Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = late intake valve close

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 5837 KiB  
Article
Spark Ignition (SI) Engine Energy and Ecological Performance Using Natural Gas and Late Intake Valve Close (LIVC)
by Tadas Vipartas, Alfredas Rimkus, Saulius Stravinskas, Aurelijus Pitrėnas and Audrius Matulis
Appl. Sci. 2025, 15(11), 6185; https://doi.org/10.3390/app15116185 - 30 May 2025
Viewed by 568
Abstract
Natural gas stands out as a promising alternative fuel, and utilizing late intake valve close (LIVC) can further enhance its potential by improving internal combustion engine performance. The present study investigated the effect of LIVC on the performance of a Nissan Qashqai J10 [...] Read more.
Natural gas stands out as a promising alternative fuel, and utilizing late intake valve close (LIVC) can further enhance its potential by improving internal combustion engine performance. The present study investigated the effect of LIVC on the performance of a Nissan Qashqai J10 four-cylinder internal combustion ignition engine (ICE) operating on gasoline (G) and natural gas (NG), with a focus on both energy and ecological aspects at stoichiometric points. Experimental tests were performed under the usual engine operating conditions, with engine speeds of 2000 and 3000 rpm and brake mean effective pressures (BMEPs) of 0.31, 0.55, and 0.79 MPa, while the intake valve closing moment was delayed at 24°, 31°, 38°, 45°, 52°, and 59° after bottom dead center (aBDC). The software AVL BOOST™ (version R2021.2) and its utility BURN were used to calculate the rate of heat release (ROHR), mass fraction burned (MFB), in-cylinder temperature, and the rate of temperature rise. The substitution of natural gas for gasoline substantially decreases CO2 and NOx emissions while enhancing the engine’s energy efficiency. Implementing a LIVC strategy can further boost brake thermal efficiency and reduce CO2, though it negatively impacts CO, HC, and NOx emissions. Optimal performance necessitates balancing efficiency improvements and CO2 reduction against the control of other pollutants, potentially through combining LIVC with alternative engine control methodologies. Full article
(This article belongs to the Special Issue Modern Internal Combustion Engines: Design, Testing, and Application)
Show Figures

Figure 1

20 pages, 11797 KiB  
Article
Investigation of Lips-Guided-Flow Combustion Chamber and Miller Cycle to Improve the Thermal Efficiency of a Highly Intensified Diesel Engine
by Ziyu Wang, Rulou Cao, Yanfang Li, Caifeng Hao, Jinlong Liu, Yanzhao An and Renwei Ma
Sustainability 2023, 15(20), 14968; https://doi.org/10.3390/su152014968 - 17 Oct 2023
Cited by 3 | Viewed by 1508
Abstract
An investigation into the lips-guided-flow combustion chamber (LGFC) and Miller cycle was conducted on a highly intensified diesel engine under rated power conditions to improve thermal efficiency. The radius and depth of the chamber bowl and lips were optimized to intensify the guided [...] Read more.
An investigation into the lips-guided-flow combustion chamber (LGFC) and Miller cycle was conducted on a highly intensified diesel engine under rated power conditions to improve thermal efficiency. The radius and depth of the chamber bowl and lips were optimized to intensify the guided flow and fuel/air mixing. The experimental and simulated results show that the LGFC had a higher fuel/air mixture quality and quicker combustion rate, leading to a higher indicated power and higher thermal efficiency. A late intake valve closing (LIVC) Miller cycle with a higher expansion ratio of 11 and a lower compression ratio of 8.2 was used to control the energy distribution of the thermodynamic cycle and reduce the mechanical and thermal loads. The results show that the maximum combustion temperature was decreased by about 45 K and the thermal efficiency was improved by 2.1%. The research results are useful to guide the improvement in thermal efficiency through combustion chamber design and Miller cycle application for highly intensified diesel engines. Full article
(This article belongs to the Section Sustainable Transportation)
Show Figures

