Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = lamellae twisting

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 12138 KiB  
Article
Zinc Oxide Nanoparticles (ZnO-NPs) Induce Cytotoxicity in the Zebrafish Olfactory Organs via Activating Oxidative Stress and Apoptosis at the Ultrastructure and Genetic Levels
by Sheren A. Al-Zahaby, Mayada R. Farag, Mahmoud Alagawany, Heba S. A. Taha, Maria Vittoria Varoni, Giuseppe Crescenzo and Suzan Attia Mawed
Animals 2023, 13(18), 2867; https://doi.org/10.3390/ani13182867 - 9 Sep 2023
Cited by 17 | Viewed by 2853
Abstract
Nanotechnology has gained tremendous attention because of its crucial characteristics and wide biomedical applications. Although zinc oxide nanoparticles (ZnO-NPs) are involved in many industrial applications, researchers pay more attention to their toxic effects on living organisms. Since the olfactory epithelium is exposed to [...] Read more.
Nanotechnology has gained tremendous attention because of its crucial characteristics and wide biomedical applications. Although zinc oxide nanoparticles (ZnO-NPs) are involved in many industrial applications, researchers pay more attention to their toxic effects on living organisms. Since the olfactory epithelium is exposed to the external environment, it is considered the first organ affected by ZnO-NPs. Herein, we demonstrated the cytotoxic effect of ZnO-NPs on the olfactory organ of adult zebrafish after 60 days post-treatment. We opted for this period when fishes stop eating their diet from the aquarium, appear feeble, and cannot swim freely. Our study demonstrated that ZnO-NPs induced significant malformations of the olfactory rosettes at histological, ultrastructural, and genetic levels. At the ultrastructure level, the olfactory lamellae appeared collapsed, malformed, and twisted with signs of degeneration and loss of intercellular connections. In addition, ZnO-NPs harmed sensory receptor and ciliated cells, microvilli, rodlet, crypt, and Kappe cells, with hyper-activity of mucous secretion from goblet cells. At the genetic level, ZnO-NPs could activate the reactive oxygen species (ROS) synthesis expected by the down-regulation of mRNA expression for the antioxidant-related genes and up-regulation of DNA damage, cell growth arrest, and apoptosis. Interestingly, ZnO-NPs affected the odor sensation at 60 days post-treatment (60-dpt) more than at 30-dpt, severely damaging the olfactory epithelium and irreparably affecting the cellular repairing mechanisms. This induced a dramatically adverse effect on the cellular endoplasmic reticulum (ER), revealed by higher CHOP protein expression, that suppresses the antioxidant effect of Nrf2 and is followed by the induction of apoptosis via the up-regulation of Bax expression and down-regulation of Bcl-2 protein. Full article
(This article belongs to the Special Issue Perspectives in Veterinary Toxicology and Pharmacology)
Show Figures

Figure 1

16 pages, 6133 KiB  
Article
Grating Assembly Dissected in Periodic Bands of Poly (Butylene Adipate) Modulated with Poly (Ethylene Oxide)
by Chia-I. Chang, Eamor M. Woo and Selvaraj Nagarajan
Polymers 2022, 14(21), 4781; https://doi.org/10.3390/polym14214781 - 7 Nov 2022
Cited by 2 | Viewed by 2207
Abstract
Polarized optical microscopy (POM), scanning electron microscopy (SEM), and synchrotron microbeam wide-angle X-ray diffraction (WAXD) were used to investigate the mechanisms of periodic assemblies leading to ring-banded crystal aggregates with light-grating capacity for iridescence in poly (1,4-butylene adipate) (PBA) modulated with poly (ethylene [...] Read more.
Polarized optical microscopy (POM), scanning electron microscopy (SEM), and synchrotron microbeam wide-angle X-ray diffraction (WAXD) were used to investigate the mechanisms of periodic assemblies leading to ring-banded crystal aggregates with light-grating capacity for iridescence in poly (1,4-butylene adipate) (PBA) modulated with poly (ethylene oxide) (PEO). A critical finding is that the PBA crystal assembly on the top surface and in the interior constitutes a grating architecture, with a cross-bar pitch equaling the inter-band spacing. The inner lamellae are arranged perpendicularly to the substrate under the ridge region, where they scroll, bend, and twist 90° to branch out newly spawned lamellae to form the parallel lamellae under the valley region. The cross-hatch grating with a fixed inter-spacing in the PBA aggregated crystals is proved in this work to perfectly act as light-interference entities capable of performing iridescence functions, which can be compared to those widely seen in many of nature’s organic bio-species or inorganic minerals such as opals. This is a novel breakthrough finding for PBA or similar polymers, such as photonic crystals, especially when the crystalline morphology could be custom-made and modulated with a second constituent. Full article
(This article belongs to the Special Issue Polymer Based Electronic Devices and Sensors)
Show Figures

