Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (25)

Search Parameters:
Keywords = layer line chickens

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 836 KB  
Article
Establishment of an Amino Acid Nutrition Prediction Model for Laying Hens During the Brooding and Early-Growing Period
by Jiatong Li, Meng Hou, Weidong Yuan, Xin Zhang, Xing Wu, Yijie Li, Ruirui Jiang, Donghua Li, Yujie Guo, Xiangtao Kang, Yujie Gong, Yongcai Wang and Yadong Tian
Animals 2025, 15(21), 3178; https://doi.org/10.3390/ani15213178 - 31 Oct 2025
Viewed by 245
Abstract
The aim of this study was to develop a dynamic factorial model for predicting amino acid requirements in Hy-Line Gray laying hens during critical early growth stages (0–84 days), addressing the need for precision feeding in modern poultry production systems. Methods: Four sequential [...] Read more.
The aim of this study was to develop a dynamic factorial model for predicting amino acid requirements in Hy-Line Gray laying hens during critical early growth stages (0–84 days), addressing the need for precision feeding in modern poultry production systems. Methods: Four sequential trials were conducted. In Trial 1, growth curves and protein deposition equations were developed based on fortnightly body composition analyses, with parameters evaluated using the Akaike and Bayesian information criteria (AIC and BIC). In Trial 2, the carcass and feather amino acid profiles were characterized via HPLC. And established the amino acid composition patterns of chicken feather protein and carcass protein (AAF and AAC). In Trial 3, maintenance requirements were quantified through nitrogen balance studies, and in Trial 4, amino acid patterns of feather protein (APD) and apparent protein digestibility (ADD) were established using an endogenous indicator method. These datasets were integrated through factorial modeling to predict age-specific nutrient demands. Results: The developed model revealed the following quantitative requirements (g/day) for 18 amino acids across developmental stages: aspartic acid (0.1–0.863), glutamic acid (0.170–1.503), serine (0.143–0.806), arginine (0.165–0.891), glycine (0.258–1.279), threonine (0.095–0.507), proline (0.253–1.207), alanine (0.131–0.718), valine (0.144–0.737), methionine (0.023–0.124), cysteine (0.102–0.682), isoleucine (0.086–0.458), leucine (0.209–1.067), phenylalanine (0.086–0.464), histidine (0.024–0.133), lysine (0.080–0.462), tyrosine (0.050–0.283), and tryptophan (0.011–0.060). The model demonstrated strong predictive validity throughout the 12-week growth period. Conclusion: This integrative approach yielded the first dynamic requirement model for Hy-Line Gray layers during early development. The factorial framework enables precise adjustment of amino acid provisions to match changing physiological needs and has high potential value in optimizing feed efficiency and supporting sustainable layer production practices. Full article
(This article belongs to the Special Issue Amino Acids Nutrition and Health in Farm Animals)
Show Figures

