Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (74)

Search Parameters:
Keywords = layer division multiplexing

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 4739 KiB  
Article
Secured Audio Framework Based on Chaotic-Steganography Algorithm for Internet of Things Systems
by Mai Helmy and Hanaa Torkey
Computers 2025, 14(6), 207; https://doi.org/10.3390/computers14060207 - 26 May 2025
Viewed by 391
Abstract
The exponential growth of interconnected devices in the Internet of Things (IoT) has raised significant concerns about data security, especially when transmitting sensitive information over wireless channels. Traditional encryption techniques often fail to meet the energy and processing constraints of resource-limited IoT devices. [...] Read more.
The exponential growth of interconnected devices in the Internet of Things (IoT) has raised significant concerns about data security, especially when transmitting sensitive information over wireless channels. Traditional encryption techniques often fail to meet the energy and processing constraints of resource-limited IoT devices. This paper proposes a novel hybrid security framework that integrates chaotic encryption and steganography to enhance confidentiality, integrity, and resilience in audio communication. Chaotic systems generate unpredictable keys for strong encryption, while steganography conceals the existence of sensitive data within audio signals, adding a covert layer of protection. The proposed approach is evaluated within an Orthogonal Frequency Division Multiplexing (OFDM)-based wireless communication system, widely recognized for its robustness against interference and channel impairments. By combining secure encryption with a practical transmission scheme, this work demonstrates the effectiveness of the proposed hybrid method in realistic IoT environments, achieving high performance in terms of signal integrity, security, and resistance to noise. Simulation results indicate that the OFDM system incorporating chaotic algorithm modes alongside steganography outperforms the chaotic algorithm alone, particularly at higher Eb/No values. Notably, with DCT-OFDM, the chaotic-CFB based on steganography algorithm achieves a performance gain of approximately 30 dB compared to FFT-OFDM and DWT-based systems at Eb/No = 8 dB. These findings suggest that steganography plays a crucial role in enhancing secure transmission, offering greater signal deviation, reduced correlation, a more uniform histogram, and increased resistance to noise, especially in high BER scenarios. This highlights the potential of hybrid cryptographic-steganographic methods in safeguarding sensitive audio information within IoT networks and provides a foundation for future advancements in secure IoT communication systems. Full article
(This article belongs to the Special Issue Edge and Fog Computing for Internet of Things Systems (2nd Edition))
Show Figures

Figure 1

17 pages, 5879 KiB  
Article
Modeling and Performance Analysis of MDM−WDM FSO Link Using DP-QPSK Modulation Under Real Weather Conditions
by Tanmeet Kaur, Sanmukh Kaur and Muhammad Ijaz
Telecom 2025, 6(2), 29; https://doi.org/10.3390/telecom6020029 - 22 Apr 2025
Viewed by 624
Abstract
Free space optics (FSOs) is an emerging technology offering solutions for secure and high data rate transmission in dense urban areas, back haul link in telecommunication networks, and last mile access applications. It is important to investigate the performance of the FSO link [...] Read more.
Free space optics (FSOs) is an emerging technology offering solutions for secure and high data rate transmission in dense urban areas, back haul link in telecommunication networks, and last mile access applications. It is important to investigate the performance of the FSO link as a result of aggregate attenuation caused by different weather conditions in a region. In the present work, empirical models have been derived in terms of visibility, considering fog, haze, and cloud conditions of diverse geographical regions of Delhi, Washington, London, and Cape Town. Mean square error (MSE) and goodness of fit (R squared) have been employed as measures for estimating model performance. The dual polarization-quadrature phase shift keying (DP-QPSK) modulation technique has been employed with hybrid mode and the wave division multiplexing (MDM-WDM) scheme for analyzing the performance of the FSO link with two Laguerre Gaussian modes (LG00 and LG 01) at 5 different wavelengths from 1550 nm to 1554 nm. The performance of the system has been analyzed in terms of received power and signal to noise ratio with respect to the transmission range of the link. Minimum received power and SNR values of −52 dBm and −33 dB have been obtained over the observed transmission range as a result of multiple impairments. Random forest (RF), k-nearest neighbors (KNN), multi-layer perceptron (MLP), gradient boosting (GB), and machine learning (ML) techniques have also been employed for estimating the SNR of the received signal. The maximum R squared (0.99) and minimum MSE (0.11), MAE (0.25), and RMSE (0.33) values have been reported in the case of the GB model, compared to other ML techniques, resulting in the best fit model. Full article
Show Figures

