Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (629)

Search Parameters:
Keywords = land cover metrics

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 10210 KiB  
Article
Evaluating Landscape Fragmentation and Consequent Environmental Impact of Solar Parks Installation in Natura 2000 Protected Areas: The Case of the Thessaly Region, Central Greece
by Ioannis Faraslis, Vassiliki Margaritopoulou, Christos Christakis and Efthimios Providas
Sustainability 2025, 17(15), 7158; https://doi.org/10.3390/su17157158 (registering DOI) - 7 Aug 2025
Abstract
This study examines the adverse environmental impacts of solar photovoltaic parks located in established protected areas, aiming to determine the level of landscape fragmentation through the calculation of relevant landscape metrics. For this purpose, a case study was carried out in a Mediterranean [...] Read more.
This study examines the adverse environmental impacts of solar photovoltaic parks located in established protected areas, aiming to determine the level of landscape fragmentation through the calculation of relevant landscape metrics. For this purpose, a case study was carried out in a Mediterranean Natura 2000 Special Protection Area (SPA), and landscape metrics were calculated using Geographic Information System spatial analysis tools. The analysis of metrics showed that the installation of renewable energy parks within the designated protected area negatively affect landscape fragmentation and the absence of carefully defined and evidence-based mitigation measures. The land cover categories that are significantly affected are those considered critical habitats of bird species that have been designated as SPAs. The results of this study highlight the need to integrate, in the National Renewable Energy Spatial Plans, specific biodiversity objectives, such as conservation objectives and the suspension of the installation of photovoltaic parks in certain areas that are important for conservation of biodiversity, in order to ensure the overall sustainability of renewable energy production. Full article
(This article belongs to the Special Issue Environmental Protection and Sustainable Ecological Engineering)
Show Figures

Figure 1

21 pages, 6628 KiB  
Article
MCA-GAN: A Multi-Scale Contextual Attention GAN for Satellite Remote-Sensing Image Dehazing
by Sufen Zhang, Yongcheng Zhang, Zhaofeng Yu, Shaohua Yang, Huifeng Kang and Jingman Xu
Electronics 2025, 14(15), 3099; https://doi.org/10.3390/electronics14153099 - 3 Aug 2025
Viewed by 165
Abstract
With the growing demand for ecological monitoring and geological exploration, high-quality satellite remote-sensing imagery has become indispensable for accurate information extraction and automated analysis. However, haze reduces image contrast and sharpness, significantly impairing quality. Existing dehazing methods, primarily designed for natural images, struggle [...] Read more.
With the growing demand for ecological monitoring and geological exploration, high-quality satellite remote-sensing imagery has become indispensable for accurate information extraction and automated analysis. However, haze reduces image contrast and sharpness, significantly impairing quality. Existing dehazing methods, primarily designed for natural images, struggle with remote-sensing images due to their complex imaging conditions and scale diversity. Given this, we propose a novel Multi-Scale Contextual Attention Generative Adversarial Network (MCA-GAN), specifically designed for satellite image dehazing. Our method integrates multi-scale feature extraction with global contextual guidance to enhance the network’s comprehension of complex remote-sensing scenes and its sensitivity to fine details. MCA-GAN incorporates two self-designed key modules: (1) a Multi-Scale Feature Aggregation Block, which employs multi-directional global pooling and multi-scale convolutional branches to bolster the model’s ability to capture land-cover details across varying spatial scales; (2) a Dynamic Contextual Attention Block, which uses a gated mechanism to fuse three-dimensional attention weights with contextual cues, thereby preserving global structural and chromatic consistency while retaining intricate local textures. Extensive qualitative and quantitative experiments on public benchmarks demonstrate that MCA-GAN outperforms other existing methods in both visual fidelity and objective metrics, offering a robust and practical solution for remote-sensing image dehazing. Full article
Show Figures

