Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (671)

Search Parameters:
Keywords = learning/memory impairment

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 3172 KiB  
Article
A DDPG-LSTM Framework for Optimizing UAV-Enabled Integrated Sensing and Communication
by Xuan-Toan Dang, Joon-Soo Eom, Binh-Minh Vu and Oh-Soon Shin
Drones 2025, 9(8), 548; https://doi.org/10.3390/drones9080548 (registering DOI) - 1 Aug 2025
Abstract
This paper proposes a novel dual-functional radar-communication (DFRC) framework that integrates unmanned aerial vehicle (UAV) communications into an integrated sensing and communication (ISAC) system, termed the ISAC-UAV architecture. In this system, the UAV’s mobility is leveraged to simultaneously serve multiple single-antenna uplink users [...] Read more.
This paper proposes a novel dual-functional radar-communication (DFRC) framework that integrates unmanned aerial vehicle (UAV) communications into an integrated sensing and communication (ISAC) system, termed the ISAC-UAV architecture. In this system, the UAV’s mobility is leveraged to simultaneously serve multiple single-antenna uplink users (UEs) and perform radar-based sensing tasks. A key challenge stems from the target position uncertainty due to movement, which impairs matched filtering and beamforming, thereby degrading both uplink reception and sensing performance. Moreover, UAV energy consumption associated with mobility must be considered to ensure energy-efficient operation. We aim to jointly maximize radar sensing accuracy and minimize UAV movement energy over multiple time steps, while maintaining reliable uplink communications. To address this multi-objective optimization, we propose a deep reinforcement learning (DRL) framework based on a long short-term memory (LSTM)-enhanced deep deterministic policy gradient (DDPG) network. By leveraging historical target trajectory data, the model improves prediction of target positions, enhancing sensing accuracy. The proposed DRL-based approach enables joint optimization of UAV trajectory and uplink power control over time. Extensive simulations validate that our method significantly improves communication quality and sensing performance, while ensuring energy-efficient UAV operation. Comparative results further confirm the model’s adaptability and robustness in dynamic environments, outperforming existing UAV trajectory planning and resource allocation benchmarks. Full article
Show Figures

Figure 1

15 pages, 1243 KiB  
Review
1-42 Oligomer Injection Model: Understanding Neural Dysfunction and Contextual Memory Deficits in Dorsal CA1
by Min-Kaung-Wint-Mon and Dai Mitsushima
J. Dement. Alzheimer's Dis. 2025, 2(3), 25; https://doi.org/10.3390/jdad2030025 (registering DOI) - 1 Aug 2025
Abstract
The transgenic animals have been yielding invaluable insights into amyloid pathology by replicating the key features of Alzheimer’s disease (AD). However, there is no clear relationship between senile plaques and memory deficits. Instead, cognitive impairment and synaptic dysfunction are particularly linked to a [...] Read more.
The transgenic animals have been yielding invaluable insights into amyloid pathology by replicating the key features of Alzheimer’s disease (AD). However, there is no clear relationship between senile plaques and memory deficits. Instead, cognitive impairment and synaptic dysfunction are particularly linked to a rise in Aβ1-42 oligomer level. Thus, injection of Aβ1-42 oligomers into a specific brain region is considered an alternative approach to investigate the effects of increased soluble Aβ species without any plaques, offering higher controllability, credibility and validity compared to the transgenic model. The hippocampal CA1 (cornu ammonis 1) region is selectively affected in the early stage of AD and specific targeting of CA1 region directly links Aβ oligomer-related pathology with memory impairment in early AD. Next, the inhibitory avoidance (IA) task, a learning paradigm to assess the synaptic basis of CA1-dependent contextual learning, triggers training-dependent synaptic plasticity similar to in vitro HFS (high-frequency stimulation). Given its reliability in assessing contextual memory and synaptic plasticity, this task provides an effective framework for studying early stage AD-related memory deficit. Therefore, in this review, we will focus on why Aβ1-42 oligomer injection is a valid in vivo model to investigate the early stage of AD and why dorsal CA1 region serves as a target area to understand the adverse effects of Aβ1-42 oligomers on contextual learning through the IA task. Full article
Show Figures