Figure 1

16 pages, 927 KiB  
Article
Cross-Layer Stream Allocation of mMIMO-OFDM Hybrid Beamforming Video Communications
by You-Ting Chen, Shu-Ming Tseng, Yung-Fang Chen and Chao Fang
Sensors 2025, 25(8), 2554; https://doi.org/10.3390/s25082554 - 17 Apr 2025
Viewed by 362
Abstract
This paper proposes a source encoding rate control and cross-layer data stream allocation scheme for uplink millimeter-wave (mmWave) multi-user massive MIMO (MU-mMIMO) orthogonal frequency division multiplexing (OFDM) hybrid beamforming video communication systems. Unlike most previous studies that focus on the downlink scenario, our [...] Read more.
This paper proposes a source encoding rate control and cross-layer data stream allocation scheme for uplink millimeter-wave (mmWave) multi-user massive MIMO (MU-mMIMO) orthogonal frequency division multiplexing (OFDM) hybrid beamforming video communication systems. Unlike most previous studies that focus on the downlink scenario, our proposed scheme optimizes the uplink transmission while also addressing the limitation of prior works that only consider single-data-stream users. A key distinction of our approach is the integration of cross-layer resource allocation, which jointly considers both the physical layer channel state information (CSI) and the application layer video rate-distortion (RD) function. While traditional methods optimize for spectral efficiency (SE), our proposed method directly maximizes the peak signal-to-noise ratio (PSNR) to enhance video quality, aligning with the growing demand for high-quality video communication. We introduce a novel iterative cross-layer dynamic data stream allocation scheme, where the initial allocation is based on conventional physical-layer data stream allocation, followed by iterative refinement. Through multiple iterations, users with lower PSNR can dynamically contend for data streams, leading to a more balanced and optimized resource allocation. Our approach is a general framework that can incorporate any existing physical-layer data stream allocation as an initialization step before iteration. Simulation results demonstrate that the proposed cross-layer scheme outperforms three conventional physical-layer schemes by 0.4 to 1.14 dB in PSNR for 4–6 users, at the cost of a 1.8 to 2.3× increase in computational complexity (requiring 3.6–5.8 iterations). Full article
Show Figures

Figure 1

18 pages, 8118 KiB  
Article
Asymmetric Modulation Physical-Layer Network Coding Based on Power Allocation and Multiple Receive Antennas in an OFDM-UWOC Three-User Relay Network
by Yanlong Li, Pengcheng Jiang, Shuaixing Li, Xiao Chen, Qihao He and Tuyang Wang
Photonics 2025, 12(2), 144; https://doi.org/10.3390/photonics12020144 - 10 Feb 2025
Viewed by 666
Abstract
In relay-assisted underwater wireless optical communication (UWOC) systems, the traditional time-division-multiplexed relay forwarding strategy faces high latency and low throughput with the increase of relay users. To address these issues, this paper proposes a multiple receiving antenna power allocation-based bit splicing physical layer [...] Read more.
In relay-assisted underwater wireless optical communication (UWOC) systems, the traditional time-division-multiplexed relay forwarding strategy faces high latency and low throughput with the increase of relay users. To address these issues, this paper proposes a multiple receiving antenna power allocation-based bit splicing physical layer network coding (MRA-PABS-PNC) method in a three-user asymmetric modulated relay-assisted UWOC scenario. MRA-PABS-PNC reduces the number of multiple access time slots by using multi-antenna reception techniques. At the same time, it employs a bit-splicing method to concatenate the data that would normally be transmitted over two-time slots into a longer data stream transmitted in a single time slot, thus reducing the number of broadcast time slots and ultimately improving throughput. Moreover, this paper models and determines the optimal position and angle of the relay node photodetector. Once the relay node is positioned at the optimal location and angle, the system can allocate power to each user node based on the channel state information to overcome the effect of asymmetric channels on PNC coding, thereby further improving system performance. Simulation results show that the method improves the throughput by 100% compared with the existing four-time slot PNC (FT-PNC) method. Full article
Show Figures

