J.S.; Han, P.D.; Yang, Z.C.; Yuan, Y.J.; Ding, Q. Antireflection and absorption properties of silicon parabolic-shaped nanocone arrays. Optik 2017, 128, 133–138. [Google Scholar] [CrossRef]
- Chen, L.; Luo, W.; Fang, B.; Zhu, B.; Zhang, W. Study on light absorption of CH3NH3PbI3 perovskite solar cells enhanced by gold nanobipyramids. Opt. Laser Technol. 2023, 159, 108924. [Google Scholar] [CrossRef]
- Xu, Z.; Huangfu, H.; Li, X.; Qiao, H.; Guo, W.; Guo, J.; Wang, H. Role of nanocone and nanohemisphere arrays in improving light trapping of thin film solar cells. Opt. Commun. 2016, 377, 104–109. [Google Scholar] [CrossRef]
- Wang, C.; Zhao, S.; Bian, F.; Du, D.; Wang, C.; Xu, Z. Absorption enhancement of ultrathin crystalline silicon solar cells with frequency upconversion nanosphere arrays. Commun. Theor. Phys. 2020, 72, 015501. [Google Scholar] [CrossRef]
- Chang, Y.-C.; Pollard, M.E.; Payne, D.N.R.; Sprafke, A.; Pillai, S.; Bagnall, D.M. Large-area nanosphere gratings for light trapping and reduced surface losses in thin solar cells. IEEE J. Photovolt. 2019, 9, 1012–1019. [Google Scholar] [CrossRef]
- Chen, L.; Wang, Q.; Chen, W.; Liu, D.; Zhao, Z.; Wang, D. Light trapping mechanism of hemisphere cone arrays for silicon solar cells. Sol. Energy 2018, 163, 519–525. [Google Scholar] [CrossRef]
- Zhang, C.; Guney, D.O.; Pearce, J.M. Plasmonic enhancement of amorphous silicon solar photovoltaic cells with hexagonal silver arrays made with nanosphere lithography. Mater. Res. Express 2016, 3, 105034. [Google Scholar] [CrossRef]
- Khezami, L.; Al Megbel, A.O.; Jemai, A.B.; Ben Rabha, M. Theoretical and experimental analysis on effect of porous silicon surface treatment in multicrystalline silicon solar cells. Appl. Surf. Sci. 2015, 353, 106–111. [Google Scholar] [CrossRef]
- Ben Rabha, M.; Mohamed, S.B.; Dimassi, W.; Gaidi, M.; Ezzaouia, H.; Bessais, B. Optoelectronic enhancement of monocrystalline silicon solar cells by porous silicon-assisted mechanical grooving. Phys. Status Solidi C 2011, 8, 887–890. [Google Scholar] [CrossRef]
- Eduardo, C.A.; Hannah, J.J. Transparent Quasi-Random Structures for Multimodal Light Trapping in Ultrathin Solar Cells with Broad Engineering Tolerance. ACS Photonics 2022, 9, 2724–2735. [Google Scholar]
- Senthilkumar, N.; Arulraj, A.; Nandhakumar, E.; Ganapathy, M.; Vimalan, M.; Potheher, I.V. Green mediated synthesis of plasmonic nanoparticle (Ag) for antireflection coating in bare mono silicon solar cell. J Mater. Sci. Mater. Electron. 2018, 29, 12744–12753. [Google Scholar] [CrossRef]
- Voroshilov, P.M.; Simovski, C.R.; Belov, P.A.; Shalin, A.S. Light-trapping and antireflective coatings for amorphous Si-based thin film solar cells. J. Appl. Phys. 2015, 117, 203101. [Google Scholar] [CrossRef]
- Elshorbagy, M.H.; Abdel-Hady, K.; Kamal, H.; Alda, J. Broadband anti-reflection coating using dielectric Si3N4 nanostructures. Application to amorphous-Si-H solar cells. Opt. Commun. 2017, 390, 130–136. [Google Scholar] [CrossRef]
- Kephart, J.M.; Geisthardt, R.M.; Sampath, W.S. Optimization of CdTe thin-film solar cell efficiency using a sputtered, oxygenated CdS window layer. Prog. Photovolt. Res. Appl. 2015, 23, 1484–1492. [Google Scholar] [CrossRef]
- Rosell, A.; Martin, I.; Garin, M.; Lopez, G.; Alcubilla, R. Textured PDMS Films Applied to Thin Crystalline Silicon Solar Cells. IEEE J. Photovolt. 2019, 10, 351–357. [Google Scholar] [CrossRef]
- Gao, Z.; Lin, G.; Chen, Y.; Zheng, Y.; Sang, N.; Li, Y.; Chen, L.; Li, M. Moth-eye nanostructure PDMS films for reducing reflection and retaining flexibility in ultra-thin c-Si solar cells. Sol. Energy 2020, 205, 275–281. [Google Scholar] [CrossRef]
- Chen, G.; Hu, D.Q.; Li, C.; Wang, W.W.; Zhang, J.Q.; Wu, L.L.; Li, W. Process study about silica anti-reflection coatings prepared by sol-gel method for cadmium telluride solar cells. J. Mater. Sci. 2018, 53, 15588–15599. [Google Scholar] [CrossRef]