Figure 1

22 pages, 4300 KiB  
Article
Optimised DNN-Based Agricultural Land Mapping Using Sentinel-2 and Landsat-8 with Google Earth Engine
by Nisha Sharma, Sartajvir Singh and Kawaljit Kaur
Land 2025, 14(8), 1578; https://doi.org/10.3390/land14081578 - 1 Aug 2025
Viewed by 329
Abstract
Agriculture is the backbone of Punjab’s economy, and with much of India’s population dependent on agriculture, the requirement for accurate and timely monitoring of land has become even more crucial. Blending remote sensing with state-of-the-art machine learning algorithms enables the detailed classification of [...] Read more.
Agriculture is the backbone of Punjab’s economy, and with much of India’s population dependent on agriculture, the requirement for accurate and timely monitoring of land has become even more crucial. Blending remote sensing with state-of-the-art machine learning algorithms enables the detailed classification of agricultural lands through thematic mapping, which is critical for crop monitoring, land management, and sustainable development. Here, a Hyper-tuned Deep Neural Network (Hy-DNN) model was created and used for land use and land cover (LULC) classification into four classes: agricultural land, vegetation, water bodies, and built-up areas. The technique made use of multispectral data from Sentinel-2 and Landsat-8, processed on the Google Earth Engine (GEE) platform. To measure classification performance, Hy-DNN was contrasted with traditional classifiers—Convolutional Neural Network (CNN), Random Forest (RF), Classification and Regression Tree (CART), Minimum Distance Classifier (MDC), and Naive Bayes (NB)—using performance metrics including producer’s and consumer’s accuracy, Kappa coefficient, and overall accuracy. Hy-DNN performed the best, with overall accuracy being 97.60% using Sentinel-2 and 91.10% using Landsat-8, outperforming all base models. These results further highlight the superiority of the optimised Hy-DNN in agricultural land mapping and its potential use in crop health monitoring, disease diagnosis, and strategic agricultural planning. Full article
Show Figures

Figure 1

26 pages, 9940 KiB  
Article
Assessing Model Trade-Offs in Agricultural Remote Sensing: A Review of Machine Learning and Deep Learning Approaches Using Almond Crop Mapping
by Mashoukur Rahaman, Jane Southworth, Yixin Wen and David Keellings
Remote Sens. 2025, 17(15), 2670; https://doi.org/10.3390/rs17152670 - 1 Aug 2025
Viewed by 170
Abstract
This study presents a comprehensive review and comparative analysis of traditional machine learning (ML) and deep learning (DL) models for land cover classification in agricultural remote sensing. We evaluate the reported successes, trade-offs, and performance metrics of ML and DL models across diverse [...] Read more.
This study presents a comprehensive review and comparative analysis of traditional machine learning (ML) and deep learning (DL) models for land cover classification in agricultural remote sensing. We evaluate the reported successes, trade-offs, and performance metrics of ML and DL models across diverse agricultural contexts. Building on this foundation, we apply both model types to the specific case of almond crop field identification in California’s Central Valley using Landsat data. DL models, including U-Net, MANet, and DeepLabv3+, achieve high accuracy rates of 97.3% to 97.5%, yet our findings demonstrate that conventional ML models—such as Decision Tree, K-Nearest Neighbor, and Random Forest—can reach comparable accuracies of 96.6% to 96.8%. Importantly, the ML models were developed using data from a single year, while DL models required extensive training data spanning 2008 to 2022. Our results highlight that traditional ML models offer robust classification performance with substantially lower computational demands, making them especially valuable in resource-constrained settings. This paper underscores the need for a balanced approach in model selection—one that weighs accuracy alongside efficiency. The findings contribute actionable insights for agricultural land cover mapping and inform ongoing model development in the geospatial sciences. Full article
Show Figures