Figure 1

29 pages, 28274 KiB  
Article
Long-Term Neuroprotective Effects of Hydrogen-Rich Water and Memantine in Chronic Radiation-Induced Brain Injury: Behavioral, Histological, and Molecular Insights
by Kai Xu, Huan Liu, Yinhui Wang, Yushan He, Mengya Liu, Haili Lu, Yuhao Wang, Piye Niu and Xiujun Qin
Antioxidants 2025, 14(8), 948; https://doi.org/10.3390/antiox14080948 (registering DOI) - 1 Aug 2025
Abstract
Hydrogen-rich water (HRW) has shown neuroprotective effects in acute brain injury, but its role in chronic radiation-induced brain injury (RIBI) remains unclear. This study investigated the long-term efficacy of HRW in mitigating cognitive impairment and neuronal damage caused by chronic RIBI. Fifty male [...] Read more.
Hydrogen-rich water (HRW) has shown neuroprotective effects in acute brain injury, but its role in chronic radiation-induced brain injury (RIBI) remains unclear. This study investigated the long-term efficacy of HRW in mitigating cognitive impairment and neuronal damage caused by chronic RIBI. Fifty male Sprague Dawley rats were randomly divided into five groups: control, irradiation (IR), IR with memantine, IR with HRW, and IR with combined treatment. All but the control group received 20 Gy whole-brain X-ray irradiation, followed by daily interventions for 60 days. Behavioral assessments, histopathological analyses, oxidative stress measurements, 18F-FDG PET/CT imaging, transcriptomic sequencing, RT-qPCR, Western blot, and serum ELISA were performed. HRW significantly improved anxiety-like behavior, memory, and learning performance compared to the IR group. Histological results revealed that HRW reduced neuronal swelling, degeneration, and loss and enhanced dendritic spine density and neurogenesis. PET/CT imaging showed increased hippocampal glucose uptake in the IR group, which was alleviated by HRW treatment. Transcriptomic and molecular analyses indicated that HRW modulated key genes and proteins, including CD44, CD74, SPP1, and Wnt1, potentially through the MIF, Wnt, and SPP1 signaling pathways. Serum CD44 levels were also lower in treated rats, suggesting its potential as a biomarker for chronic RIBI. These findings demonstrate that HRW can alleviate chronic RIBI by preserving neuronal structure, reducing inflammation, and enhancing neuroplasticity, supporting its potential as a therapeutic strategy for radiation-induced cognitive impairment. Full article
Show Figures

Graphical abstract

17 pages, 21259 KiB  
Article
Plumbagin Improves Cognitive Function via Attenuating Hippocampal Inflammation in Valproic Acid-Induced Autism Model
by Nasrin Nosratiyan, Maryam Ghasemi-Kasman, Mohsen Pourghasem, Farideh Feizi and Farzin Sadeghi
Brain Sci. 2025, 15(8), 798; https://doi.org/10.3390/brainsci15080798 - 27 Jul 2025
Viewed by 275
Abstract
Background/Objectives: The hippocampus is an essential part of the central nervous system (CNS); it plays a significant role in social–cognitive memory processing. Prenatal exposure to valproic acid (VPA) can lead to impaired hippocampal functions. In this study, we evaluated the effect of plumbagin [...] Read more.
Background/Objectives: The hippocampus is an essential part of the central nervous system (CNS); it plays a significant role in social–cognitive memory processing. Prenatal exposure to valproic acid (VPA) can lead to impaired hippocampal functions. In this study, we evaluated the effect of plumbagin (PLB) as a natural product on spatial learning and memory, neuro-morphological changes, and inflammation levels in a VPA-induced autism model during adolescence. Methods: Pregnant Wistar rats received a single intraperitoneal (i.p.) injection of VPA (600 mg/kg) or saline on gestational day 12.5. The male offspring were then categorized and assigned to five groups: Saline+DMSO-, VPA+DMSO-, and VPA+PLB-treated groups at doses of 0.25, 0.5, or 1 mg/kg. Spatial learning and memory were evaluated using the Morris water maze. Histopathological evaluations of the hippocampus were performed using Nissl and hematoxylin–eosin staining, as well as immunofluorescence. The pro-inflammatory cytokine levels were also quantified by quantitative real-time PCR. Results: The findings revealed that a VPA injection on gestational day 12.5 is associated with cognitive impairments in male pups, including a longer escape latency and traveled distance, as well as decreased time spent in the target quadrant. Treatment with PLB significantly enhanced the cognitive function, reduced dark cells, and ameliorated neuronal–morphological alterations in the hippocampus of VPA-exposed rats. Moreover, PLB was found to reduce astrocyte activation and the expression levels of pro-inflammatory cytokines. Conclusions: These findings suggest that PLB partly mitigates VPA-induced cognitive deficits by ameliorating hippocampal inflammation levels. Full article
(This article belongs to the Section Behavioral Neuroscience)
Show Figures

