Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = lamina-associated domains(LADs)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 2211 KiB  
Article
A Cyclic Permutation Approach to Removing Spatial Dependency between Clustered Gene Ontology Terms
by Rachel Rapoport, Avraham Greenberg, Zohar Yakhini and Itamar Simon
Biology 2024, 13(3), 175; https://doi.org/10.3390/biology13030175 - 8 Mar 2024
Viewed by 1900
Abstract
Traditional gene set enrichment analysis falters when applied to large genomic domains, where neighboring genes often share functions. This spatial dependency creates misleading enrichments, mistaking mere physical proximity for genuine biological connections. Here we present Spatial Adjusted Gene Ontology (SAGO), a novel cyclic [...] Read more.
Traditional gene set enrichment analysis falters when applied to large genomic domains, where neighboring genes often share functions. This spatial dependency creates misleading enrichments, mistaking mere physical proximity for genuine biological connections. Here we present Spatial Adjusted Gene Ontology (SAGO), a novel cyclic permutation-based approach, to tackle this challenge. SAGO separates enrichments due to spatial proximity from genuine biological links by incorporating the genes’ spatial arrangement into the analysis. We applied SAGO to various datasets in which the identified genomic intervals are large, including replication timing domains, large H3K9me3 and H3K27me3 domains, HiC compartments and lamina-associated domains (LADs). Intriguingly, applying SAGO to prostate cancer samples with large copy number alteration (CNA) domains eliminated most of the enriched GO terms, thus helping to accurately identify biologically relevant gene sets linked to oncogenic processes, free from spatial bias. Full article
(This article belongs to the Special Issue Understanding the Genomic Mechanisms of Oncology)
Show Figures

Figure 1

15 pages, 2679 KiB  
Article
Trisomies Reorganize Human 3D Genome
by Irina V. Zhegalova, Petr A. Vasiluev, Ilya M. Flyamer, Anastasia S. Shtompel, Eugene Glazyrina, Nadezda Shilova, Marina Minzhenkova, Zhanna Markova, Natalia V. Petrova, Erdem B. Dashinimaev, Sergey V. Razin and Sergey V. Ulianov
Int. J. Mol. Sci. 2023, 24(22), 16044; https://doi.org/10.3390/ijms242216044 - 7 Nov 2023
Cited by 2 | Viewed by 3123
Abstract
Trisomy is the presence of one extra copy of an entire chromosome or its part in a cell nucleus. In humans, autosomal trisomies are associated with severe developmental abnormalities leading to embryonic lethality, miscarriage or pronounced deviations of various organs and systems at [...] Read more.
Trisomy is the presence of one extra copy of an entire chromosome or its part in a cell nucleus. In humans, autosomal trisomies are associated with severe developmental abnormalities leading to embryonic lethality, miscarriage or pronounced deviations of various organs and systems at birth. Trisomies are characterized by alterations in gene expression level, not exclusively on the trisomic chromosome, but throughout the genome. Here, we applied the high-throughput chromosome conformation capture technique (Hi-C) to study chromatin 3D structure in human chorion cells carrying either additional chromosome 13 (Patau syndrome) or chromosome 16 and in cultured fibroblasts with extra chromosome 18 (Edwards syndrome). The presence of extra chromosomes results in systematic changes of contact frequencies between small and large chromosomes. Analyzing the behavior of individual chromosomes, we found that a limited number of chromosomes change their contact patterns stochastically in trisomic cells and that it could be associated with lamina-associated domains (LAD) and gene content. For trisomy 13 and 18, but not for trisomy 16, the proportion of compacted loci on a chromosome is correlated with LAD content. We also found that regions of the genome that become more compact in trisomic cells are enriched in housekeeping genes, indicating a possible decrease in chromatin accessibility and transcription level of these genes. These results provide a framework for understanding the mechanisms of pan-genome transcription dysregulation in trisomies in the context of chromatin spatial organization. Full article
(This article belongs to the Special Issue Genes and Human Diseases)
Show Figures

