Physical Layer Encryption for CO-OFDM Systems Enabled by Camera Projection Scrambler
Abstract
:1. Introduction
2. Proposed Algorithm
2.1. Camera Skewed Projection
2.2. Key Generation and Processing
3. Simulation Experiments and Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- William, S.; Djordjevic, I.B. OFDM for Optical Communications; Academic Press: Cambridge, MA, USA, 2009. [Google Scholar]
- Chandrasekhar, S.; Liu, x. Ofdm Based Superchannel Transmission Technology. J. Light. Technol. 2012, 30, 3816–3823. [Google Scholar] [CrossRef]
- Wang, D.; Tang, X.; Xi, L.; Zhang, X.; Zhang, W.; Zhang, H. A scheme to generate 16QAM-OFDM vector mm-wave signal based on a single MZM without optical filter and precoding. Opt. Commun. 2020, 475, 126227. [Google Scholar] [CrossRef]
- Agrawal, G.P. Fiber-Optic Communication Systems; John Wiley & Sons: Hoboken, NJ, USA, 2012. [Google Scholar]
- Agrell, E.; Karlsson, M.; Chraplyvy, A.R.; Richardson, D.J.; Krummrich, P.M.; Winzer, P.; Roberts, K.; Fischer, J.K.; Savory, S.J.; Eggleton, B.J.; et al. Roadmap of optical communications. J. Opt. 2016, 18, 063002. [Google Scholar] [CrossRef]
- Mitev, M.; Pham, T.M.; Chorti, A.; Barreto, A.N.; Fettweis, G. Physical layer security-from theory to practice. IEEE BITS Inf. Theory Mag. 2023, 1–12. [Google Scholar] [CrossRef]
- Zhang, G.; Zhao, Z.; Dai, J.; Yang, S.; Fu, X.; Yang, L. Polarization-Based Quantum Key Distribution Encoder and Decoder on Silicon Photonics. J. Light. Technol. 2022, 40, 2052–2059. [Google Scholar] [CrossRef]
- Su, G.; Pu, T.; Zheng, J.; Tan, Y. Performance Analysis of Multi-User Optical Steganography Transmission System Based on Filtered Amplified Spontaneous Emission Noise. IEEE Access 2019, 7, 170733–170741. [Google Scholar] [CrossRef]
- Ghafouri-Shiraz, H.; Karbassian, M.M. Optical Cdma Networks: Principles, Analysis and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2012. [Google Scholar]
- Lu, Y.; Wang, H.; Ji, Y. A Time-Delay Signature Elimination and Broadband Electro-Optic Chaotic System with Enhanced Nonlinearity by Deep Learning. Opt. Express 2022, 30, 17698–17712. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Wang, H.; Ji, Y.; Zhang, Y. Security-enhanced electro-optic chaotic communication system based on the logistic map feedback and dynamic key. J. Opt. Soc. Am. B 2023, 40, 1131–1140. [Google Scholar] [CrossRef]
- Tang, B.; Gao, X.; Su, B.; An, Y.; Wang, A.; Wang, Y.; Qin, Y.; Gao, Z. Time-delay signature concealment in a security-enhanced optical system with dual-loop electro-optic self-feedback phase encryption. IEEE Photon-J. 2023, 15, 7200508. [Google Scholar] [CrossRef]
- Bai, J.; Wang, H.; Ji, Y. Time-delay signature concealing electro-optic chaotic system with multiply feedback nonlinear loops. Opt. Express 2021, 29, 706–718. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, W.; Chen, C.; He, X.; Qiu, K. Physical-Enhanced Secure Strategy for Ofdma-Pon Using Chaos and Deoxyribonucleic Acid Encoding. J. Light. Technol. 2018, 36, 1706–1712. [Google Scholar] [CrossRef]
- Liang, X.; Zhang, C.; Luo, Y.; Wang, X.; Qiu, K. Secure Encryption and Key Management for OFDM-PON Based on Chaotic Hilbert Motion. J. Light. Technol. 2023, 41, 1619–1625. [Google Scholar] [CrossRef]
- Bai, Y.; Liu, B.; Ren, J.; Mao, Y.; Qi, Z.; Chen, S.; Song, X.; Zhu, S.; Yuan, L.; Han, S.; et al. Highly Secure and Reliable 7-Core Fiber Optical OFDM Access System Based on Chaos Encryption Inside Polar Code. IEEE Photon-J. 2022, 14, 7200506. [Google Scholar] [CrossRef]
- Tang, X.; Xu, Z.; Gao, C.; Xiao, Y.; Liu, L.; Zhang, X.; Xi, L.; Xu, H.; Bai, C. Physical layer encryption for coherent PDM system based on polarization perturbations using a digital optical polarization scrambler. Opt. Express 2023, 31, 26791–26806. [Google Scholar] [CrossRef] [PubMed]
- Weng, Z.; Ren, J.; Bo, L.; Mao, Y.; Wu, X.; Song, X.; Chen, S.; Ma, Y.; Zhao, N.; Yu, Y.; et al. A physical layer security scheme for key concealment and distribution based on carrier scrambling. Opt. Express 2024, 32, 15053–15064. [Google Scholar] [CrossRef]