- Zhang, C.; Song, Y.; Wang, M.; Yin, M.; Zhu, X.F.; Tian, L.; Wang, H.; Chen, X.Y.; Fan, Z.Y.; Lu, L.F.; et al. Efficient and Flexible Thin Film Amorphous Silicon Solar Cells on Nanotextured Polymer Substrate Using Sol-gel Based Nanoimprinting Method. Adv. Funct. Mater. 2017, 27, 1604720. [Google Scholar] [CrossRef]
- Jannat, A.; Lee, W.; Akhtar, M.S.; Li, Z.Y.; Yang, O.B. Low cost sol-gel derived SiC-SiO2 nanocomposite as anti reflection layer for enhanced performance of crystalline silicon solar cells. Appl. Surf. Sci. 2016, 369, 545–551. [Google Scholar] [CrossRef]
- Kim, K.; Kim, S.; An, S.; Lee, G.H.; Kim, D.; Han, S. Anti-reflection porous SiO2 thin film deposited using reactive high-power impulse magnetron sputtering at high working pressure for use in a-Si:H solar cells. Sol. Energy Mater. Sol. C 2014, 130, 582–586. [Google Scholar] [CrossRef]
- Liu, D.; Wang, Q. Light-trapping surface coating with concave arrays for efficiency enhancement in amorphous silicon thin-film solar cells. Opt. Commun. 2018, 420, 84–89. [Google Scholar] [CrossRef]
- Ashish, P.; Jordi, L.; Patrícia, C.S. Broadband and Omnidirectional Antireflection Surfaces Based on Deep Subwavelength Features for Harvesting of the Solar Energy. Sol. RRL 2021, 5, 2100548. [Google Scholar]
- Shen, X.Q.; Wang, Q.K.; Wangyang, P.H.; Huang, K.; Chen, L.; Liu, D.M. Performance enhancement in a-Si:H/μc-Si:H tandem solar cells with periodic microstructured surfaces. Opt. Lett. 2015, 40, 1290–1293. [Google Scholar] [CrossRef] [PubMed]
- Jovanov, V.; Palanchoke, U.; Magnus, P.; Stiebig, H.; Hüpkes, J.; Sichanugrist, P.; Konagai, M.; Wiesendanger, S.; Rockstuhl, C.; Knipp, D. Light trapping in periodically textured amorphous silicon thin film solar cells using realistic interface morphologies. Opt. Express 2013, 21, A595–A606. [Google Scholar] [CrossRef]
- Tamang, A.; Pathirane, M.; Parsons, R.; Schwarz, M.M.; Iheanacho, B.; Jovanov, V.; Wagner, V.; Wong, W.S.; Knipp, D. Zinc oxide nanowire arrays for silicon core/shell solar cells. Opt. Express 2014, 22, A622–A632. [Google Scholar] [CrossRef]
- Preinfalk, J.B.; Donie, Y.J.; Egel, A.; Hecht, M.; Hüpkes, J.; Bittkau, K.; Lemmer, U.; Gomard, G. On the fabrication of disordered nanostructures for light extraction in corrugated OLEDs. In Solid-State Lighting; Optica Publishing Group: Washington, DC, USA, 2017; p. JW5A.20. [Google Scholar]
- Yablonovitch, E. Statistical ray optics. JOSA 1982, 72, 899–907. [Google Scholar] [CrossRef]
- Deckman, H.W.; Roslo, C.B.; Yablonovitch, E. Maximum statistical increase of optical absorption in textured semiconductor films. Opt. Lett. 1983, 8, 491–493. [Google Scholar] [CrossRef]
- Nelson, J. The Physics of Solar Cells; Imperial College Press: London, UK, 2003; p. 223. [Google Scholar]
- Available online: https://refractiveindex.info/?shelf=main&book=Si&page=Aspnes (accessed on 3 April 2022).
- Aspnes, D.E.; Studna, A.A. Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV. Phys. Rev. B 1983, 27, 959–1009. [Google Scholar] [CrossRef]
Flat | RHPAs | ||
---|---|---|---|
Theory | 26.28% | 17.62% | 32.95% |
Experiment | 28.51% | 20.06% | 29.64% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, B.; Chen, L.; Ye, S.; Luo, W. The Light-Trapping Character of Pit Arrays on the Surface of Solar Cells. Photonics 2023, 10, 855. https://doi.org/10.3390/photonics10070855
Zhu B, Chen L, Ye S, Luo W. The Light-Trapping Character of Pit Arrays on the Surface of Solar Cells. Photonics. 2023; 10(7):855. https://doi.org/10.3390/photonics10070855
Chicago/Turabian StyleZhu, Baohua, Le Chen, Song Ye, and Wei Luo. 2023. "The Light-Trapping Character of Pit Arrays on the Surface of Solar Cells" Photonics 10, no. 7: 855. https://doi.org/10.3390/photonics10070855
APA StyleZhu, B., Chen, L., Ye, S., & Luo, W. (2023). The Light-Trapping Character of Pit Arrays on the Surface of Solar Cells. Photonics, 10(7), 855. https://doi.org/10.3390/photonics10070855