Figure 1

14 pages, 947 KiB  
Article
Simulation Framework for Detection and Localization in Integrated Sensing and Communication Systems
by Andrea Ramos, Saúl Inca, Mireia Ferrer, Daniel Calabuig, Sandra Roger and Jose F. Monserrat
Telecom 2025, 6(1), 4; https://doi.org/10.3390/telecom6010004 - 8 Jan 2025
Viewed by 1051
Abstract
Integrated Sensing and Communication (ISAC) systems have emerged as a key component for Sixth Generation (6G) networks, enhancing resource efficiency and enabling diverse applications. Currently, ISAC systems have been recognized as a leading trend for future standardization, i.e., International Mobile Telecommunications (IMT)-2030. As [...] Read more.
Integrated Sensing and Communication (ISAC) systems have emerged as a key component for Sixth Generation (6G) networks, enhancing resource efficiency and enabling diverse applications. Currently, ISAC systems have been recognized as a leading trend for future standardization, i.e., International Mobile Telecommunications (IMT)-2030. As in the previous IMT-2020 standardization, the emphasis has been on developing a methodology for assessing network conditions, with one of the crucial approaches incorporating system-level simulations. However, within this framework, there has been a notable absence of proposed abstractions for the physical layer of ISAC systems, which are valuable for system-level simulators. The physical abstraction process helps reduce computational simulation costs, enabling efficient and rapid evaluation of system conditions. Therefore, this paper aims to fill this gap by outlining the key aspects and metrics recommended for a physical layer abstraction in sensing applications within ISAC frameworks. Applying physical abstraction in the context of target localization and detection algorithms may enable an initial understanding and evaluation of ISAC system performance. These algorithms are proposed as an example of simulating the sensing functionalities to be abstracted, which are based on a stochastic geometric channel model. Orthogonal Frequency Division Multiplexing (OFDM) symbols play a crucial role in target position estimation. The findings show that doubling OFDM symbols improves the detection probability by 3 dB in terms of Signal to Noise Ratio (SNR). Finally, the proposed Physical Layer Abstraction (PLA) method produces performance metrics as figures and lookup tables tailored for system-level simulators. Full article
(This article belongs to the Special Issue Advances in Wireless Communication: Applications and Developments)
Show Figures

Figure 1

8 pages, 1811 KiB  
Article
Physical Layer Encryption for CO-OFDM Systems Enabled by Camera Projection Scrambler
by Yujin Li, Dongfei Wang, Haiyang Ding, Zhenzhen Li and Xiangqing Wang
Mathematics 2024, 12(12), 1807; https://doi.org/10.3390/math12121807 - 11 Jun 2024
Viewed by 1265
Abstract
In this paper, we propose a camera projection approach to enhance the physical layer security of coherent optical orthogonal frequency division multiplexing (CO-OFDM) systems. The data are converted to the new location by the camera projection module in the encryption system, where the [...] Read more.
In this paper, we propose a camera projection approach to enhance the physical layer security of coherent optical orthogonal frequency division multiplexing (CO-OFDM) systems. The data are converted to the new location by the camera projection module in the encryption system, where the 5D hyperchaotic system provides the keys for the camera projection module. The simulated 16QAM CO-OFDM security system over 80 km SSMF is shown to provide a key space of about 9 × 1090 through the five-dimensional (5D) hyperchaotic system, making it impossible for eavesdroppers to obtain valid information, and the peak-to-average power ratio (PAPR) is reduced by about 0.8 dB. Full article
(This article belongs to the Special Issue Chaos-Based Secure Communication and Cryptography, 2nd Edition)
Show Figures