Figure 1

20 pages, 2716 KiB  
Article
Sleeping Beauty Transposon Insertions into Nucleolar DNA by an Engineered Transposase Localized in the Nucleolus
by Adrian Kovač, Csaba Miskey and Zoltán Ivics
Int. J. Mol. Sci. 2023, 24(19), 14978; https://doi.org/10.3390/ijms241914978 - 7 Oct 2023
Cited by 1 | Viewed by 2688
Abstract
Transposons are nature’s gene delivery vehicles that can be harnessed for experimental and therapeutic purposes. The Sleeping Beauty (SB) transposon shows efficient transposition and long-term transgene expression in human cells, and is currently under clinical development for gene therapy. SB transposition occurs into [...] Read more.
Transposons are nature’s gene delivery vehicles that can be harnessed for experimental and therapeutic purposes. The Sleeping Beauty (SB) transposon shows efficient transposition and long-term transgene expression in human cells, and is currently under clinical development for gene therapy. SB transposition occurs into the human genome in a random manner, which carries a risk of potential genotoxic effects associated with transposon integration. Here, we evaluated an experimental strategy to manipulate SB’s target site distribution by preferentially compartmentalizing the SB transposase to the nucleolus, which contains repetitive ribosomal RNA (rRNA) genes. We generated a fusion protein composed of the nucleolar protein nucleophosmin (B23) and the SB100X transposase, which was found to retain almost full transposition activity as compared to unfused transposase and to be predominantly localized to nucleoli in transfected human cells. Analysis of transposon integration sites generated by B23-SB100X revealed a significant enrichment into the p-arms of chromosomes containing nucleolus organizing regions (NORs), with preferential integration into the p13 and p11.2 cytobands directly neighboring the NORs. This bias in the integration pattern was accompanied by an enrichment of insertions into nucleolus-associated chromatin domains (NADs) at the periphery of nucleolar DNA and into lamina-associated domains (LADs). Finally, sub-nuclear targeting of the transposase resulted in preferential integration into chromosomal domains associated with the Upstream Binding Transcription Factor (UBTF) that plays a critical role in the transcription of 47S rDNA gene repeats of the NORs by RNA Pol I. Future modifications of this technology may allow the development of methods for specific gene insertion for precision genetic engineering. Full article
(This article belongs to the Special Issue State-of-the-Art Molecular Genetics and Genomics in Germany)
Show Figures

Figure 1

18 pages, 3213 KiB  
Article
Cellular and Genomic Features of Muscle Differentiation from Isogenic Fibroblasts and Myoblasts
by Louise Benarroch, Julia Madsen-Østerbye, Mohamed Abdelhalim, Kamel Mamchaoui, Jessica Ohana, Anne Bigot, Vincent Mouly, Gisèle Bonne, Anne T. Bertrand and Philippe Collas
Cells 2023, 12(15), 1995; https://doi.org/10.3390/cells12151995 - 3 Aug 2023
Cited by 3 | Viewed by 3932
Abstract
The ability to recapitulate muscle differentiation in vitro enables the exploration of mechanisms underlying myogenesis and muscle diseases. However, obtaining myoblasts from patients with neuromuscular diseases or from healthy subjects poses ethical and procedural challenges that limit such investigations. An alternative consists in [...] Read more.
The ability to recapitulate muscle differentiation in vitro enables the exploration of mechanisms underlying myogenesis and muscle diseases. However, obtaining myoblasts from patients with neuromuscular diseases or from healthy subjects poses ethical and procedural challenges that limit such investigations. An alternative consists in converting skin fibroblasts into myogenic cells by forcing the expression of the myogenic regulator MYOD. Here, we directly compared cellular phenotype, transcriptome, and nuclear lamina-associated domains (LADs) in myo-converted human fibroblasts and myotubes differentiated from myoblasts. We used isogenic cells from a 16-year-old donor, ruling out, for the first time to our knowledge, genetic factors as a source of variations between the two myogenic models. We show that myo-conversion of fibroblasts upregulates genes controlling myogenic pathways leading to multinucleated cells expressing muscle cell markers. However, myotubes are more advanced in myogenesis than myo-converted fibroblasts at the phenotypic and transcriptomic levels. While most LADs are shared between the two cell types, each also displays unique domains of lamin A/C interactions. Furthermore, myotube-specific LADs are more gene-rich and less heterochromatic than shared LADs or LADs unique to myo-converted fibroblasts, and they uniquely sequester developmental genes. Thus, myo-converted fibroblasts and myotubes retain cell type-specific features of radial and functional genome organization. Our results favor a view of myo-converted fibroblasts as a practical model to investigate the phenotypic and genomic properties of muscle cell differentiation in normal and pathological contexts, but also highlight current limitations in using fibroblasts as a source of myogenic cells. Full article
(This article belongs to the Collection Lamins and Laminopathies)
Show Figures

