Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (76)

Search Parameters:
Keywords = lake shrinkage

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 24251 KiB  
Article
Anthropogenic and Climate-Induced Water Storage Dynamics over the Past Two Decades in the China–Mongolia Arid Region Adjacent to Altai Mountain
by Yingjie Yan, Yuan Su, Hongfei Zhou, Siyu Wang, Linlin Yao and Dashlkham Batmunkh
Remote Sens. 2025, 17(11), 1949; https://doi.org/10.3390/rs17111949 - 4 Jun 2025
Cited by 1 | Viewed by 579
Abstract
The China–Mongolia arid region adjacent to the Altai Mountain (CMA) has a sensitive ecosystem that relies heavily on both terrestrial water (TWS) and groundwater storage (GWS). However, during the 2003–2016 period, the CMA experienced significant glacier retreat, lake shrinkage, and grassland degradation. To [...] Read more.
The China–Mongolia arid region adjacent to the Altai Mountain (CMA) has a sensitive ecosystem that relies heavily on both terrestrial water (TWS) and groundwater storage (GWS). However, during the 2003–2016 period, the CMA experienced significant glacier retreat, lake shrinkage, and grassland degradation. To illuminate the TWS and GWS dynamics in the CMA and the dominant driving factors, we employed high-resolution (0.1°) GRACE (Gravity Recovery and Climate Experiment) data generated through random forest (RF) combined with residual correction. The downscaled data at a 0.1° resolution illustrate the spatial heterogeneity of TWS and GWS depletion. The highest TWS and GWS decline rates were both on the north slope of the Tianshan River Basin (NTRB) of the Junggar Basin of Northwestern China (JBNWC) (27.96 mm/yr and −32.98 mm/yr, respectively). Human impact played a primary role in TWS decreases in the JBNWC, with a relative contribution rate of 62.22% compared to the climatic contribution (37.78%). A notable shift—from climatic (2002–2010) to anthropogenic factors (2011–2020)—was observed as the primary driver of TWS decline in the Great Lakes Depression region of western Mongolia (GLDWM). To maintain ecological stability and promote sustainable regional development, effective action is urgently required to save essential TWS from further depletion. Full article
Show Figures

Figure 1

18 pages, 6131 KiB  
Article
Lake Evolution and Its Response to Urban Expansion in Wuhan City in the Last Hundred Years Based on Historical Maps and Remote Sensing Images
by Guoqing Li, Yufen Zhang and Chang’an Li
Remote Sens. 2025, 17(9), 1563; https://doi.org/10.3390/rs17091563 - 28 Apr 2025
Viewed by 608
Abstract
Wuhan is dotted with lakes, is known as the “City with Hundreds of Lakes”, and the development of the city is inseparable from the river and lake waters, with the evolution of the lakes affecting the construction and layout of the city. Since [...] Read more.
Wuhan is dotted with lakes, is known as the “City with Hundreds of Lakes”, and the development of the city is inseparable from the river and lake waters, with the evolution of the lakes affecting the construction and layout of the city. Since the 20th century, the lake evolution in the main urban area of Wuhan has been the most intense and the urban development has also been the most rapid. Therefore, on the basis of the study of the origin of different types of lakes, based on the precious high-precision historical maps of Wuhan in the early- and mid-20th century, combined with the information about lakes in Wuhan obtained from satellite remote sensing images, the evolution characteristics of the lakes in Wuhan in the past 100 years (1920~2019) were investigated through the theory of landscape fractal, and the response mechanism of lake evolution to urban expansion was further explored by being combined with the trajectory of urban expansion. The results show that the area of lakes in Wuhan declined from 2133.5 km2 in 1920 to 550.8 km2 in 2019, with a total decrease of 1582.7 km2, an area shrinkage rate of 74.18%, and a strong amplitude of area change. The changes in the fractal dimension and the shoreline development coefficient of lakes in Wuhan city show synchronization as a whole, with occasional fluctuations, but on the whole, the fractal dimension and shoreline development coefficient of lakes are becoming smaller over a century. Specifically, the evolution of lakes in the Hankou area is mainly affected by the construction of dykes and lake filling, and most of the lakes are resolved and fragmented under the influence of urban expansion, whereas the evolution of lakes in Wuchang and Hanyang is mainly caused by the urban construction around the lakes, and many lake branches have been cut for various urban constructions, and the shape of the lake tends to be simple and regular under the influence of urban expansion. This study is of great significance for filling in the history of lake evolution in Wuhan before the popularization of remote sensing, and for guiding the rational development of lakes in Wuhan and the sustainable and healthy development of Wuhan. Full article
Show Figures