Figure 1

23 pages, 10250 KiB  
Article
Parametric Analysis and Optimization for Thermal Efficiency Improvement in a Turbocharged Diesel Engine with Peak Cylinder Pressure Constraints
by Linpeng Li, Bin Mao, Zongyu Yue and Zunqing Zheng
Energies 2023, 16(18), 6478; https://doi.org/10.3390/en16186478 - 7 Sep 2023
Cited by 1 | Viewed by 2916
Abstract
While the original equipment manufacturers are developing engines that can withstand higher PCP, the methodology to maximize the thermal efficiency gain with different PCP limits is still not well-known or documented in the literature. This study aims to provide guidance on how to [...] Read more.
While the original equipment manufacturers are developing engines that can withstand higher PCP, the methodology to maximize the thermal efficiency gain with different PCP limits is still not well-known or documented in the literature. This study aims to provide guidance on how to co-optimize air system parameters, compression ratio, and intake valve closing (IVC) timing of heavy-duty turbocharged diesel engines to enhance thermal efficiency with peak cylinder pressure (PCP) constraints. In this study, a one-dimensional turbocharged engine model is established and validated by experimental data. The effects of turbocharger efficiency, boost pressure, high-pressure exhaust gas recirculation (HP EGR) ratio, compression ratio (CR), and IVC timing on diesel engine efficiency are assessed under PCP constraints through parametric analysis. The results indicate that for enhancing engine thermal efficiency under limited PCP, an increment in boost pressure and CR, and late IVC timing compared to baseline is required. By multiple parameter optimization, the best parameter combination under different PCP constraints is proposed. At a PCP limit of 20 MPa, the combination of a compression ratio of 18.57, boost pressure of 298 kPa, and IVC timing of −95.2 °CA ATDC yields a 1.56% (absolute value) improvement in ITEn over the baseline condition. Raising the PCP limits from 20 MPa to 25 MPa requires increasing the compression ratio to 21.92, boost pressure to 308 kPa, and delaying the intake valve closing timing to −88.7 °CA ATDC, which results in an absolute improvement of 0.86% in ITEn. Baseline engine configuration is updated accordingly to validate the thermal efficiency improvement strategy at a 25 MPa PCP limitation. Experimental results demonstrate a 2.2% (absolute value) improvement in brake thermal efficiency and 1.98% (absolute value) improvement in overall energy efficiency. Full article
Show Figures

Figure 1

29 pages, 8170 KiB  
Article
Development of Two-Step Exhaust Rebreathing for a Low-NOx Light-Duty Gasoline Compression Ignition Engine
by Praveen Kumar, Mark Sellnau, Ashish Shah, Christopher Whitney and Rafael Sari
Energies 2022, 15(18), 6565; https://doi.org/10.3390/en15186565 - 8 Sep 2022
Cited by 7 | Viewed by 2624
Abstract
The global automotive industry is undergoing a significant transition as battery electric vehicles enter the market and diesel sales decline. It is widely recognized that internal combustion engines (ICE) will be needed for transport for years to come; however, demands on ICE fuel [...] Read more.
The global automotive industry is undergoing a significant transition as battery electric vehicles enter the market and diesel sales decline. It is widely recognized that internal combustion engines (ICE) will be needed for transport for years to come; however, demands on ICE fuel efficiency, emissions, cost, and performance are extremely challenging. Gasoline compression ignition (GCI) is one approach for achieving the demanding efficiency and emissions targets. A key technology enabler for GCI is partially-premixed, compression ignition (PPCI) combustion, which involves two high-pressure, late fuel injections during the compression stroke. Both NOx and smoke emissions are greatly reduced relative to diesel, and this reduces the aftertreatment (AT) requirements significantly. For robust low-load and cold operation, a two-step valvetrain system is used for exhaust rebreathing (RB). Exhaust rebreathing involves the reinduction of hot exhaust gases into the cylinder during a second exhaust lift event during the intake stroke to help promote autoignition. The amount of exhaust rebreathing is controlled by exhaust backpressure, created by the vanes on the variable nozzle turbine (VNT) turbocharger. Because of the higher cycle temperatures during rebreathing, exhaust HC and CO may be significantly reduced, while combustion robustness and stability also improve. Importantly, exhaust rebreathing significantly increases exhaust temperatures in order to maintain active catalysis in the AT system for ultra-low tailpipe emissions. To achieve these benefits, it is important to optimize the rebreathe valve lift profile and develop an RB ON→OFF (mode switch) strategy that is easy to implement and control, without engine torque fluctuation. In this study, an engine model was developed using GT-Suite to conduct steady-state and transient engine simulations of the rebreathing process, followed by engine tests. The investigation was conducted in four parts. In part 1, various rebreathe lift profiles were simulated. The system performance was evaluated based on in-cylinder temperature, exhaust temperature, and pumping work. The results were compared with alternative variable valve actuation (VVA) strategies such as early exhaust valve closing (EEVC), negative valve overlap (NVO), positive valve overlap (PVO). In part 2, steady-state simulations were conducted to determine an appropriate engine load range for mode switching (exhaust rebreathing ON/OFF and vice-versa). The limits for both in-cylinder temperature and exhaust gas temperature, as well as the external exhaust gas recirculation (EGR) delivery potential were set as the criteria for load selection. In part 3, transient simulations were conducted to evaluate various mode switch strategies. For RB OFF, the cooled external EGR was utilized with the goal to maintain exhaust gas dilution during mode switches for low NOx emissions. The most promising mode-switch strategies produced negligible torque fluctuation during the mode switch. Finally, in part 4, engine tests were conducted, using the developed RB valve lift profile, at various low-load operating conditions. The mode switch experiments correlated well with the simulation results. The tests demonstrated the simplicity and robustness of the exhaust rebreathing approach. A robust engine response, low CNL, high exhaust gas temperature, and low engine out emissions were achieved in the low load region. Full article
Show Figures