Figure 1

21 pages, 1684 KiB  
Article
A State-Interactive MAC Layer TDMA Protocol Based on Smart Antennas
by Donghui Li, Jin Nakazato and Manabu Tsukada
Electronics 2024, 13(11), 2037; https://doi.org/10.3390/electronics13112037 - 23 May 2024
Cited by 1 | Viewed by 1555
Abstract
Mobile ad hoc networks are self-organizing networks that do not rely on fixed infrastructure. Smart antennas employ advanced beamforming technology, enabling ultra-long-range directional transmission in wireless networks, which leads to lower power consumption and better utilization of spatial resources. The media access control [...] Read more.
Mobile ad hoc networks are self-organizing networks that do not rely on fixed infrastructure. Smart antennas employ advanced beamforming technology, enabling ultra-long-range directional transmission in wireless networks, which leads to lower power consumption and better utilization of spatial resources. The media access control (MAC) protocol design using smart antennas can lead to efficient usage of channel resources. However, during ultra-long-distance transmissions, there may be significant transport delays. In addition, when using the time division multiple access (TDMA) schemes, it can be difficult to manage conflicts arising from adjacent time slot advancement caused by latency compensation in ultra-long-range propagation. Directional transmission and reception can also cause interference between links that reuse the same time slot. This paper proposes a new distributed dynamic TDMA protocol called State Interaction-based Slot Allocation Protocol (SISAP) to address these issues. This protocol is based on slot states and includes TDMA frame structure, slot allocation process, interference self-avoidance strategy, and slot allocation algorithms. According to the simulation results, the MAC layer design scheme suggested in this paper can achieve ultra-long-distance transmission without conflicts. Additionally, it can reduce the interference between links while space multiplexing. Furthermore, the system exhibits remarkable performance in various network aspects, such as throughput and link delay. Full article
(This article belongs to the Special Issue Recent Advances in Wireless Ad Hoc and Sensor Networks)
Show Figures

Figure 1

17 pages, 7182 KiB  
Article
Image Super Resolution-Based Channel Estimation for Orthogonal Chirp Division Multiplexing on Shallow Water Underwater Acoustic Communications
by Haoyang Liu, Chuanlin He, Yanting Yu, Yiqi Bai and Yufei Han
Sensors 2024, 24(9), 2846; https://doi.org/10.3390/s24092846 - 29 Apr 2024
Viewed by 1415
Abstract
Orthogonal chirp division multiplexing (OCDM) offers a promising modulation technology for shallow water underwater acoustic (UWA) communication systems due to multipath fading resistance and Doppler resistance. To handle the various channel distortions and interferences, obtaining accurate channel state information is vital for robust [...] Read more.
Orthogonal chirp division multiplexing (OCDM) offers a promising modulation technology for shallow water underwater acoustic (UWA) communication systems due to multipath fading resistance and Doppler resistance. To handle the various channel distortions and interferences, obtaining accurate channel state information is vital for robust and efficient shallow water UWA communication. In recent years, deep learning has attracted widespread attention in the communication field, providing a new way to improve the performance of physical layer communication systems. In this paper, the pilot-based channel estimation is transformed into a matrix completion problem, which is mathematically equivalent to the image super-resolution problem arising in the field of image processing. Simulation results show that the deep learning-based method can improve the channel distortion, outperforming the equalization performed by traditional estimator, the performance of Bit Error Rate is improved by 2.5 dB compared to the MMSE method in OCDM system. At the 7.5 to 20 dB region, it achieves better bit error rate performance than OFDM systems, and the bit error rate is reduced by approximately 53% compared to OFDM when the SNR value is 20, which is very useful in shallow water UWA channels with multipath extension and severe time-varying characteristics. Full article
(This article belongs to the Special Issue Underwater Wireless Communications)
Show Figures