Figure 1

15 pages, 521 KB  
Article
Effects of Dandelion Flavonoid Extract on the Accumulation of Flavonoids in Layer Hen Meat, Slaughter Performance and Blood Antioxidant Indicators of Spent Laying Hens
by Yuyu Wei, Jingwen Zhang, Yiming Zhang, Dingkuo Liu, Chunxue You, Wenjuan Zhang, Chaoqi Ren, Xin Zhao, Liu’an Li and Xiaoxue Yu
Animals 2025, 15(6), 886; https://doi.org/10.3390/ani15060886 - 20 Mar 2025
Cited by 2 | Viewed by 1123
Abstract
This study aimed to investigate the effects of different supplemental amounts of dandelion flavonoid extracts (DFE) in diets on nutrients in chicken, slaughtering performance, blood biochemical indexes and antioxidant capacity of spent laying hens. A total of 180 560-day-old spent Hy-Line Brown laying [...] Read more.
This study aimed to investigate the effects of different supplemental amounts of dandelion flavonoid extracts (DFE) in diets on nutrients in chicken, slaughtering performance, blood biochemical indexes and antioxidant capacity of spent laying hens. A total of 180 560-day-old spent Hy-Line Brown laying hens were randomly divided into five groups. The control group was fed the basal diet, while the experimental groups were supplemented with DFE at levels of 1000, 2000, 4000, and 8000 mg/kg (as T1, T2, T3, and T4 group) in the basal diet, respectively. The variables measured included the content of dandelion flavonoids in layer hen thigh meat and breast meat, slaughter performance, blood biochemical indexes, and antioxidant capacity. Data were subjected to a one-way analysis of variance (one-way ANOVA) to assess the impact of DFE supplementation compared to the control group on study outcomes. The results showed that dietary supplementation with DFE can increase the content of dandelion flavonoids in layer hen meat. The contents of rutin in layer hen breast meat of groups T1, T2, T3, and T4 were 1.37, 4.41, 16.26, and 36.03 ng/g, respectively, and the contents of quercetin was 2.58, 1.36, 4.98, 12.48 ng/g. In layer hen thigh meat of groups T1, T2, T3, and T4, the contents of rutin were 11.48, 15.98, 44.43, 122.32 ng/g, and the contents of quercetin were 9.96, 13.14, 23.15, 38.09 ng/g, respectively. The addition of DFE increased the total phenol content of the feed and highly significantly elevated the total phenol content of layer hen meat (p < 0.01), and the total phenol content of chicken meat was strongly and positively correlated with the total phenol content of the feed. DFE supplementation significantly decreased abdominal fat percentage (p < 0.05) and increased crude fat content in chicken (p < 0.05). The addition of DFE reduced aspartate aminotransferase (AST) and alanine aminotransferase (ALT) activities (p < 0.05), decreased triglyceride (TG), total cholesterol (TC), low-density lipoprotein (LDL) cholesterol (LDL-C), glucose (GLU), and malondialdehyde (MDA) contents (p < 0.05), and increased the content of albumin (ALB), total antioxidant (T-AOC) capacity and total superoxide dismutase (T-SOD), glutathione peroxidase (GSH-Px) activity (p < 0.05). Dietary supplementation of DFE at different concentrations could significantly increase the content of dandelion flavonoids in the muscle of spent laying hens, reduce the abdominal fat rate in hens, effectively reduce blood lipid levels, effectively increase crude fat content in thigh muscle, and enhance the body’s antioxidant capacity and liver function. Full article
(This article belongs to the Section Poultry)
Show Figures

Figure 1

26 pages, 7604 KB  
Article
Mef2c- and Nkx2-5-Divergent Transcriptional Regulation of Chick WT1_76127 and Mouse Gm14014 lncRNAs and Their Implication in Epicardial Cell Migration
by Sheila Caño-Carrillo, Carlos Garcia-Padilla, Amelia E. Aranega, Estefania Lozano-Velasco and Diego Franco
Int. J. Mol. Sci. 2024, 25(23), 12904; https://doi.org/10.3390/ijms252312904 - 30 Nov 2024
Viewed by 1585
Abstract
Cardiac development is a complex developmental process. The early cardiac straight tube is composed of an external myocardial layer and an internal endocardial lining. Soon after rightward looping, the embryonic heart becomes externally covered by a new epithelial lining, the embryonic epicardium. A [...] Read more.
Cardiac development is a complex developmental process. The early cardiac straight tube is composed of an external myocardial layer and an internal endocardial lining. Soon after rightward looping, the embryonic heart becomes externally covered by a new epithelial lining, the embryonic epicardium. A subset of these embryonic epicardial cells migrate and colonize the embryonic myocardium, contributing to the formation of distinct cell types. In recent years, our understanding of the molecular mechanisms that govern proepicardium and embryonic epicardium formation has greatly increased. We have recently witnessed the discovery of a novel layer of complexity governing gene regulation with the discovery of non-coding RNAs. Our laboratory recently identified three distinct lncRNAs, adjacent to the Wt1, Bmp4 and Fgf8 chicken gene loci, with enhanced expression in the proepicardium that are distinctly regulated by Bmp, Fgf and thymosin β4, providing support for their plausible implication in epicardial formation. The expression of lncRNAs was analyzed in different chicken and mouse tissues as well as their subcellular distribution in chicken proepicardial, epicardial, ventricle explants and in different murine cardiac cell types. lncRNA transcriptional regulation was analyzed by using siRNAs and expression vectors of different transcription factors in chicken and mouse models, whereas antisense oligonucleotides were used to inhibit Gm14014 expression. Furthermore, RT-qPCR, immunocytochemistry, RNA pulldown, Western blot, viability and cell migration assays were conducted to investigate the biological functions of Wt1_76127 and Gm14014. We demonstrated that Wt1_76127 in chicken and its putative conserved homologue Gm14014 in mice are widely distributed in different embryonic and adult tissues and distinctly regulated by cardiac-enriched transcription factors, particularly Mef2c and Nkx2.5. Furthermore, silencing assays demonstrated that mouse Gm14014, but not chicken Wt1_76127, is essential for epicardial, but not endocardial or myocardial, cell migration. Such processes are governed by partnering with Myl9, promoting cytoskeletal remodeling. Our data show that Gm14014 plays a pivotal role in epicardial cell migration essential for heart regeneration under these experimental conditions. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