Figure 1

19 pages, 2278 KiB  
Article
Interplay Between Vegetation and Urban Climate in Morocco—Impact on Human Thermal Comfort
by Noura Ed-dahmany, Lahouari Bounoua, Mohamed Amine Lachkham, Mohammed Yacoubi Khebiza, Hicham Bahi and Mohammed Messouli
Urban Sci. 2025, 9(8), 289; https://doi.org/10.3390/urbansci9080289 - 25 Jul 2025
Viewed by 557
Abstract
This study examines diurnal surface temperature dynamics across major Moroccan cities during the growing season and explores the interaction between urban and vegetated surfaces. We also introduce the Urban Thermal Impact Ratio (UTIR), a novel metric designed to quantify urban thermal comfort as [...] Read more.
This study examines diurnal surface temperature dynamics across major Moroccan cities during the growing season and explores the interaction between urban and vegetated surfaces. We also introduce the Urban Thermal Impact Ratio (UTIR), a novel metric designed to quantify urban thermal comfort as a function of the surface urban heat island (SUHI) intensity. The analysis is based on outputs from a land surface model (LSM) for the year 2010, integrating high-resolution Landsat and MODIS data to characterize land cover and biophysical parameters across twelve land cover types. Our findings reveal moderate urban–vegetation temperature differences in coastal cities like Tangier (1.8 °C) and Rabat (1.0 °C), where winter vegetation remains active. In inland areas, urban morphology plays a more dominant role: Fes, with a 20% impervious surface area (ISA), exhibits a smaller SUHI than Meknes (5% ISA), due to higher urban heating in the latter. The Atlantic desert city of Dakhla shows a distinct pattern, with a nighttime SUHI of 2.1 °C and a daytime urban cooling of −0.7 °C, driven by irrigated parks and lawns enhancing evapotranspiration and shading. At the regional scale, summer UTIR values remain below one in Tangier-Tetouan-Al Hoceima, Rabat-Sale-Kenitra, and Casablanca-Settat, suggesting that urban conditions generally stay within thermal comfort thresholds. In contrast, higher UTIR values in Marrakech-Safi, Beni Mellal-Khénifra, and Guelmim-Oued Noun indicate elevated heat discomfort. At the city scale, the UTIR in Tangier, Rabat, and Casablanca demonstrates a clear diurnal pattern: it emerges around 11:00 a.m., peaks at 1:00 p.m., and fades by 3:00 p.m. This study highlights the critical role of vegetation in regulating urban surface temperatures and modulating urban–rural thermal contrasts. The UTIR provides a practical, scalable indicator of urban heat stress, particularly valuable in data-scarce settings. These findings carry significant implications for climate-resilient urban planning, optimized energy use, and the design of public health early warning systems in the context of climate change. Full article
Show Figures

Figure 1

21 pages, 4490 KiB  
Article
DFANet: A Deep Feature Attention Network for Building Change Detection in Remote Sensing Imagery
by Peigeng Lu, Haiyong Ding and Xiang Tian
Remote Sens. 2025, 17(15), 2575; https://doi.org/10.3390/rs17152575 - 24 Jul 2025
Viewed by 288
Abstract
Change detection (CD) in remote sensing (RS) is a fundamental task that seeks to identify changes in land cover by analyzing bitemporal images. In recent years, deep learning (DL)-based approaches have demonstrated remarkable success in a wide range of CD applications. However, most [...] Read more.
Change detection (CD) in remote sensing (RS) is a fundamental task that seeks to identify changes in land cover by analyzing bitemporal images. In recent years, deep learning (DL)-based approaches have demonstrated remarkable success in a wide range of CD applications. However, most existing methods have limitations in detecting building edges and addressing pseudo-changes, and lack the ability to model feature context. In this paper, we introduce DFANet—a Deep Feature Attention Network specifically designed for building CD in RS imagery. First, we devise a spatial-channel attention module to strengthen the network’s capacity to extract change cues from bitemporal feature maps and reduce the occurrence of pseudo-changes. Second, we introduce a GatedConv module to improve the network’s capability for building edge detection. Finally, Transformer is introduced to capture long-range dependencies across bitemporal images, enabling the network to better understand feature change patterns and the relationships between different regions and land cover categories. We carried out comprehensive experiments on two publicly available building CD datasets—LEVIR-CD and WHU-CD. The results demonstrate that DFANet achieves exceptional performance in evaluation metrics such as precision, F1 score, and IoU, consistently outperforming existing state-of-the-art approaches. Full article
Show Figures