Figure 1

39 pages, 1806 KiB  
Review
Microglia-Mediated Neuroinflammation Through Phosphatidylinositol 3-Kinase Signaling Causes Cognitive Dysfunction
by Mohammad Nazmul Hasan Maziz, Srikumar Chakravarthi, Thidar Aung, Phone Myint Htoo, Wana Hla Shwe, Sergey Gupalo, Manglesh Waran Udayah, Hardev Singh, Mohammed Shahjahan Kabir, Rajesh Thangarajan and Maheedhar Kodali
Int. J. Mol. Sci. 2025, 26(15), 7212; https://doi.org/10.3390/ijms26157212 - 25 Jul 2025
Viewed by 179
Abstract
Microglia, as the immune guardians of the central nervous system (CNS), have the ability to maintain neural homeostasis, respond to environmental changes, and remodel the synaptic landscape. However, persistent microglial activation can lead to chronic neuroinflammation, which can alter neuronal signaling pathways, resulting [...] Read more.
Microglia, as the immune guardians of the central nervous system (CNS), have the ability to maintain neural homeostasis, respond to environmental changes, and remodel the synaptic landscape. However, persistent microglial activation can lead to chronic neuroinflammation, which can alter neuronal signaling pathways, resulting in accelerated cognitive decline. Phosphoinositol 3-kinase (PI3K) has emerged as a critical driver, connecting inflammation to neurodegeneration, serving as the nexus of numerous intracellular processes that govern microglial activation. This review focuses on the relationship between PI3K signaling and microglial activation, which might lead to cognitive impairment, inflammation, or even neurodegeneration. The review delves into the components of the PI3K signaling cascade, isoforms, and receptors of PI3K, as well as the downstream effects of PI3K signaling, including its effectors such as protein kinase B (Akt) and mammalian target of rapamycin (mTOR) and the negative regulator phosphatase and tensin homolog (PTEN). Experiments have shown that the overproduction of certain cytokines, coupled with abnormal oxidative stress, is a consequence of poor PI3K regulation, resulting in excessive synapse pruning and, consequently, impacting learning and memory functions. The review also highlights the implications of autonomously activated microglia exhibiting M1/M2 polarization driven by PI3K on hippocampal, cortical, and subcortical circuits. Conclusions from behavioral studies, electrophysiology, and neuroimaging linking cognitive performance and PI3K activity were evaluated, along with new approaches to therapy using selective inhibitors or gene editing. The review concludes by highlighting important knowledge gaps, including the specific effects of different isoforms, the risks associated with long-term pathway modulation, and the limitations of translational potential, underscoring the crucial role of PI3K in mitigating cognitive impairment driven by neuroinflammation. Full article
(This article belongs to the Special Issue Therapeutics and Pathophysiology of Cognitive Dysfunction)
Show Figures