Figure 1

17 pages, 404 KiB  
Article
Efficient and Low-Complex Signal Detection with Iterative Feedback in Wireless MIMO-OFDM Systems
by Ying Chen, Yue Tang, Bin Jiang, Yinan Zhao, Jianrong Bao and Xianghong Tang
Sensors 2023, 23(24), 9798; https://doi.org/10.3390/s23249798 - 13 Dec 2023
Cited by 3 | Viewed by 1373
Abstract
To solve error propagation and exorbitant computational complexity of signal detection in wireless multiple-input multiple-output-orthogonal frequency division multiplexing (MIMO-OFDM) systems, a low-complex and efficient signal detection with iterative feedback is proposed via a constellation point feedback optimization of minimum mean square error-ordered successive [...] Read more.
To solve error propagation and exorbitant computational complexity of signal detection in wireless multiple-input multiple-output-orthogonal frequency division multiplexing (MIMO-OFDM) systems, a low-complex and efficient signal detection with iterative feedback is proposed via a constellation point feedback optimization of minimum mean square error-ordered successive interference cancellation (MMSE-OSIC) to approach the optimal detection. The candidate vectors are formed by selecting the candidate constellation points. Additionally, the vector most approaching received signals is chosen by the maximum likelihood (ML) criterion in formed candidate vectors to reduce the error propagation by previous erroneous decision, thus improving the detection performance. Under a large number of matrix inversion operations in the above iterative MMSE process, effective and fast signal detection is hard to be achieved. Then, a symmetric successive relaxation iterative algorithm is proposed to avoid the complex matrix inversion calculation process. The relaxation factor and initial iteration value are reasonably configured with low computational complexity to achieve good detection close to that of the MMSE with fewer iterations. Simultaneously, the error diffusion and complexity accumulation caused by the successive detection of the subsequent OSIC scheme are also improved. In addition, a method via a parallel coarse and fine detection deals with several layers to both reduce iterations and improve performance. Therefore, the proposed scheme significantly promotes the MIMO-OFDM performance and thus plays an irreplaceable role in the future sixth generation (6G) mobile communications and wireless sensor networks, and so on. Full article
(This article belongs to the Special Issue MIMO Technologies in Sensors and Wireless Communication Applications)
Show Figures

Figure 1

13 pages, 6986 KiB  
Communication
Integrated Broadband Filter with Sharp Transition Edges Based on SiN and SiON Composite Waveguide Coupler
by Xiao Ma, Qiongchan Shao, Jiamei Gu, Tingting Lang, Xiang Guo and Jian-Jun He
Photonics 2023, 10(11), 1285; https://doi.org/10.3390/photonics10111285 - 20 Nov 2023
Cited by 2 | Viewed by 1857
Abstract
Broadband filters with sharp transition edges are important elements in diverse applications, including Raman and fluorescence spectral analysis, wideband wavelength-division multiplexing (WDM), and multi-octave interferometry. While the multi-layer thin-film interference broadband filter has been widely applied in various free-space optical systems, its integrated [...] Read more.
Broadband filters with sharp transition edges are important elements in diverse applications, including Raman and fluorescence spectral analysis, wideband wavelength-division multiplexing (WDM), and multi-octave interferometry. While the multi-layer thin-film interference broadband filter has been widely applied in various free-space optical systems, its integrated counterpart is still far from mature, which is also highly desired for constructing chip-scale miniature optical modules. In this article, we design, fabricate, and characterize an integrated broadband filter with sharp transition edges. An adiabatic coupler based on silicon nitride (SiN) and silicon oxynitride (SiON) composite waveguide is employed here. Long-pass, short-pass, band-pass, and band-stop filters can be realized in a single design of the composite waveguide coupler for a specific wavelength range, with only a difference in the SiN taper waveguide width. Experimental results with a roll-off value of larger than 0.7 dB nm−1 and a 15 dB extinction ratio (ER) are presented. Full article
Show Figures

Figure 1

58 pages, 15358 KiB  
Article
A Vision of 6th Generation of Fixed Networks (F6G): Challenges and Proposed Directions
by Dimitris Uzunidis, Konstantinos Moschopoulos, Charalampos Papapavlou, Konstantinos Paximadis, Dan M. Marom, Moshe Nazarathy, Raul Muñoz and Ioannis Tomkos
Telecom 2023, 4(4), 758-815; https://doi.org/10.3390/telecom4040035 - 7 Nov 2023
Cited by 16 | Viewed by 3778
Abstract
Humankind has entered a new era wherein a main characteristic is the convergence of various technologies providing services and exerting a major impact upon all aspects of human activity, be it social interactions with the natural environment. Fixed networks are about to play [...] Read more.
Humankind has entered a new era wherein a main characteristic is the convergence of various technologies providing services and exerting a major impact upon all aspects of human activity, be it social interactions with the natural environment. Fixed networks are about to play a major role in this convergence, since they form, along with mobile networks, the backbone that provides access to a broad gamut of services, accessible from any point of the globe. It is for this reason that we introduce a forward-looking approach for fixed networks, particularly focused on Fixed 6th Generation (F6G) networks. First, we adopt a novel classification scheme for the main F6G services, comprising six categories. This classification is based on the key service requirements, namely latency, capacity, and connectivity. F6G networks differ from those of previous generations (F1G–F5G) in that they concurrently support multiple key requirements. We then propose concrete steps towards transforming the main elements of fixed networks, such as optical transceivers, optical switches, etc., such that they satisfy the new F6G service requirements. Our study categorizes the main networking paradigm of optical switching into two categories, namely ultra-fast and ultra-high capacity switching, tailored to different service categories. With regard to the transceiver physical layer, we propose (a) the use of all-optical processing to mitigate performance barriers of analog-to-digital and digital-to-analog converters (ADC/DAC) and (b) the exploitation of optical multi-band transmission, space division-multiplexing, and the adoption of more efficient modulation formats. Full article
Show Figures