25 pages, 4149 KB  
Article
Genetic Variation in Natural and Induced Antibody Responses in Layer Chickens
by Jesus Arango, Anna Wolc, Jeb Owen, Kendra Weston and Janet E. Fulton
Animals 2024, 14(11), 1623; https://doi.org/10.3390/ani14111623 - 30 May 2024
Cited by 3 | Viewed by 2000
Abstract
Selection of livestock for disease resistance is challenging due to the difficulty in obtaining reliable phenotypes. Antibodies are immunological molecules that provide direct and indirect defenses against infection and link the activities of both the innate and adaptive compartments of the immune system. [...] Read more.
Selection of livestock for disease resistance is challenging due to the difficulty in obtaining reliable phenotypes. Antibodies are immunological molecules that provide direct and indirect defenses against infection and link the activities of both the innate and adaptive compartments of the immune system. As a result, antibodies have been used as a trait in selection for immune defense. The goal of this study was to identify genomic regions associated with natural and induced antibodies in chickens using low-pass sequencing. Enzyme-linked immunosorbent assays were used to quantify innate (natural) antibodies binding KLH, OVA, and PHA and induced (adaptive) antibodies binding IBD, IBV, NDV, and REO. We collected plasma from four White Leghorn (WL), two White Plymouth Rock (WPR), and two Rhode Island Red (RIR) lines. Samples numbers ranged between 198 and 785 per breed. GWAS was performed within breed on data pre-adjusted for Line-Hatch-Sex effects using GCTA. A threshold of p = 10−6 was used to select genes for downstream annotation and enrichment analysis with SNPEff and Panther. Significant enrichment was found for the defense/immunity protein, immunoglobulin receptor superfamily, and the antimicrobial response protein in RIR; and the immunoglobulin receptor superfamily, defense/immunity protein, and protein modifying enzyme in WL. However, none were present in WPR, but some of the selected SNP were annotated in immune pathways. This study provides new insights regarding the genetics of the antibody response in layer chickens. Full article
(This article belongs to the Special Issue Genetics and Breeding Advances in Poultry Health and Production)
Show Figures

Figure 1

16 pages, 5502 KB  
Article
The Effect of Inhibiting the Wingless/Integrated (WNT) Signaling Pathway on the Early Embryonic Disc Cell Culture in Chickens
by Wenjie Ren, Dan Zheng, Guangzheng Liu, Gaoyuan Wu, Yixiu Peng, Jun Wu, Kai Jin, Qisheng Zuo, Yani Zhang, Guohui Li, Wei Han, Xiang-Shun Cui, Guohong Chen, Bichun Li and Ying-Jie Niu
Animals 2024, 14(9), 1382; https://doi.org/10.3390/ani14091382 - 4 May 2024
Cited by 1 | Viewed by 1918
Abstract
The utilization of chicken embryonic-derived pluripotent stem cell (PSC) lines is crucial in various fields, including growth and development, vaccine and protein production, and germplasm resource protection. However, the research foundation for chicken PSCs is relatively weak, and there are still challenges in [...] Read more.
The utilization of chicken embryonic-derived pluripotent stem cell (PSC) lines is crucial in various fields, including growth and development, vaccine and protein production, and germplasm resource protection. However, the research foundation for chicken PSCs is relatively weak, and there are still challenges in establishing a stable and efficient PSC culture system. Therefore, this study aims to investigate the effects of the FGF2/ERK and WNT/β-catenin signaling pathways, as well as different feeder layers, on the derivation and maintenance of chicken embryonic-derived PSCs. The results of this study demonstrate that the use of STO cells as feeder layers, along with the addition of FGF2, IWR-1, and XAV-939 (FIX), allows for the efficient derivation of chicken PSC-like cells. Under the FIX culture conditions, chicken PSCs express key pluripotency genes, such as POUV, SOX2, and NANOG, as well as specific proteins SSEA-1, C-KIT, and SOX2, indicating their pluripotent nature. Additionally, the embryoid body experiment confirms that these PSC-like cells can differentiate into cells of three germ layers in vitro, highlighting their potential for multilineage differentiation. Furthermore, this study reveals that chicken Eyal–Giladi and Kochav stage X blastodermal cells express genes related to the primed state of PSCs, and the FIX culture system established in this research maintains the expression of these genes in vitro. These findings contribute significantly to the understanding and optimization of chicken PSC culture conditions and provide a foundation for further exploration of the biomedical research and biotechnological applications of chicken PSCs. Full article
(This article belongs to the Section Poultry)
Show Figures