Figure 1

29 pages, 6638 KiB  
Article
Forest Fragmentation in Bavaria: A First-Time Quantitative Analysis Based on Earth Observation Data
by Kjirsten Coleman and Claudia Kuenzer
Remote Sens. 2025, 17(15), 2558; https://doi.org/10.3390/rs17152558 - 23 Jul 2025
Viewed by 396
Abstract
Anthropogenic and climatic pressures can transform contiguous forests into smaller, less connected fragments. Forest biodiversity and ecosystem functioning can furthermore be compromised or enhanced. We present a descriptive analysis of forest fragmentation in Bavaria, the largest federal state in Germany. We calculated 22 [...] Read more.
Anthropogenic and climatic pressures can transform contiguous forests into smaller, less connected fragments. Forest biodiversity and ecosystem functioning can furthermore be compromised or enhanced. We present a descriptive analysis of forest fragmentation in Bavaria, the largest federal state in Germany. We calculated 22 metrics of fragmentation using forest polygons, aggregated within administrative units and with respect to both elevation and aspect orientation. Using a forest mask from September 2024, we found 2.384 million hectares of forest across Bavaria, distributed amongst 83,253 forest polygons 0.1 hectare and larger. The smallest patch category (XS, <25 ha) outnumbered all other size classes by nearly 13 to 1. Edge zones accounted for more than 1.68 million hectares, leaving less than 703,000 hectares as core forest. Although south-facing slopes dominated the state, the highest forest cover (~36%) was found on the least abundant east-oriented slopes. Most of the area is located at 400–600 m.a.s.l., with around 30% of this area covered by forests; however, XL forest patches (>3594 ha) dominated higher elevations, covering 30–60% of land surface area between 600 and 1400 m.a.s.l. The distribution of the largest patches follows the higher terrain and corresponds well to protected areas. K-Means clustering delineated 3 clusters, which corresponded well with the predominance of patchiness, aggregation, and edginess within districts. Full article
(This article belongs to the Special Issue Application of Remote Sensing in Landscape Ecology)
Show Figures

Graphical abstract

17 pages, 43516 KiB  
Article
Retail Development and Corporate Environmental Disclosure: A Spatial Analysis of Land-Use Change in the Veneto Region (Italy)
by Giovanni Felici, Daniele Codato, Alberto Lanzavecchia, Massimo De Marchi and Maria Cristina Lavagnolo
Sustainability 2025, 17(15), 6669; https://doi.org/10.3390/su17156669 - 22 Jul 2025
Viewed by 325
Abstract
Corporate environmental claims often neglect the substantial ecological impact of land-use changes. This case study examines the spatial dimension of retail-driven land-use transformation by analyzing supermarket expansion in the Veneto region (northern Italy), with a focus on a large grocery retailer. We evaluated [...] Read more.
Corporate environmental claims often neglect the substantial ecological impact of land-use changes. This case study examines the spatial dimension of retail-driven land-use transformation by analyzing supermarket expansion in the Veneto region (northern Italy), with a focus on a large grocery retailer. We evaluated its corporate environmental claims by assessing land consumption patterns from 1983 to 2024 using Geographic Information Systems (GIS). The GIS-based methodology involved geocoding 113 Points of Sale (POS—individual retail outlets), performing photo-interpretation of historical aerial imagery, and classifying land-cover types prior to construction. We applied spatial metrics such as total converted surface area, land-cover class frequency across eight categories (e.g., agricultural, herbaceous, arboreal), and the average linear distance between afforestation sites and POS developed on previously rural land. Our findings reveal that 65.97% of the total land converted for Points of Sale development occurred in rural areas, primarily agricultural and herbaceous lands. These landscapes play a critical role in supporting urban biodiversity and providing essential ecosystem services, which are increasingly threatened by unchecked land conversion. While the corporate sustainability reports and marketing strategies emphasize afforestation efforts under their “We Love Nature” initiative, our spatial analysis uncovers no evidence of actual land-use conversion. Additionally, reforestation activities are located an average of 40.75 km from converted sites, undermining their role as effective compensatory measures. These findings raise concerns about selective disclosure and greenwashing, driving the need for more comprehensive and transparent corporate sustainability reporting. The study argues for stronger policy frameworks to incentivize urban regeneration over greenfield development and calls for the integration of land-use data into corporate sustainability disclosures. By combining geospatial methods with content analysis, the research offers new insights into the intersection of land use, business practices, and environmental sustainability in climate-vulnerable regions. Full article
Show Figures