Figure 1

11 pages, 335 KiB  
Opinion
The Microbiota–Gut–Brain Axis in Light of the Brain Axes and Dysbiosis Where Piezo2 Is the Critical Initiating Player
by Balázs Sonkodi
Int. J. Mol. Sci. 2025, 26(15), 7211; https://doi.org/10.3390/ijms26157211 - 25 Jul 2025
Viewed by 248
Abstract
The current opinion paper puts into perspective how altered microbiota transplanted from Alzheimer’s patients initiates the impairment of the microbiota–gut–brain axis of a healthy recipient, leading to impaired cognition primarily arising from the hippocampus, dysfunctional adult hippocampal neurogenesis, dysregulated systemic inflammation, long-term spatial [...] Read more.
The current opinion paper puts into perspective how altered microbiota transplanted from Alzheimer’s patients initiates the impairment of the microbiota–gut–brain axis of a healthy recipient, leading to impaired cognition primarily arising from the hippocampus, dysfunctional adult hippocampal neurogenesis, dysregulated systemic inflammation, long-term spatial memory impairment, or chronic pain with hippocampal involvement. This altered microbiota may induce acquired Piezo2 channelopathy on enterochromaffin cells, which, in turn, impairs the ultrafast long-range proton-based oscillatory synchronization to the hippocampus. Therefore, an intact microbiota–gut–brain axis could be responsible for the synchronization of ultradian and circadian rhythms, with the assistance of rhythmic bacteria within microbiota, to circadian regulation, and hippocampal learning and memory formation. Hippocampal ultradian clock encoding is proposed to be through a Piezo2-initiated proton-signaled manner via VGLUT3 allosteric transmission at a distance. Furthermore, this paper posits that these unaccounted-for ultrafast proton-based long-range oscillatory synchronizing ultradian axes may exist not only within the brain but also between the periphery and the brain in an analogous way, like in the case of this depicted microbiota–gut–brain axis. Accordingly, the irreversible Piezo2 channelopathy-induced loss of the Piezo2-initiated ultradian prefrontal–hippocampal axis leads to Alzheimer’s disease pathophysiology onset. Moreover, the same irreversible microdamage-induced loss of the Piezo2-initiated ultradian muscle spindle–hippocampal and cerebellum–hippocampal axes may lead to amyotrophic lateral sclerosis and Parkinson’s disease initiation, respectively. Full article
Show Figures

Figure 1

12 pages, 1017 KiB  
Article
Forebrain-Specific B-raf Deficiency Reduces NMDA Current and Enhances Small-Conductance Ca2+-Activated K+ (SK) Current
by Cornelia Ruxanda, Christian Alzheimer and Fang Zheng
Int. J. Mol. Sci. 2025, 26(15), 7172; https://doi.org/10.3390/ijms26157172 - 25 Jul 2025
Viewed by 192
Abstract
B-raf (rapidly accelerated fibrosarcoma) is a crucial player within the ERK/MAPK signaling pathway. In the CNS, B-raf has been implicated in neuronal differentiation, long-term memory, and major depression. Mice with forebrain neuron-specific B-raf knockout show behavioral deficits in spatial learning tasks and impaired [...] Read more.
B-raf (rapidly accelerated fibrosarcoma) is a crucial player within the ERK/MAPK signaling pathway. In the CNS, B-raf has been implicated in neuronal differentiation, long-term memory, and major depression. Mice with forebrain neuron-specific B-raf knockout show behavioral deficits in spatial learning tasks and impaired hippocampal long-term potentiation (LTP). To elucidate the mechanism(s) underlying diminished synaptic plasticity in B-raf-deficient mice, we performed whole-cell recordings from CA1 pyramidal cells in hippocampal slices of control and B-raf mutant mice. We found that the NMDA/AMPA ratio of excitatory postsynaptic currents (EPSCs) at the Schaffer collateral—CA1 pyramidal cell synapses was significantly reduced in B-raf mutants, which would at least partially account for their impaired LTP. Interestingly, the reduced NMDA component of field postsynaptic potentials in mutant preparations was partially reinstated by blocking the apamin-sensitive small-conductance Ca2+-activated K+ (SK) channels, which have also been reported to modulate hippocampal LTP and learning tasks. To determine the impact of B-raf-dependent signaling on SK current, we isolated the apamin-sensitive tail current after a strong depolarizing event and found indeed a significantly bigger SK current in B-raf-deficient cells compared to controls, which is consistent with the reduced action potential firing and the stronger facilitating effect of apamin on CA1 somatic excitability in B-raf-mutant hippocampus. Our data suggest that B-raf signaling readjusts the delicate balance between NMDA receptors and SK channels to promote synaptic plasticity and facilitate hippocampal learning and memory. Full article
(This article belongs to the Special Issue Advances in Synaptic Transmission and Plasticity)
Show Figures