Figure 1

19 pages, 6673 KiB  
Article
Grain-Boundary-Induced Alignment of Block Copolymer Thin Films
by Steven Gottlieb, Marta Fernández-Regúlez, Matteo Lorenzoni, Laura Evangelio and Francesc Perez-Murano
Nanomaterials 2020, 10(1), 103; https://doi.org/10.3390/nano10010103 - 4 Jan 2020
Cited by 4 | Viewed by 4384
Abstract
We present and discuss the capability of grain boundaries to induce order in block copolymer thin films between horizontally and vertically assembled block copolymer grains. The system we use as a proof of principle is a thermally annealed 23.4 nm full-pitch lamellar Polystyrene-block-polymethylmetacrylate [...] Read more.
We present and discuss the capability of grain boundaries to induce order in block copolymer thin films between horizontally and vertically assembled block copolymer grains. The system we use as a proof of principle is a thermally annealed 23.4 nm full-pitch lamellar Polystyrene-block-polymethylmetacrylate (PS-b-PMMA) di-block copolymer. In this paper, grain-boundary-induced alignment is achieved by the mechanical removal of the neutral brush layer via atomic force microscopy (AFM). The concept is also confirmed by a mask-less e-beam direct writing process. An elongated grain of vertically aligned lamellae is trapped between two grains of horizontally aligned lamellae. This configuration leads to the formation of 90° twist grain boundaries. The features maintain their orientation on a characteristic length scale, which is described by the material’s correlation length ξ. As a result of an energy minimization process, the block copolymer domains in the vertically aligned grain orient perpendicularly to the grain boundary. The energy-minimizing feature is the grain boundary itself. The width of the manipulated area (e.g., the horizontally aligned grain) does not represent a critical process parameter. Full article
(This article belongs to the Special Issue Nanomaterials for the Advanced Manufacturing of Electronic Devices)
Show Figures

Graphical abstract

21 pages, 12549 KiB  
Article
Lamellae Assembly in Dendritic Spherulites of Poly(l-lactic Acid) Crystallized with Poly(p-Vinyl Phenol)
by Nurkhamidah Siti, Eamor M. Woo, Yu-Ting Yeh, Faliang Luo and Vimal Katiyar
Polymers 2018, 10(5), 545; https://doi.org/10.3390/polym10050545 - 18 May 2018
Cited by 12 | Viewed by 7985
Abstract
Lamellar assembly with fractal-patterned growth into dendritic and ringed spherulites of crystallized poly(l-lactic acid) (PLLA), of two molecular weight (MW) grades and crystallized at (temperature of crystallization) Tc = 120 and 130 °C, respectively, are evaluated using optical and atomic-force [...] Read more.
Lamellar assembly with fractal-patterned growth into dendritic and ringed spherulites of crystallized poly(l-lactic acid) (PLLA), of two molecular weight (MW) grades and crystallized at (temperature of crystallization) Tc = 120 and 130 °C, respectively, are evaluated using optical and atomic-force microscopies. The results of surface-relief patterns in correlation with interior microscopy analyses in this work strongly indicate that the observed birefringence changes in PLLA polymer dendritic or ringed spherulites (from blue to orange, or to optical extinction) need not be definitely associated with the continuous helix twisting of lamellae; they can be caused by sudden and discontinuous lamellae branching at intersected angles with respect to the original main lamellae, as proven in the case of dendritic and zig-zag rough-ringed spherulites. Intersection angles between the main stalks and branches tend to be governed by polymer crystal lattices; for PLLA, the orthorhombic lattice (α-form) usually gives a 60° angle of branching and hexagonal growth. The branching lamellae then further bend to convex or concave shapes and finally make a 60–90° angle with respect to the main stalks. Such mechanisms are proven to exist in the straight dendritic/striped high-molecular weight (HMW)-PLLA spherulites (Tc = 120 °C); similar mechanisms also work in circularly ringed (Tc = 130 °C) HMW-PLLA spherulites. Full article
(This article belongs to the Special Issue Phase Behavior in Polymers)
Show Figures