Figure 1

31 pages, 23687 KiB  
Article
Spatiotemporal Dynamics of Ecosystem Services and Human Well-Being in China’s Karst Regions: An Integrated Carbon Flow-Based Assessment
by Yinuo Zou, Yuefeng Lyu, Guan Li, Yanmei Ye and Cifang Wu
Land 2025, 14(8), 1506; https://doi.org/10.3390/land14081506 - 22 Jul 2025
Viewed by 305
Abstract
The relationship between ecosystem services (ESs) and human well-being (HWB) is a central issue of sustainable development. However, current research often relies on qualitative frameworks or indicator-based assessments, limiting a comprehensive understanding of the relationship between natural environment and human acquisition, which still [...] Read more.
The relationship between ecosystem services (ESs) and human well-being (HWB) is a central issue of sustainable development. However, current research often relies on qualitative frameworks or indicator-based assessments, limiting a comprehensive understanding of the relationship between natural environment and human acquisition, which still needs to be strengthened. As an element transferred in the natural–society coupling system, carbon can assist in characterizing the dynamic interactions within coupled human–natural systems. Carbon, as a fundamental element transferred across ecological and social spheres, offers a powerful lens to characterize these linkages. This study develops and applies a novel analytical framework that integrates carbon flow as a unifying metric to quantitatively assess the spatiotemporal dynamics of the land use and land cover change (LUCC)–ESs–HWB nexus in Guizhou Province, China, from 2000 to 2020. The results show that: (1) Ecosystem services in Guizhou showed distinct trends from 2000 to 2020: supporting and regulating services declined and then recovered, and provisioning services steadily increased, while cultural services remained stable but varied across cities. (2) Human well-being generally improved over time, with health remaining stable and the HSI rising across most cities, although security levels fluctuated and remained low in some areas. (3) The contribution of ecosystem services to human well-being peaked in 2010–2015, followed by declines in central and northern regions, while southern and western areas maintained or improved their levels. (4) Supporting and regulating services were positively correlated with HWB security, while cultural services showed mixed effects, with strong synergies between culture and health in cities like Liupanshui and Qiandongnan. Overall, this study quantified the coupled dynamics between ecosystem services and human well-being through a carbon flow framework, which not only offers a unified metric for cross-dimensional analysis but also reduces subjective bias in evaluation. This integrated approach provides critical insights for crafting spatially explicit land management policies in Guizhou and offers a replicable methodology for exploring sustainable development pathways in other ecologically fragile karst regions worldwide. Compared with conventional ecosystem service frameworks, the carbon flow approach provides a process-based, dynamic mediator that quantifies biogeochemical linkages in LUCC–ESs–HWB systems, which is particularly important in fragile karst regions. However, we acknowledge that further empirical comparison with traditional ESs metrics could strengthen the framework’s generalizability. Full article
(This article belongs to the Special Issue Advances in Land Consolidation and Land Ecology (Second Edition))
Show Figures