Figure 1

26 pages, 2292 KB  
Review
The Impact of Early-Life Cecal Microbiota Transplantation on Social Stress and Injurious Behaviors in Egg-Laying Chickens
by Yuechi Fu, Jiaying Hu, Huanmin Zhang, Marisa A. Erasmus, Timothy A. Johnson and Heng-Wei Cheng
Microorganisms 2024, 12(3), 471; https://doi.org/10.3390/microorganisms12030471 - 26 Feb 2024
Cited by 6 | Viewed by 4317
Abstract
Injurious behaviors (i.e., aggressive pecking, feather pecking, and cannibalism) in laying hens are a critical issue facing the egg industry due to increased social stress and related health and welfare issues as well as economic losses. In humans, stress-induced dysbiosis increases gut permeability, [...] Read more.
Injurious behaviors (i.e., aggressive pecking, feather pecking, and cannibalism) in laying hens are a critical issue facing the egg industry due to increased social stress and related health and welfare issues as well as economic losses. In humans, stress-induced dysbiosis increases gut permeability, releasing various neuroactive factors, causing neuroinflammation and related neuropsychiatric disorders via the microbiota–gut–brain axis, and consequently increasing the frequency and intensity of aggression and violent behaviors. Restoration of the imbalanced gut microbial composition has become a novel treatment strategy for mental illnesses, such as depression, anxiety, bipolar disorder, schizophrenia, impulsivity, and compulsivity. A similar function of modulating gut microbial composition following stress challenge may be present in egg-laying chickens. The avian cecum, as a multi-purpose organ, has the greatest bacterial biodiversity (bacterial diversity, richness, and species composition) along the gastrointestinal tract, with vitally important functions in maintaining physiological and behavioral homeostasis, especially during the periods of stress. To identify the effects of the gut microbiome on injurious behaviors in egg-laying chickens, we have designed and tested the effects of transferring cecal contents from two divergently selected inbred chicken lines on social stress and stress-related injurious behaviors in recipient chicks of a commercial layer strain. This article reports the outcomes from a multi-year study on the modification of gut microbiota composition to reduce injurious behaviors in egg-laying chickens. An important discovery of this corpus of experiments is that injurious behaviors in chickens can be reduced or inhibited through modifying the gut microbiota composition and brain serotonergic activities via the gut–brain axis, without donor-recipient genetic effects. Full article
(This article belongs to the Special Issue Fecal Microbiota Transplantation in Animals)
Show Figures

Figure 1

17 pages, 2540 KB  
Article
Genomic Regions and Candidate Genes Affecting Response to Heat Stress with Newcastle Virus Infection in Commercial Layer Chicks Using Chicken 600K Single Nucleotide Polymorphism Array
by Ying Wang, Perot Saelao, Ganrea Chanthavixay, Rodrigo A. Gallardo, Anna Wolc, Janet E. Fulton, Jack M. Dekkers, Susan J. Lamont, Terra R. Kelly and Huaijun Zhou
Int. J. Mol. Sci. 2024, 25(5), 2640; https://doi.org/10.3390/ijms25052640 - 24 Feb 2024
Cited by 5 | Viewed by 2546
Abstract
Heat stress results in significant economic losses to the poultry industry. Genetics plays an important role in chickens adapting to the warm environment. Physiological parameters such as hematochemical parameters change in response to heat stress in chickens. To explore the genetics of heat [...] Read more.
Heat stress results in significant economic losses to the poultry industry. Genetics plays an important role in chickens adapting to the warm environment. Physiological parameters such as hematochemical parameters change in response to heat stress in chickens. To explore the genetics of heat stress resilience in chickens, a genome-wide association study (GWAS) was conducted using Hy-Line Brown layer chicks subjected to either high ambient temperature or combined high temperature and Newcastle disease virus infection. Hematochemical parameters were measured during three treatment phases: acute heat stress, chronic heat stress, and chronic heat stress combined with NDV infection. Significant changes in blood parameters were recorded for 11 parameters (sodium (Na+, potassium (K+), ionized calcium (iCa2+), glucose (Glu), pH, carbon dioxide partial pressure (PCO2), oxygen partial pressure (PO2), total carbon dioxide (TCO2), bicarbonate (HCO3), base excess (BE), and oxygen saturation (sO2)) across the three treatments. The GWAS revealed 39 significant SNPs (p < 0.05) for seven parameters, located on Gallus gallus chromosomes (GGA) 1, 3, 4, 6, 11, and 12. The significant genomic regions were further investigated to examine if the genes within the regions were associated with the corresponding traits under heat stress. A candidate gene list including genes in the identified genomic regions that were also differentially expressed in chicken tissues under heat stress was generated. Understanding the correlation between genetic variants and resilience to heat stress is an important step towards improving heat tolerance in poultry. Full article
(This article belongs to the Special Issue Gene Regulation in Endocrine Disease)
Show Figures