Figure 1

26 pages, 2219 KiB  
Article
Predicting Cognitive Decline in Parkinson’s Disease Using Artificial Neural Networks: An Explainable AI Approach
by Laura Colautti, Monica Casella, Matteo Robba, Davide Marocco, Michela Ponticorvo, Paola Iannello, Alessandro Antonietti, Camillo Marra and for the CPP Integrated Parkinson’s Database
Brain Sci. 2025, 15(8), 782; https://doi.org/10.3390/brainsci15080782 - 23 Jul 2025
Viewed by 348
Abstract
Background/Objectives: The study aims to identify key cognitive and non-cognitive variables (e.g., clinical, neuroimaging, and genetic data) predicting cognitive decline in Parkinson’s disease (PD) patients using machine learning applied to a sample (N = 618) from the Parkinson’s Progression Markers Initiative database. [...] Read more.
Background/Objectives: The study aims to identify key cognitive and non-cognitive variables (e.g., clinical, neuroimaging, and genetic data) predicting cognitive decline in Parkinson’s disease (PD) patients using machine learning applied to a sample (N = 618) from the Parkinson’s Progression Markers Initiative database. Traditional research has mainly employed explanatory approaches to explore variable relationships, rather than maximizing predictive accuracy for future cognitive decline. In the present study, we implemented a predictive framework that integrates a broad range of baseline cognitive, clinical, genetic, and imaging data to accurately forecast changes in cognitive functioning in PD patients. Methods: An artificial neural network was trained on baseline data to predict general cognitive status three years later. Model performance was evaluated using 5-fold stratified cross-validation. We investigated model interpretability using explainable artificial intelligence techniques, including Shapley Additive Explanations (SHAP) values, Group-Wise Feature Masking, and Brute-Force Combinatorial Masking, to identify the most influential predictors of cognitive decline. Results: The model achieved a recall of 0.91 for identifying patients who developed cognitive decline, with an overall classification accuracy of 0.79. All applied explainability techniques consistently highlighted baseline MoCA scores, memory performance, the motor examination score (MDS-UPDRS Part III), and anxiety as the most predictive features. Conclusions: From a clinical perspective, the findings can support the early detection of PD patients who are more prone to developing cognitive decline, thereby helping to prevent cognitive impairments by designing specific treatments. This can improve the quality of life for patients and caregivers, supporting patient autonomy. Full article
(This article belongs to the Section Neurodegenerative Diseases)
Show Figures

Figure 1

20 pages, 8740 KiB  
Article
Agomelatine Ameliorates Cognitive and Behavioral Deficits in Aβ-Induced Alzheimer’s Disease-like Rat Model
by Raviye Ozen Koca, Z. Isik Solak Gormus, Hatice Solak, Burcu Gultekin, Ayse Ozdemir, Canan Eroglu Gunes, Ercan Kurar and Selim Kutlu
Medicina 2025, 61(8), 1315; https://doi.org/10.3390/medicina61081315 - 22 Jul 2025
Viewed by 258
Abstract
Background and Objectives: Alzheimer’s disease (AD) has become a serious health problem. Agomelatine (Ago) is a neuroprotective antidepressant. This study aimed to assess how Ago influences behavioral outcomes in AD-like rat model. Materials and Methods: Forty-eight Wistar albino rats were allocated into four [...] Read more.
Background and Objectives: Alzheimer’s disease (AD) has become a serious health problem. Agomelatine (Ago) is a neuroprotective antidepressant. This study aimed to assess how Ago influences behavioral outcomes in AD-like rat model. Materials and Methods: Forty-eight Wistar albino rats were allocated into four groups: Control (C), Alzheimer’s disease-like model (AD), Alzheimer’s disease-like model treated with Ago (ADAgo), and Ago alone (Ago). Physiological saline was injected intrahippocampally in C and Ago animals, whereas Aβ peptide was delivered similarly in AD and ADAgo rats. On day 15, 0.9% NaCl was administered to the C and AD groups, and Agomelatine (1 mg/kg/day) was infused into ADAgo and Ago rats via osmotic pumps for 30 days. Behavioral functions were evaluated using Open Field (OF), Forced Swim (FST), and Morris Water Maze (MWM) tests. Brain tissues were examined histopathologically. Neuritin, Nestin, DCX, NeuN, BDNF, MASH1, MT1, and MT2 transcripts were quantified by real-time PCR. Statistical analyses were performed in R 4.3.1, with p < 0.05 deemed significant. Results: In the FST, swimming, climbing, immobility time, and mobility percentage differed significantly among groups (p < 0.05). In the MWM, AD rats exhibited impaired learning and memory that was ameliorated by Ago treatment (p < 0.05). DCX expression decreased in AD rats but was elevated by Ago (p < 0.05). Nestin levels differed significantly between control and AD animals; MT1 expression varied between control and AD cohorts; and MT2 transcript levels were significantly lower in AD, ADAgo, and Ago groups compared to C (all p < 0.05). Conclusions: Ago exhibits antidepressant-like activity in this experimental AD model and may enhance cognitive function via mechanisms beyond synaptic plasticity and neurogenesis. Full article
(This article belongs to the Section Neurology)
Show Figures