Graphical abstract

28 pages, 2931 KiB  
Review
Remote Sensing-Based Phenology of Dryland Vegetation: Contributions and Perspectives in the Southern Hemisphere
by Andeise Cerqueira Dutra, Ankur Srivastava, Khalil Ali Ganem, Egidio Arai, Alfredo Huete and Yosio Edemir Shimabukuro
Remote Sens. 2025, 17(14), 2503; https://doi.org/10.3390/rs17142503 - 18 Jul 2025
Viewed by 468
Abstract
Leaf phenology is key to ecosystem functioning by regulating carbon, water, and energy fluxes and influencing vegetation productivity. Yet, detecting land surface phenology (LSP) in drylands using remote sensing remains particularly challenging due to sparse and heterogeneous vegetation cover, high spatiotemporal variability, and [...] Read more.
Leaf phenology is key to ecosystem functioning by regulating carbon, water, and energy fluxes and influencing vegetation productivity. Yet, detecting land surface phenology (LSP) in drylands using remote sensing remains particularly challenging due to sparse and heterogeneous vegetation cover, high spatiotemporal variability, and complex spectral signals. Unlike the Northern Hemisphere, these challenges are further compounded in the Southern Hemisphere (SH), where several regions experience year-round moderate temperatures. When combined with irregular rainfall, this leads to highly variable vegetation activity throughout the year. However, LSP dynamics in the SH remain poorly understood. This study presents a review of remote sensing-based phenology research in drylands, integrating (i) a synthesis of global methodological advances and (ii) a systematic analysis of peer-reviewed studies published from 2015 through April 2025 focused on SH drylands. This review reveals a research landscape still dominated by conventional vegetation indices (e.g., NDVI) and moderate-spatial-resolution sensors (e.g., MODIS), though a gradual shift toward higher-resolution sensors such as PlanetScope and Sentinel-2 has emerged since 2020. Despite the widespread use of start- and end-of-season metrics, their accuracy varies greatly, especially in heterogeneous landscapes. Yet, advanced products such as solar-induced chlorophyll fluorescence or the fraction of absorbed photosynthetically active radiation were rarely employed. Gaps remain in the representation of hyperarid zones, grass- and shrub-dominated landscapes, and large regions of Africa and South America. Our findings highlight the need for multi-sensor approaches and expanded field validation to improve phenological assessments in dryland environments. The accurate differentiation of vegetation responses in LSP is essential not only for refining phenological metrics but also for enabling more realistic assessments of ecosystem functioning in the context of climate change and its impact on vegetation dynamics. Full article
(This article belongs to the Section Remote Sensing in Agriculture and Vegetation)
Show Figures

Figure 1

27 pages, 7624 KiB  
Article
A Multi-Task Learning Framework with Enhanced Cross-Level Semantic Consistency for Multi-Level Land Cover Classification
by Shilin Tao, Haoyu Fu, Ruiqi Yang and Leiguang Wang
Remote Sens. 2025, 17(14), 2442; https://doi.org/10.3390/rs17142442 - 14 Jul 2025
Viewed by 242
Abstract
The multi-scale characteristics of remote sensing imagery have an inherent correspondence with the hierarchical structure of land cover classification systems, providing a theoretical foundation for multi-level land cover classification. However, most existing methods treat classification tasks at different semantic levels as independent processes, [...] Read more.
The multi-scale characteristics of remote sensing imagery have an inherent correspondence with the hierarchical structure of land cover classification systems, providing a theoretical foundation for multi-level land cover classification. However, most existing methods treat classification tasks at different semantic levels as independent processes, overlooking the semantic relationships among these levels, which leads to semantic inconsistencies and structural conflicts in classification results. We addressed this issue with a deep multi-task learning (MTL) framework, named MTL-SCH, which enables collaborative classification across multiple semantic levels. MTL-SCH employs a shared encoder combined with a feature cascade mechanism to boost information sharing and collaborative optimization between two levels. A hierarchical loss function is also embedded that explicitly models the semantic dependencies between levels, enhancing semantic consistency across levels. Two new evaluation metrics, namely Semantic Alignment Deviation (SAD) and Enhancing Semantic Alignment Deviation (ESAD), are also proposed to quantify the improvement of MTL-SCH in semantic consistency. In the experimental section, MTL-SCH is applied to different network models, including CNN, Transformer, and CNN-Transformer models. The results indicate that MTL-SCH improves classification accuracy in coarse- and fine-level segmentation tasks, significantly enhancing semantic consistency across levels and outperforming traditional flat segmentation methods. Full article
Show Figures