Figure 1

13 pages, 2409 KB  
Article
Differing Expression and Potential Immunological Role of C-Type Lectin Receptors of Two Different Chicken Breeds against Low Pathogenic H9N2 Avian Influenza Virus
by Sungsu Youk, Dong-Hun Lee and Chang-Seon Song
Pathogens 2024, 13(1), 95; https://doi.org/10.3390/pathogens13010095 - 22 Jan 2024
Cited by 2 | Viewed by 2352
Abstract
Diverse immune responses in different chicken lines can result in varying clinical consequences following avian influenza virus (AIV) infection. We compared two widely used layer breeds, Lohmann Brown (LB) and Lohmann White (LW), to examine virus replication and immune responses against H9N2 AIV [...] Read more.
Diverse immune responses in different chicken lines can result in varying clinical consequences following avian influenza virus (AIV) infection. We compared two widely used layer breeds, Lohmann Brown (LB) and Lohmann White (LW), to examine virus replication and immune responses against H9N2 AIV infection. The transcription profile in the spleen of H9N2-infected chickens was compared using a microarray. Confirmatory real-time RT-PCR was used to measure the expression of C-type lectin, OASL, and MX1 genes. Additionally, to investigate the role of chicken lectin receptors in vitro, two C-type lectin receptors (CLRs) were expressed in DF-1 cells, and the early growth of the H9N2 virus was evaluated. The LB chickens shed a lower amount of virus from the cloaca compared with the LW chickens. Different expression levels of C-type lectin-like genes were observed in the transcription profile, with no significant differences in OASL or MX gene expression. Real-time RT-PCR indicated a sharp decrease in C-type lectin levels in the spleen of H9N2-infected LW chickens. In vitro studies demonstrated that cells overexpressing CLR exhibited lower virus replication, while silencing of homeostatic CLR had no effect on AIV replication. This study demonstrated distinct immune responses to H9N2 avian influenza in LB and LW chickens, particularly with differences in C-type lectin expression, potentially leading to lower virus shedding in LB chickens. Full article
(This article belongs to the Special Issue Pathogenesis, Epidemiology, and Control of Animal Influenza Viruses)
Show Figures

Figure 1

12 pages, 2499 KB  
Article
Aureimonas altamirensis: First Isolation from a Chicken Slaughterhouse in Italy Followed by Genotype and Phenotype Evaluations
by Davide Buzzanca, Elisabetta Chiarini, Ilaria Mania, Francesco Chiesa and Valentina Alessandria
Microbiol. Res. 2023, 14(3), 1319-1330; https://doi.org/10.3390/microbiolres14030089 - 12 Sep 2023
Cited by 3 | Viewed by 2798
Abstract
The presence of foodborne pathogens in meat is linked to several contamination sources, and the slaughterhouse environment represents a relevant reservoir of contamination. Aureimonas altamirensis is a Gram-negative bacteria associated with different isolation sources, including human clinical cases. This study aims to identify [...] Read more.
The presence of foodborne pathogens in meat is linked to several contamination sources, and the slaughterhouse environment represents a relevant reservoir of contamination. Aureimonas altamirensis is a Gram-negative bacteria associated with different isolation sources, including human clinical cases. This study aims to identify and characterize an A. altamirensis isolate from chicken guts collected in an Italian slaughterhouse. The study approach includes whole-genome analysis jointly with phenotypical tests. Whole-genome sequencing (WGS) confirms the initial MALDI-TOF MS identification, finding putative virulence and biofilm-related genes. Moreover, the gene class evaluation reveals that the numerically largest gene category in the A. altamirensis genome is related to amino acid metabolism and transport. The analyses performed on a human gut mucus-producing cell line (HT29-MTX-E12) demonstrated the ability of A. altamirensis to colonize the host cell layer. Moreover, the antibiotic resistance test showed a high resistance of A. altamirensis to gentamicin (MIC 0.5 mg/L). The detection of a potential pathogenic and antibiotic-resistant A. altamirensis strain isolated from a slaughterhouse underlines the necessity of active surveillance studies focused on this species and the need for further studies about A. altamirensis in foods. Full article
Show Figures