Graphical abstract

13 pages, 5790 KiB  
Article
Atomic-Force Microscopy Analyses on Dislocation in Extinction Bands of Poly(dodecamethylene terephthalate) Spherulites Solely Packed of Single-Crystal-Like Lamellae
by Eamor M. Woo, Graecia Lugito, Cheng-En Yang and Shih-Ming Chang
Crystals 2017, 7(9), 274; https://doi.org/10.3390/cryst7090274 - 11 Sep 2017
Cited by 8 | Viewed by 6261
Abstract
This study, using atomic-force and polarized-optical light (AFM and POM) microscopies on the extinction banded spherulites of poly(dodecamethylene terephthalate) (P12T) at high Tc = 110 °C with a film thickness kept at 1–3 µm, has verified that banded spherulites can be composed [...] Read more.
This study, using atomic-force and polarized-optical light (AFM and POM) microscopies on the extinction banded spherulites of poly(dodecamethylene terephthalate) (P12T) at high Tc = 110 °C with a film thickness kept at 1–3 µm, has verified that banded spherulites can be composed of stacks of entirely single-crystal-like lamellae free of any twisting, flipping, or bending, and no branching of lamellae. Defects in the crystal packing of extinction bands are present in both intra-band and inter-band regions. The intra-band defects originate from the miss-match in spiral-circling into circular bands while the inter-band defects are in the interfaces between successive bands where single crystals in the ridge are jammed to deformation, then suddenly precipitate prior to initiating another cycle of banding. The fish-scale lamellae, at the initiation of a cycle, are orderly packed as terrace-like single crystals; conversely, near or on the defected regions, they are highly jammed or squeezed and deformed to beyond recognition of their original single-crystal nature. Full article
(This article belongs to the Special Issue Crystal Morphology and Assembly in Spherulites)
Show Figures

Figure 1

14 pages, 4101 KiB  
Article
Mapping the Mechanical Properties of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Banded Spherulites by Nanoindentation
by Patricia Enrique-Jimenez, Juan F. Vega, Javier Martínez-Salazar, Fernando Ania and Araceli Flores
Polymers 2016, 8(10), 358; https://doi.org/10.3390/polym8100358 - 12 Oct 2016
Cited by 8 | Viewed by 6278
Abstract
Nanoindentation provides clear evidence that spherulite banding can be associated with a continuous modulation of mechanical properties from the more compliant peaks to the stiffer valleys. The structural arrangement in polymer-banded spherulites has intrigued scientists for many decades, and the debate has been [...] Read more.
Nanoindentation provides clear evidence that spherulite banding can be associated with a continuous modulation of mechanical properties from the more compliant peaks to the stiffer valleys. The structural arrangement in polymer-banded spherulites has intrigued scientists for many decades, and the debate has been recently intensified with the advent of new experimental evidence. The present paper approaches this issue by exploring the local mechanical properties of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)-ringed spherulites via nanoindentation and discussing the confidence of the results. It was found that storage modulus and hardness across the banding morphology can be described as a sequence of regular oscillations with a periodicity that exactly matches the one observed using optical and atomic force microscopy. Results are consistent with the model of regular twisting of the lamellae, with flat-on arrangement in the low regions and edge-on lamellae in the crests. Full article
Show Figures

Graphical abstract

Back to TopTop