Figure 1

20 pages, 10558 KiB  
Article
Spatial–Spectral Feature Fusion and Spectral Reconstruction of Multispectral LiDAR Point Clouds by Attention Mechanism
by Guoqing Zhou, Haoxin Qi, Shuo Shi, Sifu Bi, Xingtao Tang and Wei Gong
Remote Sens. 2025, 17(14), 2411; https://doi.org/10.3390/rs17142411 - 12 Jul 2025
Viewed by 403
Abstract
High-quality multispectral LiDAR (MSL) data are crucial for land cover (LC) classification. However, the Titan MSL system encounters challenges of inconsistent spatial–spectral information due to its unique scanning and data saving method, restricting subsequent classification accuracy. Existing spectral reconstruction methods often require empirical [...] Read more.
High-quality multispectral LiDAR (MSL) data are crucial for land cover (LC) classification. However, the Titan MSL system encounters challenges of inconsistent spatial–spectral information due to its unique scanning and data saving method, restricting subsequent classification accuracy. Existing spectral reconstruction methods often require empirical parameter settings and involve high computational costs, limiting automation and complicating application. To address this problem, we introduce the dual attention spectral optimization reconstruction network (DossaNet), leveraging an attention mechanism and spatial–spectral information. DossaNet can adaptively adjust weight parameters, streamline the multispectral point cloud acquisition process, and integrate it into classification models end-to-end. The experimental results show the following: (1) DossaNet exhibits excellent generalizability, effectively recovering accurate LC spectra and improving classification accuracy. Metrics across the six classification models show some improvements. (2) Compared with the method lacking spectral reconstruction, DossaNet can improve the overall accuracy (OA) and average accuracy (AA) of PointNet++ and RandLA-Net by a maximum of 4.8%, 4.47%, 5.93%, and 2.32%. Compared with the inverse distance weighted (IDW) and k-nearest neighbor (KNN) approach, DossaNet can improve the OA and AA of PointNet++ and DGCNN by a maximum of 1.33%, 2.32%, 0.86%, and 2.08% (IDW) and 1.73%, 3.58%, 0.28%, and 2.93% (KNN). The findings further validate the effectiveness of our proposed method. This method provides a more efficient and simplified approach to enhancing the quality of multispectral point cloud data. Full article
Show Figures

Figure 1

22 pages, 3917 KiB  
Article
Fragmented Habitats, Fragmented Functions: Unveiling the Role of Habitat Structure in Andean Bird Communities
by Valentina Ramos-Mosquera, Edwin López-Delgado and Miguel Moreno-Palacios
Ecologies 2025, 6(3), 52; https://doi.org/10.3390/ecologies6030052 - 11 Jul 2025
Viewed by 910
Abstract
Understanding the processes that shape biodiversity patterns is an important challenge in ecology. Land-use change is often recognized as a pivotal factor influencing biodiversity at large scales, with habitat heterogeneity being one of the most critical drivers of community composition and diversity. In [...] Read more.
Understanding the processes that shape biodiversity patterns is an important challenge in ecology. Land-use change is often recognized as a pivotal factor influencing biodiversity at large scales, with habitat heterogeneity being one of the most critical drivers of community composition and diversity. In this study, we evaluate the influence of landscape structure on the functional diversity of bird assemblages in the Upper Magdalena River Valley, Colombia. We used Generalized Linear Models to assess the effects of landscape structure on functional diversity, incorporating landscape metrics such as the number of patches, patch area and shape, and Shannon’s diversity and evenness indices. Additionally, we analyzed the influence of landscape structure on functional beta diversity—including its components of functional turnover and nestedness—using a distance-based redundancy analysis. We also examined the relationship between species traits and landscape metrics through a RLQ and fourth-corner analysis. We found a negative effect of habitat loss and fragmentation on functional diversity. Our results show that bird assemblages exhibit higher diversity in non-fragmented landscapes (>75% forest area; <1% urban cover), retaining greater functional richness and functional evenness (FRic > 0.24; FEve > 0.60). Moreover, non-fragmented landscapes seem to support a higher number of nectarivores and forest specialist species. In contrast, bird functional richness decreased with landscape fragmentation (FRic < 0.07). These findings highlight the importance of forest conservation for maintaining species persistence, ecological processes, and ecosystem services provided by birds. Full article
Show Figures