Figure 1

13 pages, 2589 KB  
Article
The Effects of 1-Deoxynojirimycin from Mulberry on Oxidative Stress and Inflammation in Laying Hens and the Direct Effects on Intestine Epithelium Cells In Vitro
by Mingzhu Wang, Yuan Feng, Tao Li, Chengfeng Zhao, Adileidys Ruiz Barcenas, Boris Ramos Serrano, Liang Qu, Manman Shen and Weiguo Zhao
Animals 2023, 13(18), 2830; https://doi.org/10.3390/ani13182830 - 6 Sep 2023
Cited by 9 | Viewed by 2377
Abstract
The intestine is highly vulnerable to various factors and has been proposed as a promising determinant for poultry health. Phytogenic or plant-derived feed additives can be used to help improve intestinal health. In this study, we aimed to investigate the effects of DNJ [...] Read more.
The intestine is highly vulnerable to various factors and has been proposed as a promising determinant for poultry health. Phytogenic or plant-derived feed additives can be used to help improve intestinal health. In this study, we aimed to investigate the effects of DNJ on the antioxidative parameters, including malondialdehyde (MDA), total superoxide dismutase (T-SOD), catalase (CAT), glutathione peroxidase (GSH-Px), and inflammatory cytokines (IL-6, IL-1β, and TNF-α), in plasma and intestinal tissues using layers supplemented with or without the DNJ extract of mulberry leaves (DNJ-E) via the ELISA method. A total of 192 healthy Hy-Line Brown layers, aged 47 weeks old, were used to conduct a 56-day study. All hens were randomly separated into four groups as follows: a basal diet containing 0 mg/kg DNJ-E(CON), 50 mg/kg, 100 mg/kg, and 150 mg/kg DNJ-E. Furthermore, the potential mechanism by which DNJ influences intestinal function was also investigated in in vitro cultured intestinal epithelium cells (IEC) with quantification methods including the use of a cell counting kit-8 (CCK8), ELISA, qRT-PCR, and ROS detection. The results showed that CAT in plasma significantly increased following 50 mg/kg DNJ-E supplementation. Moreover, 50 mg/kg DNJ-E supplementation was associated with increases in T-SOD in the jejunum and ileum. However, there was no significant difference in inflammatory cytokines between groups in in vivo experiments. Subsequent in vitro IEC studies revealed that cell viability increased significantly following 5 µM and 10 µM DNJ treatments while decreasing significantly following 20 µM DNJ treatment. Antioxidative parameters improved at 5 µM and 10 µM DNJ concentrations. However, there were no ameliorative effects on antioxidant parameters observed under 20 µM DNJ treatment. The expression levels of Nrf2 mRNA increased significantly under DNJ treatment. DNJ treatment was associated with significant changes in the expression of genes of inflammatory cytokines. In conclusion, our study revealed that DNJ could improve oxidative stress and inflammation responses in the chicken intestine. These findings provide a theoretical reference for the development of functional feed additives that regulate intestinal health and lay the foundation for systematically revealing the mechanism of DNJ. Full article
(This article belongs to the Section Animal Nutrition)
Show Figures