Figure 1

15 pages, 5104 KiB  
Article
Gene Regulatory Interactions at Lamina-Associated Domains
by Julia Madsen-Østerbye, Mohamed Abdelhalim, Sarah Hazell Pickering and Philippe Collas
Genes 2023, 14(2), 334; https://doi.org/10.3390/genes14020334 - 28 Jan 2023
Cited by 5 | Viewed by 4364
Abstract
The nuclear lamina provides a repressive chromatin environment at the nuclear periphery. However, whereas most genes in lamina-associated domains (LADs) are inactive, over ten percent reside in local euchromatic contexts and are expressed. How these genes are regulated and whether they are able [...] Read more.
The nuclear lamina provides a repressive chromatin environment at the nuclear periphery. However, whereas most genes in lamina-associated domains (LADs) are inactive, over ten percent reside in local euchromatic contexts and are expressed. How these genes are regulated and whether they are able to interact with regulatory elements remain unclear. Here, we integrate publicly available enhancer-capture Hi-C data with our own chromatin state and transcriptomic datasets to show that inferred enhancers of active genes in LADs are able to form connections with other enhancers within LADs and outside LADs. Fluorescence in situ hybridization analyses show proximity changes between differentially expressed genes in LADs and distant enhancers upon the induction of adipogenic differentiation. We also provide evidence of involvement of lamin A/C, but not lamin B1, in repressing genes at the border of an in-LAD active region within a topological domain. Our data favor a model where the spatial topology of chromatin at the nuclear lamina is compatible with gene expression in this dynamic nuclear compartment. Full article
(This article belongs to the Special Issue Epigenetic Regulation of Cell Fate)
Show Figures

Graphical abstract

11 pages, 1039 KiB  
Review
Restructuring of Lamina-Associated Domains in Senescence and Cancer
by Aurélie Bellanger, Julia Madsen-Østerbye, Natalia M. Galigniana and Philippe Collas
Cells 2022, 11(11), 1846; https://doi.org/10.3390/cells11111846 - 5 Jun 2022
Cited by 14 | Viewed by 4343
Abstract
Induction of cellular senescence or cancer is associated with a reshaping of the nuclear envelope and a broad reorganization of heterochromatin. At the periphery of mammalian nuclei, heterochromatin is stabilized at the nuclear lamina via lamina-associated domains (LADs). Alterations in the composition of [...] Read more.
Induction of cellular senescence or cancer is associated with a reshaping of the nuclear envelope and a broad reorganization of heterochromatin. At the periphery of mammalian nuclei, heterochromatin is stabilized at the nuclear lamina via lamina-associated domains (LADs). Alterations in the composition of the nuclear lamina during senescence lead to a loss of peripheral heterochromatin, repositioning of LADs, and changes in epigenetic states of LADs. Cancer initiation and progression are also accompanied by a massive reprogramming of the epigenome, particularly in domains coinciding with LADs. Here, we review recent knowledge on alterations in chromatin organization and in the epigenome that affect LADs and related genomic domains in senescence and cancer. Full article
(This article belongs to the Special Issue Heterochromatin and Tumorigenesis)
Show Figures

Figure 1

20 pages, 7513 KiB  
Review
The “Genomic Code”: DNA Pervasively Moulds Chromatin Structures Leaving no Room for “Junk”
by Giorgio Bernardi
Life 2021, 11(4), 342; https://doi.org/10.3390/life11040342 - 13 Apr 2021
Cited by 9 | Viewed by 4173
Abstract
The chromatin of the human genome was analyzed at three DNA size levels. At the first, compartment level, two “gene spaces” were found many years ago: A GC-rich, gene-rich “genome core” and a GC-poor, gene-poor “genome desert”, the former corresponding to open chromatin [...] Read more.
The chromatin of the human genome was analyzed at three DNA size levels. At the first, compartment level, two “gene spaces” were found many years ago: A GC-rich, gene-rich “genome core” and a GC-poor, gene-poor “genome desert”, the former corresponding to open chromatin centrally located in the interphase nucleus, the latter to closed chromatin located peripherally. This bimodality was later confirmed and extended by the discoveries (1) of LADs, the Lamina-Associated Domains, and InterLADs; (2) of two “spatial compartments”, A and B, identified on the basis of chromatin interactions; and (3) of “forests and prairies” characterized by high and low CpG islands densities. Chromatin compartments were shown to be associated with the compositionally different, flat and single- or multi-peak DNA structures of the two, GC-poor and GC-rich, “super-families” of isochores. At the second, sub-compartment, level, chromatin corresponds to flat isochores and to isochore loops (due to compositional DNA gradients) that are susceptible to extrusion. Finally, at the short-sequence level, two sets of sequences, GC-poor and GC-rich, define two different nucleosome spacings, a short one and a long one. In conclusion, chromatin structures are moulded according to a “genomic code” by DNA sequences that pervade the genome and leave no room for “junk”. Full article
(This article belongs to the Collection Feature Review Papers for Life)
Show Figures