Figure 1

24 pages, 3167 KiB  
Article
Effects of Vegetation Heterogeneity on Butterfly Diversity in Urban Parks: Applying the Patch–Matrix Framework at Fine Scales
by Dan Han, Cheng Wang, Junying She, Zhenkai Sun and Luqin Yin
Sustainability 2025, 17(14), 6289; https://doi.org/10.3390/su17146289 - 9 Jul 2025
Viewed by 286
Abstract
(1) Background: Urban parks play a critical role in conserving biodiversity within city landscapes, yet the effects of fine-scale microhabitat heterogeneity remain poorly understood. This study examines how land cover and vegetation unit type within parks influence butterfly diversity. (2) Methods: From July [...] Read more.
(1) Background: Urban parks play a critical role in conserving biodiversity within city landscapes, yet the effects of fine-scale microhabitat heterogeneity remain poorly understood. This study examines how land cover and vegetation unit type within parks influence butterfly diversity. (2) Methods: From July to September 2019 and June to September 2020, adult butterflies were surveyed in 27 urban parks across Beijing. We classified vegetation into units based on vertical structure and management intensity, and then applied the patch–matrix framework and landscape metrics to quantify fine-scale heterogeneity in vegetation unit composition and configuration. Generalized linear models (GLM), generalized additive models (GAM), and random forest (RF) models were applied to identify factors influencing butterfly richness (Chao1 index) and abundance. (3) Results: In total, 10,462 individuals representing 37 species, 28 genera, and five families were recorded. Model results revealed that the proportion of park area covered by spontaneous herbaceous areas (SHA), wooded spontaneous meadows (WSM), and the Shannon diversity index (SHDI) of vegetation units were positively associated with butterfly species richness. In contrast, butterfly abundance was primarily influenced by the proportion of park area covered by cultivated meadows (CM) and overall green-space coverage. (4) Conclusions: Fine-scale vegetation patch composition within urban parks significantly influences butterfly diversity. Our findings support applying the patch–matrix framework at intra-park scales and suggest that integrating spontaneous herbaceous zones—especially wooded spontaneous meadows—with managed flower-rich meadows will enhance butterfly diversity in urban parks. Full article
Show Figures

Figure 1

23 pages, 4200 KiB  
Article
Thermal Multi-Sensor Assessment of the Spatial Sampling Behavior of Urban Landscapes Using 2D Turbulence Indicators
by Gabriel I. Cotlier, Drazen Skokovic, Juan Carlos Jimenez and José Antonio Sobrino
Remote Sens. 2025, 17(14), 2349; https://doi.org/10.3390/rs17142349 - 9 Jul 2025
Viewed by 288
Abstract
Understanding spatial variations in land surface temperature (LST) is critical for analyzing urban climate dynamics, especially within the framework of two-dimensional (2D) turbulence theory. This study assesses the spatial sampling behavior of urban thermal fields across eight metropolitan areas, encompassing diverse morphologies, surface [...] Read more.
Understanding spatial variations in land surface temperature (LST) is critical for analyzing urban climate dynamics, especially within the framework of two-dimensional (2D) turbulence theory. This study assesses the spatial sampling behavior of urban thermal fields across eight metropolitan areas, encompassing diverse morphologies, surface materials, and Köppen–Geiger climate zones. We analyzed thermal infrared (TIR) imagery from two remote sensing platforms—MODIS (1 km) and Landsat (30 m)—to evaluate resolution-dependent turbulence indicators such as spectral slopes and breakpoints. Power spectral analysis revealed systematic divergences across spatial scales. Landsat exhibited more negative breakpoint values, indicating a greater ability to capture fine-scale thermal heterogeneity tied to vegetation, buildings, and surface cover. MODIS, in contrast, emphasized broader thermal gradients, suitable for regional-scale assessments. Seasonal differences reinforced the turbulence framework: summer spectra displayed steeper, more variable slopes, reflecting increased thermal activity and surface–atmosphere decoupling. Despite occasional agreement between sensors, spectral metrics remain inherently resolution-dependent. MODIS is better suited for macro-scale thermal structures, while Landsat provides detailed insights into intra-urban processes. Our findings confirm that 2D turbulence indicators are not fully scale-invariant and vary with sensor resolution, season, and urban form. This multi-sensor comparison offers a framework for interpreting LST data in support of climate adaptation, urban design, and remote sensing integration. Full article
Show Figures

Figure 1

Back to TopTop