Figure 1

18 pages, 501 KiB  
Review
Cognitive Effects of Cannabis Use: A Comprehensive Review Across Domains
by Andréia Pucinelli de Souza Queiroz, Maria Olivia Pozzolo Pedro, Marcela Waisman Campos, Julio Torales, Antonio Ventriglio and João Mauricio Castaldelli-Maia
Neurol. Int. 2025, 17(7), 107; https://doi.org/10.3390/neurolint17070107 - 15 Jul 2025
Viewed by 1185
Abstract
Cannabis is the most widely consumed illicit substance worldwide, with rising use particularly among adolescents and young adults. Accumulating evidence indicates that chronic cannabis use may negatively impact several domains of cognition, yet findings across studies remain varied and fragmented. This comprehensive review [...] Read more.
Cannabis is the most widely consumed illicit substance worldwide, with rising use particularly among adolescents and young adults. Accumulating evidence indicates that chronic cannabis use may negatively impact several domains of cognition, yet findings across studies remain varied and fragmented. This comprehensive review synthesizes current knowledge on the long-term cognitive consequences of cannabis use, focusing on attention, executive functioning, learning, memory, language, motor coordination, and social cognition. Consistent impairments have been observed in domains such as attention, executive function, memory, and learning; however, most evidence derives from studies of acute or residual effects. Evidence of long-lasting deficits after extended abstinence remains more limited and methodologically heterogeneous. Acute motor coordination deficits are well established, but persistent impairments in this domain lack conclusive evidence. Effects on language remain inconclusive, and findings regarding social cognition, though limited, suggest potential deficits in emotion recognition and mental state inference. Early onset and high-frequency use are critical risk factors for more severe and enduring cognitive effects. Some deficits may partially reverse with abstinence, although many persist long after cessation. Overall, cannabis use is associated with widespread and lasting cognitive impairments. These findings underscore the need for targeted prevention strategies, especially among youth, and point to future longitudinal and mechanistic research to better understand the nature, persistence, and potential reversibility of these cognitive effects. Full article
Show Figures

Figure 1

15 pages, 577 KiB  
Article
The Influence of Judgments of Learning on Collaborative Memory for Items and Sequences
by Xiaochun Luo, Qian Xiao and Weihai Tang
Behav. Sci. 2025, 15(7), 905; https://doi.org/10.3390/bs15070905 - 3 Jul 2025
Viewed by 269
Abstract
The present study examined how making judgments of learning (JOLs) vs. not making judgments of learning (no-JOLs) influences item and sequential memory in collaborative contexts. According to the item-order hypothesis, making JOLs improves memory for specific items (i.e., item memory) but disrupts sequential [...] Read more.
The present study examined how making judgments of learning (JOLs) vs. not making judgments of learning (no-JOLs) influences item and sequential memory in collaborative contexts. According to the item-order hypothesis, making JOLs improves memory for specific items (i.e., item memory) but disrupts sequential memory where memory for temporal relationships between items is required. If JOLs do enhance item memory performance, the study predicts they may effectively eliminate collaborative inhibition through a compensatory enhancement mechanism. Specifically, the magnitude of JOL-induced memory improvement appears to be greater in collaborative groups than in nominal groups. This differential enhancement likely offsets the typical memory impairment caused by collaborative retrieval interference, resulting in statistically equivalent final performance between groups. Consequently, the collaborative inhibition effect may disappear under JOL conditions. This study employed a 2 (group: collaborative vs. nominal; between-subjects) × 2 (metamemory monitoring: with vs. without judgments of learning; within-subjects) × 2 (test type: recognition vs. sequential reconstruction; within-subjects) mixed factorial design. The findings indicated that making judgments of learning significantly enhanced item memory performance while having no noticeable effect on sequential memory. It suggests that the reactivity effect is only present in item memory. Additionally, it was found that both item recognition and sequential memory performance were lower in the collaborative group compared with the nominal group, highlighting the presence of collaborative inhibition. These results suggest that the reactivity effect and collaborative inhibition are two distinct memory phenomena that do not affect each other. Full article
(This article belongs to the Section Cognition)
Show Figures