Figure 1

20 pages, 1329 KiB  
Review
Genome Organization in and around the Nucleolus
by Cristiana Bersaglieri and Raffaella Santoro
Cells 2019, 8(6), 579; https://doi.org/10.3390/cells8060579 - 12 Jun 2019
Cited by 91 | Viewed by 12236
Abstract
The nucleolus is the largest substructure in the nucleus, where ribosome biogenesis takes place, and forms around the nucleolar organizer regions (NORs) that comprise ribosomal RNA (rRNA) genes. Each cell contains hundreds of rRNA genes, which are organized in three distinct chromatin and [...] Read more.
The nucleolus is the largest substructure in the nucleus, where ribosome biogenesis takes place, and forms around the nucleolar organizer regions (NORs) that comprise ribosomal RNA (rRNA) genes. Each cell contains hundreds of rRNA genes, which are organized in three distinct chromatin and transcriptional states—silent, inactive and active. Increasing evidence indicates that the role of the nucleolus and rRNA genes goes beyond the control of ribosome biogenesis. Recent results highlighted the nucleolus as a compartment for the location and regulation of repressive genomic domains and, together with the nuclear lamina, represents the hub for the organization of the inactive heterochromatin. In this review, we aim to describe the crosstalk between the nucleolus and the rest of the genome and how distinct rRNA gene chromatin states affect nucleolus structure and are implicated in genome stability, genome architecture, and cell fate decision. Full article
(This article belongs to the Special Issue Nucleolar Organization and Functions in Health and Disease)
Show Figures

Figure 1

15 pages, 5098 KiB  
Review
Lamina Associated Domains and Gene Regulation in Development and Cancer
by Silke J. A. Lochs, Samy Kefalopoulou and Jop Kind
Cells 2019, 8(3), 271; https://doi.org/10.3390/cells8030271 - 21 Mar 2019
Cited by 50 | Viewed by 12721
Abstract
The nuclear lamina (NL) is a thin meshwork of filaments that lines the inner nuclear membrane, thereby providing a platform for chromatin binding and supporting genome organization. Genomic regions contacting the NL are lamina associated domains (LADs), which contain thousands of genes that [...] Read more.
The nuclear lamina (NL) is a thin meshwork of filaments that lines the inner nuclear membrane, thereby providing a platform for chromatin binding and supporting genome organization. Genomic regions contacting the NL are lamina associated domains (LADs), which contain thousands of genes that are lowly transcribed, and enriched for repressive histone modifications. LADs are dynamic structures that shift spatial positioning in accordance with cell-type specific gene expression changes during differentiation and development. Furthermore, recent studies have linked the disruption of LADs and alterations in the epigenome with the onset of diseases such as cancer. Here we focus on the role of LADs and the NL in gene regulation during development and cancer. Full article
(This article belongs to the Collection Lamins and Laminopathies)
Show Figures

Figure 1

9 pages, 533 KiB  
Review
Consequences of Lamin B1 and Lamin B Receptor Downregulation in Senescence
by Emilie Lukášová, Aleš Kovařík and Stanislav Kozubek
Cells 2018, 7(2), 11; https://doi.org/10.3390/cells7020011 - 6 Feb 2018
Cited by 52 | Viewed by 11868
Abstract
Anchoring of heterochromatin to the nuclear envelope appears to be an important process ensuring the spatial organization of the chromatin structure and genome function in eukaryotic nuclei. Proteins of the inner nuclear membrane (INM) mediating these interactions are able to recognize lamina-associated heterochromatin [...] Read more.
Anchoring of heterochromatin to the nuclear envelope appears to be an important process ensuring the spatial organization of the chromatin structure and genome function in eukaryotic nuclei. Proteins of the inner nuclear membrane (INM) mediating these interactions are able to recognize lamina-associated heterochromatin domains (termed LAD) and simultaneously bind either lamin A/C or lamin B1. One of these proteins is the lamin B receptor (LBR) that binds lamin B1 and tethers heterochromatin to the INM in embryonic and undifferentiated cells. It is replaced by lamin A/C with specific lamin A/C binding proteins at the beginning of cell differentiation and in differentiated cells. Our functional experiments in cancer cell lines show that heterochromatin in cancer cells is tethered to the INM by LBR, which is downregulated together with lamin B1 at the onset of cell transition to senescence. The downregulation of these proteins in senescent cells leads to the detachment of centromeric repetitive sequences from INM, their relocation to the nucleoplasm, and distension. In cells, the expression of LBR and LB1 is highly coordinated as evidenced by the reduction of both proteins in LBR shRNA lines. The loss of the constitutive heterochromatin structure containing LADs results in changes in chromatin architecture and genome function and can be the reason for the permanent loss of cell proliferation in senescence. Full article
(This article belongs to the Collection Lamins and Laminopathies)
Show Figures

Figure 1

Back to TopTop