- Zha, Y.; Ren, J.; Liu, B.; Mao, Y.; Wu, X.; Ullah, R.; Song, X.; Chen, S.; Ma, Y.; Wang, F.; et al. Chaos key enhanced physical layer secure transmission method based on the convolutional long short-term memory neural network. Opt. Express 2024, 32, 20515–20527. [Google Scholar] [CrossRef]
- Zhang, Y.; Jiang, N.; Zhao, A.; Liu, S.; Peng, J.; Chen, L.; Lavery, M.P.J.; Abbas, H.T.; Qiu, K. Security enhancement in coherent OFDM optical transmission with chaotic three-dimensional constellation scrambling. J. Light. Technol. 2022, 40, 3749–3760. [Google Scholar] [CrossRef]
- Liu, L.; Tang, X.; Li, F.; Xu, Z.; Zhang, X. Enhanced physical layer security and PAPR performance based on disturbance of data cluster under chaotic sequence color seeking mechanism in CO-OFDM system. J. Light. Technol. 2023, 41, 6507–6513. [Google Scholar] [CrossRef]
- Huang, X.; Zhang, L.; Hu, W.; Turkiewicz, J.P.; Leitgeb, E.; Yang, X. Secure OFDM-PON Using Chaotic Constellation Mapping and Probabilistic Shaping. IEEE Photon-Technol. Lett. 2021, 33, 1139–1142. [Google Scholar] [CrossRef]
- Zeng, W.; Zhang, C.; Liang, X.; Luo, Y.; Wang, X.; Qiu, K. Chaotic phase noise-like encryption based on geometric shaping for coherent data center interconnections. Optics Express 2024, 32, 1595–1608. [Google Scholar] [CrossRef]
- Wu, Y.; Yu, Y.; Hu, Y.; Sun, Y.; Wang, T.; Zhang, Q. Channel-based dynamic key generation for physical layer security in OFDM-PON systems. IEEE Photon-J. 2021, 13, 7900209. [Google Scholar] [CrossRef]
- Yang, Q.; Bai, M. A New 5D Hyperchaotic System Based on Modified Generalized Lorenz System. Nonlinear Dyn. 2016, 88, 189–221. [Google Scholar] [CrossRef]
- Savory, S.J. Digital coherent optical receivers: Algorithms and subsystems. IEEE J. Sel. Top. Quantum Electron. 2010, 16, 1164–1179. [Google Scholar] [CrossRef]
- Chung, H.S.; Chang, S.H.; Kim, K. Effect of IQ mismatch compensation in an optical coherent OFDM receiver. IEEE Photon-Technol. Lett. 2010, 22, 308–310. [Google Scholar] [CrossRef]
- Jansen, S.L.; Morita, I.; Schenk, T.C.W.; Takeda, N.; Tanaka, H. Coherent optical 25.8-Gb/s OFDM transmission over 4160-km SSMF. J. Light. Technol. 2008, 26, 6–15. [Google Scholar] [CrossRef]
- Li, F.; Zou, D.; Ding, L.; Sun, Y.; Li, J.; Sui, Q.; Li, L.; Yi, X.; Li, Z. 100 Gbit/s PAM4 signal transmission and reception for 2-km interconnect with adaptive notch filter for narrowband interference. Opt. Express 2018, 26, 24066–24074. [Google Scholar] [CrossRef]
- Nguyen, T.-H.; Bramerie, L.; Gay, M.; Kazdoghli-Lagha, M.; Peucheret, C.; Gerzaguet, R.; Gorza, S.P.; Louveaux, J.; Horlin, F. Experimental demonstration of the tradeoff between chromatic dispersion and phase noise compensation in optical FBMC/OQAM communication systems. J. Light. Technol. 2019, 37, 4340–4348. [Google Scholar] [CrossRef]
Schemes | Key Space |
---|---|
DNA encoding [14] | 2.25 × 1089 |
Digital optical polarization scrambling [17] | 1060 |
Key concealment and distribution based on carrier scrambling [18] | 1082 |
Chaos key enhanced based on the convolutional long short-term memory neural network [19] | 10241 |
The proposed scheme | 9 × 1090 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Wang, D.; Ding, H.; Li, Z.; Wang, X. Physical Layer Encryption for CO-OFDM Systems Enabled by Camera Projection Scrambler. Mathematics 2024, 12, 1807. https://doi.org/10.3390/math12121807
Li Y, Wang D, Ding H, Li Z, Wang X. Physical Layer Encryption for CO-OFDM Systems Enabled by Camera Projection Scrambler. Mathematics. 2024; 12(12):1807. https://doi.org/10.3390/math12121807
Chicago/Turabian StyleLi, Yujin, Dongfei Wang, Haiyang Ding, Zhenzhen Li, and Xiangqing Wang. 2024. "Physical Layer Encryption for CO-OFDM Systems Enabled by Camera Projection Scrambler" Mathematics 12, no. 12: 1807. https://doi.org/10.3390/math12121807
APA StyleLi, Y., Wang, D., Ding, H., Li, Z., & Wang, X. (2024). Physical Layer Encryption for CO-OFDM Systems Enabled by Camera Projection Scrambler. Mathematics, 12(12), 1807. https://doi.org/10.3390/math12121807