Figure 1

17 pages, 4232 KiB  
Article
NOX2/NLRP3-Inflammasome-Dependent Microglia Activation Promotes As(III)-Induced Learning and Memory Impairments in Developmental Rats
by Linlin Zhang, Yuyao Xiao, Dan Wang, Xuerong Han, Ruoqi Zhou, Huiying Zhang, Kexin Zhu, Junyao Wu, Xiance Sun and Shuangyue Li
Toxics 2025, 13(7), 538; https://doi.org/10.3390/toxics13070538 - 26 Jun 2025
Viewed by 294
Abstract
Inorganic arsenic [As(III) and As(V)] is a pervasive environmental contaminant in groundwater systems, early-life exposure to which is associated with an impaired cognitive ability and an increased risk of neurobehavioral disorders. Although the effect of As(III) on the neurons is well studied, the [...] Read more.
Inorganic arsenic [As(III) and As(V)] is a pervasive environmental contaminant in groundwater systems, early-life exposure to which is associated with an impaired cognitive ability and an increased risk of neurobehavioral disorders. Although the effect of As(III) on the neurons is well studied, the involvement of the microglia remains unclear. In this study, the effects of sodium arsenite (NaAsO2) on microglial activation and the underlying NLRP3 inflammasome mechanism were determined. Pregnant rats were gavaged with NaAsO2 (0, 1, 4, and 10 mg/kg body weight), which dissociates in aqueous solutions into bioactive arsenite species [As(OH)3], from gestational day 1 (GD1) to postnatal day 21 (PND21). The results showed that As(III) induces learning and memory impairments and microglial activation in the hippocampus of offspring rats (PND21). Increased expression of NLRP3, the activation of caspase-1, and the production of interleukin-1β were observed in both the hippocampus of As(III)-exposed offspring rats and As(III)-exposed microglial BV2 cells under culture conditions. Interestingly, blocking the NLRP3 inflammasome using MCC950 mitigated its activation. Furthermore, inhibition of NADPH oxidase 2 (NOX2) using apocynin or specific siRNA significantly reduced As(III)-induced microglial NLRP3 inflammasome activation. In addition, inactivation of the microglial NLRP3 inflammasome or NOX2 markedly rescued As(III)-induced neurotoxicity in the hippocampal HT22 cells. Taken together, this study reveals that NOX2/NLRP3-inflammasome-dependent microglial activation promotes As(III)-induced learning and memory impairments in developmental rats. Full article
Show Figures

Figure 1

13 pages, 340 KiB  
Review
Zingerone as a Neuroprotective Agent Against Cognitive Disorders: A Systematic Review of Preclinical Studies
by Tosin A. Olasehinde and Oyinlola O. Olaokun
Int. J. Mol. Sci. 2025, 26(13), 6111; https://doi.org/10.3390/ijms26136111 - 25 Jun 2025
Viewed by 410
Abstract
Cognitive problems are associated with impaired learning ability and memory dysfunction. Neuroinflammation has been identified as an important factor in the progression of anxiety and depressive disorders. Zingerone is a phenolic alkanone derived from ginger (Zingiber officinale Roscoe), which is known for its [...] Read more.
Cognitive problems are associated with impaired learning ability and memory dysfunction. Neuroinflammation has been identified as an important factor in the progression of anxiety and depressive disorders. Zingerone is a phenolic alkanone derived from ginger (Zingiber officinale Roscoe), which is known for its antioxidant and anti-inflammatory properties. A number of studies have investigated the effect of zingerone on neuroinflammation and cognitive impairment. However, this evidence has not been systematically reviewed. This study sought to systematically review the effect of zingerone on neuroinflammation and neurobehavioural changes associated with memory and learning impairment and anxiety-like and depressive-like behaviours. A systematic review was conducted using pre-defined search criteria on Google Scholar, Scopus and Web of Science. The records obtained were screened based on inclusion criteria, and data was extracted from the included studies. Out of the 482 studies that were identified, only 9 studies met the inclusion criteria. Neuroinflammatory markers such as interleukin 1β (IL-1β), interleukin 6 (IL-6), tumour necrosis factor-alpha (TNF-α) and ionized calcium binding adaptor molecule (IBA-1), as well as behavioural parameters including Morris water maze, Y-Maze, recognition test, passive avoidance test, elevated plus maze, sucrose preference test and forced swimming test were measured. Zingerone exhibited anti-neuroinflammatory effects by improving IL-1β, IL-6 and TNF-α levels. However, zingerone did not show any significant changes on activated microglia. The anti-neuroinflammatory mechanisms of zingerone were linked to the inhibition of nuclear factor kappa B (NF-kB) activation and the NOD-like receptor family, pyrin domain-containing 3 (NLRP3) inflammasome, as well as the reduction in neuronal nitric oxide synthase (nNOS). The anxiolytic and anti-depressive effects of zingerone were also associated with an improvement in cortical cholinergic transmission, the mitigation of oxidative stress and the upregulation of neurotransmitters such as serotonin and dopamine. This review provides scientific evidence on the cognitive enhancing and neuroprotective mechanisms of zingerone, which may be beneficial for future experimental investigations. Full article
Show Figures