Figure 1

45 pages, 2293 KiB  
Article
Free Space Optical Communication: An Enabling Backhaul Technology for 6G Non-Terrestrial Networks
by Mohammed Elamassie and Murat Uysal
Photonics 2023, 10(11), 1210; https://doi.org/10.3390/photonics10111210 - 30 Oct 2023
Cited by 26 | Viewed by 8611
Abstract
The deployment of non-terrestrial networks (NTNs) is envisioned to achieve global coverage for 6G and beyond. In addition to space nodes, aerial NTN nodes such as high-altitude platform stations (HAPSs) and rotary-wing unmanned aerial vehicles (UAVs) could be deployed, based on the intended [...] Read more.
The deployment of non-terrestrial networks (NTNs) is envisioned to achieve global coverage for 6G and beyond. In addition to space nodes, aerial NTN nodes such as high-altitude platform stations (HAPSs) and rotary-wing unmanned aerial vehicles (UAVs) could be deployed, based on the intended coverage and operational altitude requirements. NTN nodes have the potential to support both wireless access and backhauling. While the onboard base station provides wireless access for the end users, the backhauling link connects the airborne/space-borne base station to the core network. With its high data transmission capability comparable to fiber optics and its ability to operate in the interference-free optical spectrum, free space optical (FSO) communication is ideally suited to backhauling requirements in NTNs. In this paper, we present a comprehensive tutorial on airborne FSO backhauling. We first delve into the fundamentals of FSO signal transmission and discuss aspects such as geometrical loss, atmospheric attenuation, turbulence-induced fading, and pointing errors, all of which are critical for determining received signal levels and related link budget calculations. Then, we discuss the requirements of airborne backhaul system architectures, based on use cases. While single-layer backhaul systems are sufficient for providing coverage in rural areas, multi-layer designs are typically required to establish connectivity in urban areas, where line of sight (LoS) links are harder to maintain. We review physical layer design principles for FSO-based airborne links, discussing both intensity modulation/direct detection (IM/DD) and coherent modulation/coherent demodulation (CM/CD). Another critical design criteria for airborne backhauling is self-sustainability, which is further discussed in our paper. We conclude the paper by discussing current challenges and future research directions. In this context, we discuss reconfigurable intelligent surfaces (RIS) and spatial division multiplexing (SDM), for improved performance and an extended transmission range. We emphasize the importance of advanced handover techniques and scalability issues for practical implementation. We also highlight the growing role of artificial intelligence/machine learning (AI/ML) and their potential applications in the design and optimization of future FSO-based NTNs. Full article
(This article belongs to the Special Issue Free Space Optics-Based 6G Non-terrestrial Networks)
Show Figures

Figure 1

22 pages, 4834 KiB  
Article
Analysis on Fairness and Efficiency of the 3-PLP LDM System Using a Normalized Channel Capacity
by Ho Jae Kim, Soon-Young Kwon, JaeHwui Bae, Namho Hur and Hyoung-Nam Kim
Electronics 2023, 12(21), 4465; https://doi.org/10.3390/electronics12214465 - 30 Oct 2023
Viewed by 1366
Abstract
This article presents a novel approach to investigate efficient resource allocation in the layered division multiplexing (LDM) system, a key technology in next-generation broadcasting systems. The LDM system provides diverse services, resulting in different channel capacities for each service, unlike the conventional non-orthogonal [...] Read more.
This article presents a novel approach to investigate efficient resource allocation in the layered division multiplexing (LDM) system, a key technology in next-generation broadcasting systems. The LDM system provides diverse services, resulting in different channel capacities for each service, unlike the conventional non-orthogonal multiple access scheme that aims for equal channel capacity among users. To achieve efficient resource allocation among services, we proposed a new method that normalizes the channel capacities allocated to different services while maintaining high fairness. Our proposed method involves normalizing the channel capacities of each service and finding the point where the sum of normalized channel capacities is maximized. This point can be obtained using the Lagrange multiplier method, ensuring a high normalized fairness index. Through simulations, we confirmed that the proposed approach maintains high fairness in the LDM system and achieves the highest normalized channel capacities compared to other transmission techniques. These findings provide valuable insights into resource allocation strategies for the LDM system, enabling a fair comparison of efficiency and performance within a multi-service environment. Full article
(This article belongs to the Section Microwave and Wireless Communications)
Show Figures