Figure 1

9 pages, 1808 KB  
Case Report
Histopathological Findings and Metagenomic Analysis of Esophageal Papillary Proliferation Identified in Laying Broiler Breeders
by Si-Hyeon Kim, Hye-Soon Song, Chung-Hyun Kim, Yong-Kuk Kwon, Choi-Kyu Park and Hye-Ryoung Kim
Vet. Sci. 2022, 9(7), 332; https://doi.org/10.3390/vetsci9070332 - 30 Jun 2022
Cited by 10 | Viewed by 2896
Abstract
White or pale-yellow nodules 2–7 mm in length were observed in the esophageal lumen in a number of laying broiler breeders with reduced laying rates. Metaplasia of the mucosal epithelial layer and mucous gland, as well as lymphocyte infiltration under the esophageal mucous [...] Read more.
White or pale-yellow nodules 2–7 mm in length were observed in the esophageal lumen in a number of laying broiler breeders with reduced laying rates. Metaplasia of the mucosal epithelial layer and mucous gland, as well as lymphocyte infiltration under the esophageal mucous gland and epithelial cell layer, were observed, which we found were caused by vitamin A deficiency. In one chicken, however, the stratified squamous epithelial cells of the esophagus were completely replaced by increased numbers of ducts/ductules, lymphocytes, and connective tissue, resulting in a papillary morphology. The ducts were surrounded by a fibrous stroma. Multiple hyperplasia of the esophageal gland was also observed and the esophageal glands were lined by a single layer of columnar cells, and a large number of lymphocytes were infiltrated into the submucosal layer. Based on the gross findings, this papillary proliferation was considered papilloma, but histopathologically, a mass composed of squamous epithelium was not observed. Therefore, the papillary lesion appeared as adenoma with squamous metaplasia of the esophageal gland and ectasia, or mucosal epithelial papillary hyperplasia, associated with chronic esophagitis. A metagenomic analysis of the esophagus samples from this chicken was performed to determine the infectious etiology. No viral cause was identified; however, a contributing role of Bradyrhizobium sp. could not be excluded. In this study, we report the first histopathological examination of a rare case of esophageal papillary proliferation in a chicken and highlight the importance of histopathological results for a definitive diagnosis of such cases. Full article
Show Figures

Figure 1

17 pages, 3040 KB  
Article
Comparison of Selection Signatures between Korean Native and Commercial Chickens Using 600K SNP Array Data
by Sunghyun Cho, Prabuddha Manjula, Minjun Kim, Eunjin Cho, Dooho Lee, Seung Hwan Lee, Jun Heon Lee and Dongwon Seo
Genes 2021, 12(6), 824; https://doi.org/10.3390/genes12060824 - 27 May 2021
Cited by 9 | Viewed by 4306
Abstract
Korean native chickens (KNCs) comprise an indigenous chicken breed of South Korea that was restored through a government project in the 1990s. The KNC population has not been developed well and has mostly been used to maintain purebred populations in the government research [...] Read more.
Korean native chickens (KNCs) comprise an indigenous chicken breed of South Korea that was restored through a government project in the 1990s. The KNC population has not been developed well and has mostly been used to maintain purebred populations in the government research institution. We investigated the genetic features of the KNC population in a selection signal study for the efficient improvement of this breed. We used 600K single nucleotide polymorphism data sampled from 191 KNCs (NG, 38; NL, 29; NR, 52; NW, 39; and NY, 33) and 54 commercial chickens (Hy-line Brown, 10; Lohmann Brown, 10; Arbor Acres, 10; Cobb, 12; and Ross, 12). Haplotype phasing was performed using EAGLE software as the initial step for the primary data analysis. Pre-processed data were analyzed to detect selection signals using the ‘rehh’ package in R software. A few common signatures of selection were identified in KNCs. Most quantitative trait locus regions identified as candidate regions were associated with traits related to reproductive organs, eggshell characteristics, immunity, and organ development. Block patterns with high linkage disequilibrium values were observed for LPP, IGF11, LMNB2, ERBB4, GABRB2, NTM, APOO, PLOA1, CNTN1, NTSR1, DEF3, CELF1, and MEF2D genes, among regions with confirmed selection signals. NL and NW lines contained a considerable number of selective sweep regions related to broilers and layers, respectively. We recommend focusing on improving the egg and meat traits of KNC NL and NW lines, respectively, while improving multiple traits for the other lines. Full article
(This article belongs to the Special Issue Poultry Genetics, Breeding and Biotechnology)
Show Figures