Figure 1

22 pages, 2332 KiB  
Review
Glutamate-Mediated Neural Alterations in Lead Exposure: Mechanisms, Pathways, and Phenotypes
by Wagner A. Tamagno and Jennifer L. Freeman
Toxics 2025, 13(7), 519; https://doi.org/10.3390/toxics13070519 - 21 Jun 2025
Viewed by 460
Abstract
Lead (Pb) is a pervasive neurotoxicant with well-documented detrimental effects on the central nervous system, particularly in vulnerable populations such as children. Despite historical recognition of its toxicity, Pb exposure remains a significant public health concern due to its environmental persistence, historical industrial [...] Read more.
Lead (Pb) is a pervasive neurotoxicant with well-documented detrimental effects on the central nervous system, particularly in vulnerable populations such as children. Despite historical recognition of its toxicity, Pb exposure remains a significant public health concern due to its environmental persistence, historical industrial use, and ongoing applications in modern technologies. This review focuses on the mechanisms by which Pb disrupts glutamatergic signaling, a critical pathway for learning, memory, and synaptic plasticity. Pb’s interference with glutamate receptors (ionotropic NMDA and AMPA, as well as metabotropic receptors), transporters (EAATs, VGLUTs, and SNATs), and metabolic pathways (glutamate–glutamine cycle, TCA cycle, and glutathione synthesis) are detailed. By mimicking divalent cations like Ca2+ and Zn2+, Pb2+ disrupts calcium homeostasis, exacerbates excitotoxicity, and induces oxidative stress, ultimately impairing neuronal communication and synaptic function. These molecular disruptions manifest cognitive deficits, behavioral abnormalities, and increased susceptibility to neurodevelopmental and neurodegenerative disorders. Understanding Pb’s impact on glutamatergic neurotransmission offers critical insights into its neurotoxic profile and highlights the importance of addressing its effects on neural function. Full article
Show Figures

Graphical abstract

22 pages, 2177 KiB  
Article
BO–FTT: A Deep Learning Model Based on Parameter Tuning for Early Disease Prediction from a Case of Anemia in CKD
by Yuqi Liu, Jiaqing Chen and Molan Wang
Electronics 2025, 14(12), 2471; https://doi.org/10.3390/electronics14122471 - 18 Jun 2025
Viewed by 315
Abstract
Renal anemia (RA) is a common complication of chronic kidney disease (CKD). Patients with prolonged RA may present with nonspecific systemic manifestations, including cold intolerance, fatigue, drowsiness, anorexia, muscle weakness, reduced physical activity, impaired memory and cognitive function, and difficulty concentrating. Although previous [...] Read more.
Renal anemia (RA) is a common complication of chronic kidney disease (CKD). Patients with prolonged RA may present with nonspecific systemic manifestations, including cold intolerance, fatigue, drowsiness, anorexia, muscle weakness, reduced physical activity, impaired memory and cognitive function, and difficulty concentrating. Although previous studies have identified risk factors for anemia development in CKD, challenges remain in early diagnosis and therapeutic intervention. Therefore, we analyzed a dataset of CKD patients with RA from the MIMIC database and used machine learning models to predict whether RA will occur in CKD patients. In addition, an optimized model was designed, and is explained in the article, that tunes the hyperparameters of FT-Transformer (FTT) with the Bayesian optimization (BO) algorithm. The proposed BO–FTT model achieved an accuracy of 91.81%, outperforming the untuned FTT as well as TabNet, Multilayer Perceptron (MLP), and Kolmogorov–Arnold Networks (KAN) that were optimized by the BO algorithm. Full article
Show Figures

Figure 1

Back to TopTop