Figure 1

13 pages, 2070 KiB  
Article
Physical Layer Security: Channel Sounding Results for the Multi-Antenna Wiretap Channel
by Daniel Harman, Karl Knapp, Tyler Sweat, Philip Lundrigan, Michael Rice and Willie Harrison
Entropy 2023, 25(10), 1397; https://doi.org/10.3390/e25101397 - 29 Sep 2023
Viewed by 1459
Abstract
Many physical-layer security works in the literature rely on purely theoretical work or simulated results to establish the value of physical-layer security in securing communications. We consider the secrecy capacity of a wireless Gaussian wiretap channel using channel sounding measurements to analyze the [...] Read more.
Many physical-layer security works in the literature rely on purely theoretical work or simulated results to establish the value of physical-layer security in securing communications. We consider the secrecy capacity of a wireless Gaussian wiretap channel using channel sounding measurements to analyze the potential for secure communication in a real-world scenario. A multi-input, multi-output, multi-eavesdropper (MIMOME) system is deployed using orthogonal frequency division multiplexing (OFDM) over an 802.11n wireless network. Channel state information (CSI) measurements were taken in an indoor environment to analyze time-varying scenarios and spatial variations. It is shown that secrecy capacity is highly affected by environmental changes, such as foot traffic, network congestion, and propagation characteristics of the physical environment. We also present a numerical method for calculating MIMOME secrecy capacity in general and comment on the use of OFDM with regard to calculating secrecy capacity. Full article
(This article belongs to the Special Issue Information Security and Privacy: From IoT to IoV)
Show Figures

Figure 1

26 pages, 18358 KiB  
Article
Physical Layer Authenticated Image Encryption for IoT Network Based on Biometric Chaotic Signature for MPFrFT OFDM System
by Esam A. A. Hagras, Saad Aldosary, Haitham Khaled and Tarek M. Hassan
Sensors 2023, 23(18), 7843; https://doi.org/10.3390/s23187843 - 12 Sep 2023
Cited by 7 | Viewed by 2183
Abstract
In this paper, a new physical layer authenticated encryption (PLAE) scheme based on the multi-parameter fractional Fourier transform–Orthogonal frequency division multiplexing (MP-FrFT-OFDM) is suggested for secure image transmission over the IoT network. In addition, a new robust multi-cascaded chaotic modular fractional sine map [...] Read more.
In this paper, a new physical layer authenticated encryption (PLAE) scheme based on the multi-parameter fractional Fourier transform–Orthogonal frequency division multiplexing (MP-FrFT-OFDM) is suggested for secure image transmission over the IoT network. In addition, a new robust multi-cascaded chaotic modular fractional sine map (MCC-MF sine map) is designed and analyzed. Also, a new dynamic chaotic biometric signature (DCBS) generator based on combining the biometric signature and the proposed MCC-MF sine map random chaotic sequence output is also designed. The final output of the proposed DCBS generator is used as a dynamic secret key for the MPFrFT OFDM system in which the encryption process is applied in the frequency domain. The proposed DCBS secret key generator generates a very large key space of 22200. The proposed DCBS secret keys generator can achieve the confidentiality and authentication properties. Statistical analysis, differential analysis and a key sensitivity test are performed to estimate the security strengths of the proposed DCBS-MP-FrFT-OFDM cryptosystem over the IoT network. The experimental results show that the proposed DCBS-MP-FrFT-OFDM cryptosystem is robust against common signal processing attacks and provides a high security level for image encryption application. Full article
(This article belongs to the Section Internet of Things)
Show Figures

Figure 1

Back to TopTop