Figure 1

18 pages, 3691 KB  
Article
Identification of Target Chicken Populations by Machine Learning Models Using the Minimum Number of SNPs
by Dongwon Seo, Sunghyun Cho, Prabuddha Manjula, Nuri Choi, Young-Kuk Kim, Yeong Jun Koh, Seung Hwan Lee, Hyung-Yong Kim and Jun Heon Lee
Animals 2021, 11(1), 241; https://doi.org/10.3390/ani11010241 - 19 Jan 2021
Cited by 23 | Viewed by 5247
Abstract
A marker combination capable of classifying a specific chicken population could improve commercial value by increasing consumer confidence with respect to the origin of the population. This would facilitate the protection of native genetic resources in the market of each country. In this [...] Read more.
A marker combination capable of classifying a specific chicken population could improve commercial value by increasing consumer confidence with respect to the origin of the population. This would facilitate the protection of native genetic resources in the market of each country. In this study, a total of 283 samples from 20 lines, which consisted of Korean native chickens, commercial native chickens, and commercial broilers with a layer population, were analyzed to determine the optimal marker combination comprising the minimum number of markers, using a 600 k high-density single nucleotide polymorphism (SNP) array. Machine learning algorithms, a genome-wide association study (GWAS), linkage disequilibrium (LD) analysis, and principal component analysis (PCA) were used to distinguish a target (case) group for comparison with control chicken groups. In the processing of marker selection, a total of 47,303 SNPs were used for classifying chicken populations; 96 LD-pruned SNPs (50 SNPs per LD block) served as the best marker combination for target chicken classification. Moreover, 36, 44, and 8 SNPs were selected as the minimum numbers of markers by the AdaBoost (AB), Random Forest (RF), and Decision Tree (DT) machine learning classification models, which had accuracy rates of 99.6%, 98.0%, and 97.9%, respectively. The selected marker combinations increased the genetic distance and fixation index (Fst) values between the case and control groups, and they reduced the number of genetic components required, confirming that efficient classification of the groups was possible by using a small number of marker sets. In a verification study including additional chicken breeds and samples (12 lines and 182 samples), the accuracy did not significantly change, and the target chicken group could be clearly distinguished from the other populations. The GWAS, PCA, and machine learning algorithms used in this study can be applied efficiently, to determine the optimal marker combination with the minimum number of markers that can distinguish the target population among a large number of SNP markers. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

15 pages, 710 KB  
Review
Radical Response: Effects of Heat Stress-Induced Oxidative Stress on Lipid Metabolism in the Avian Liver
by Nima K. Emami, Usuk Jung, Brynn Voy and Sami Dridi
Antioxidants 2021, 10(1), 35; https://doi.org/10.3390/antiox10010035 - 30 Dec 2020
Cited by 193 | Viewed by 12276
Abstract
Lipid metabolism in avian species places unique demands on the liver in comparison to most mammals. The avian liver synthesizes the vast majority of fatty acids that provide energy and support cell membrane synthesis throughout the bird. Egg production intensifies demands to the [...] Read more.
Lipid metabolism in avian species places unique demands on the liver in comparison to most mammals. The avian liver synthesizes the vast majority of fatty acids that provide energy and support cell membrane synthesis throughout the bird. Egg production intensifies demands to the liver as hepatic lipids are needed to create the yolk. The enzymatic reactions that underlie de novo lipogenesis are energetically demanding and require a precise balance of vitamins and cofactors to proceed efficiently. External stressors such as overnutrition or nutrient deficiency can disrupt this balance and compromise the liver’s ability to support metabolic needs. Heat stress is an increasingly prevalent environmental factor that impairs lipid metabolism in the avian liver. The effects of heat stress-induced oxidative stress on hepatic lipid metabolism are of particular concern in modern commercial chickens due to the threat to global poultry production. Chickens are highly vulnerable to heat stress because of their limited capacity to dissipate heat, high metabolic activity, high internal body temperature, and narrow zone of thermal tolerance. Modern lines of both broiler (meat-type) and layer (egg-type) chickens are especially sensitive to heat stress because of the high rates of mitochondrial metabolism. While this oxidative metabolism supports growth and egg production, it also yields oxidative stress that can damage mitochondria, cellular membranes and proteins, making the birds more vulnerable to other stressors in the environment. Studies to date indicate that oxidative and heat stress interact to disrupt hepatic lipid metabolism and compromise performance and well-being in both broilers and layers. The purpose of this review is to summarize the impact of heat stress-induced oxidative stress on lipid metabolism in the avian liver. Recent advances that shed light on molecular mechanisms and potential nutritional/managerial strategies to counteract the negative effects of heat stress-induced oxidative stress to the avian liver are also integrated. Full article
(This article belongs to the Special Issue Oxidative Stress in Liver Diseases)
Show Figures

Figure 1

5 pages, 555 KB  
Correction
Correction: Jansen, S., et al. Relationship between Bone Stability and Egg Production in Genetically Divergent Chicken Layer Lines. Animals 2020, 10, 850
by Simon Jansen, Ulrich Baulain, Christin Habig, Annett Weigend, Ingrid Halle, Armin Manfred Scholz, Henner Simianer, Ahmad Reza Sharifi and Steffen Weigend
Animals 2020, 10(12), 2355; https://doi.org/10.3390/ani10122355 - 9 Dec 2020
Cited by 1 | Viewed by 1689
Abstract
The authors wish to make the following corrections to this paper [...] Full article
(This article belongs to the Section Poultry)
Show Figures

Figure 1

Back to TopTop