Figure 1

16 pages, 20577 KiB  
Article
A Theoretical Study on the Thermodynamic Cycle of Concept Engine with Miller Cycle
by Jungmo Oh, Kichol Noh and Changhee Lee
Processes 2021, 9(6), 1051; https://doi.org/10.3390/pr9061051 - 16 Jun 2021
Cited by 11 | Viewed by 6802
Abstract
The Atkinson cycle, where expansion ratio is higher than the compression ratio, is one of the methods used to improve thermal efficiency of engines. Miller improved the Atkinson cycle by controlling the intake- or exhaust-valve closing timing, a technique which is called the [...] Read more.
The Atkinson cycle, where expansion ratio is higher than the compression ratio, is one of the methods used to improve thermal efficiency of engines. Miller improved the Atkinson cycle by controlling the intake- or exhaust-valve closing timing, a technique which is called the Miller cycle. The Otto–Miller cycle can improve thermal efficiency and reduce NOx emission by reducing compression work; however, it must compensate for the compression pressure and maintain the intake air mass through an effective compression ratio or turbocharge. Hence, we performed thermodynamic cycle analysis with changes in the intake-valve closing timing for the Otto–Miller cycle and evaluated the engine performance and Miller timing through the resulting problems and solutions. When only the compression ratio was compensated, the theoretical thermal efficiency of the Otto–Miller cycle improved by approximately 18.8% compared to that of the Otto cycle. In terms of thermal efficiency, it is more advantageous to compensate only the compression ratio; however, when considering the output of the engine, it is advantageous to also compensate the boost pressure to maintain the intake air mass flow rate. Full article
(This article belongs to the Special Issue Advanced Combustion and Combustion Diagnostic Techniques)
Show Figures

Figure 1

26 pages, 13705 KiB  
Article
Development of a Variable Valve Actuation Control to Improve Diesel Oxidation Catalyst Efficiency and Emissions in a Light Duty Diesel Engine
by José R. Serrano, Francisco J. Arnau, Jaime Martín and Ángel Auñón
Energies 2020, 13(17), 4561; https://doi.org/10.3390/en13174561 - 3 Sep 2020
Cited by 11 | Viewed by 5219
Abstract
Growing interest has arisen to adopt Variable Valve Timing (VVT) technology for automotive engines due to the need to fulfill the pollutant emission regulations. Several VVT strategies, such as the exhaust re-opening and the late exhaust closing, can be used to achieve an [...] Read more.
Growing interest has arisen to adopt Variable Valve Timing (VVT) technology for automotive engines due to the need to fulfill the pollutant emission regulations. Several VVT strategies, such as the exhaust re-opening and the late exhaust closing, can be used to achieve an increment in the after-treatment upstream temperature by increasing the residual gas amount. In this study, a one-dimensional gas dynamics engine model has been used to simulate several VVT strategies and develop a control system to actuate over the valves timing in order to increase diesel oxidation catalyst efficiency and reduce the exhaust pollutant emissions. A transient operating conditions comparison, taking the Worldwide Harmonized Light-Duty Vehicles Test Cycle (WLTC) as a reference, has been done by analyzing fuel economy, HC and CO pollutant emissions levels. The results conclude that the combination of an early exhaust and a late intake valve events leads to a 20% reduction in CO emissions with a fuel penalty of 6% over the low speed stage of the WLTC, during the warm-up of the oxidation catalyst. The same set-up is able to reduce HC emissions down to 16% and NOx emission by 13%. Full article
(This article belongs to the Special Issue Modelling of Thermal and Energy Systems)
Show Figures

Figure 1

18 pages, 4952 KiB  
Article
Effects of Variable Valve Lift on In-Cylinder Air Motion
by Tianyou Wang, Daming Liu, Gangde Wang, Bingqian Tan and Zhijun Peng
Energies 2015, 8(12), 13778-13795; https://doi.org/10.3390/en81212397 - 4 Dec 2015
Cited by 20 | Viewed by 6301
Abstract
An investigation into in-cylinder swirl and tumble flow characteristics with reduced maximum valve lifts (MVL) is presented. The experimental work was conducted in the modified four-valve optical spark-ignition (SI) test engine with three different MVL. Particle image velocimetry (PIV) was employed for measuring [...] Read more.
An investigation into in-cylinder swirl and tumble flow characteristics with reduced maximum valve lifts (MVL) is presented. The experimental work was conducted in the modified four-valve optical spark-ignition (SI) test engine with three different MVL. Particle image velocimetry (PIV) was employed for measuring in-cylinder air motion and measurement results were analyzed for examining flow field, swirl and tumble ratio variation and fluctuating kinetic energy distribution. Results of ensemble-averaged flow fields show that reduced MVL could produce strong swirl flow velocity, then resulted in very regular swirl motion in the late stage of the intake process. The strong swirl flow can maintain very well until the late compression stage. The reduction of MVL can also increase both high-frequency and low-frequency swirl flow fluctuating kinetic energy remarkably. Regarding tumble flow, results demonstrate that lower MVLs result in more horizontal intake flow velocity vectors which can be easily detected under the valve seat area. Although the result of lower MVLs show a higher tumble ratio when the piston is close to the bottom dead centre (BDC), higher MVLs substantially produce higher tumble ratios which can be confirmed when most cylinder area lies in the measuring range. Full article
Show Figures

Figure 1

Back to TopTop