Figure 1

24 pages, 11288 KiB  
Article
Satellite Data Revealed That the Expansion of China’s Lakes Is Accompanied by Rising Temperatures and Wider Temperature Differences
by Yibo Jiao, Zifan Lu and Mengmeng Wang
Remote Sens. 2025, 17(9), 1546; https://doi.org/10.3390/rs17091546 - 26 Apr 2025
Viewed by 530
Abstract
Lake surface water area (LSWA) and lake surface water temperature (LSWT) are critical indicators of climate change, responding rapidly to global warming. However, studies on the synergistic variations of LSWA and LSWT are scarce, and the coupling relationships among lakes with different environmental [...] Read more.
Lake surface water area (LSWA) and lake surface water temperature (LSWT) are critical indicators of climate change, responding rapidly to global warming. However, studies on the synergistic variations of LSWA and LSWT are scarce, and the coupling relationships among lakes with different environmental characteristics remain unclear. In this study, the relative growth rate of LSWA (RKLSWA); the absolute growth rates of annual maximum, mean, and minimum LSWTs (i.e., KLSWT_max, KLSWT_mean, KLSWT_min); and the absolute growth rates of the difference between maximum and minimum LSWT (LSWT_mmd) (KLSWT_mmd) were investigated across more than 4000 lakes in China using long-term Landsat data, and their coupling relationships among different lake types (i.e., permafrost and non-permafrost recharge, endorheic or exorheic lakes, and natural and artificial lakes) were comprehensively analyzed. Results indicate significant differences in the trends of LSWA and LSWT, as well as their interrelationships across various regions and lake types. In the Qinghai–Tibet Plateau (QTP), 57.8% of lakes showed an increasing trend in LSWA, with 2.4% of the lakes showing moderate expansion (RKLSWA values of 0.1–0.2), while over 27.5% of lakes in the South China (SC) region displayed shrinkage in LSWA (RKLSWA values were between −0.1~0%/year). Regarding LSWTs, 49.8% of lakes in the QTP exhibited a KLSWT_max greater than 0, and 47.9% of lakes showed a KLSWT_mean greater than 0. In contrast, 48.1% of lakes in the Middle and Lower Yangtze River Plain (MLYP) had a KLSWT_max less than 0, and 48.5% of lakes had a KLSWT_mean less than 0. Additionally, lakes supplied by permanent permafrost demonstrated more significant growth in both LSWA and LSWT than those supplied by non-permanent permafrost. Further analysis revealed that approximately 20.2% of the lakes experienced a concurrent increase in both mean LSWT and LSWA, whereas around 18.9% of the lakes exhibited a simultaneous rise in both LSWT_mmd and LSWA. This suggests that the expansion of lakes in China is correlated with both rising temperatures and greater temperature differences. This study provides deeper insights into the response of Chinese lakes to climate change and offers important references for lake resource management and ecological conservation. Full article
Show Figures

Figure 1

17 pages, 50284 KiB  
Article
Synergistic Impacts of Land Deformation and Rapid Socio-Ecological Changes on Disaster Risk in Indonesian Alluvial Plains Using Multiple Satellite Datasets
by Satomi Kimijima, Masahiko Nagai, Zahid Mushtaq Wani and Dianto Bachriadi
Remote Sens. 2025, 17(9), 1514; https://doi.org/10.3390/rs17091514 - 24 Apr 2025
Cited by 1 | Viewed by 410
Abstract
Unique, small-scale tectonic and geological systems are occasionally vulnerable to natural hazards. Although the combination of such systems with rapid socio-ecological change can enhance the risk of disasters, such synergistic impacts have not been well studied. The primary goal of this study was [...] Read more.
Unique, small-scale tectonic and geological systems are occasionally vulnerable to natural hazards. Although the combination of such systems with rapid socio-ecological change can enhance the risk of disasters, such synergistic impacts have not been well studied. The primary goal of this study was to investigate the potential synergistic impact of land deformation and rapid socio-ecological changes on disaster risk in lowland alluvial regions of a collision zone in the Gorontalo Regency of Gorontalo Province, Indonesia. In this region, socio-ecological changes such as urbanization and rapid lake shrinkage are significant. Frequent occurrence of flood hazards threatens local livelihood. Differential interferometric synthetic aperture radar analysis of Sentinel-1 C-band data from April 2020 to April 2023 was applied to assess land deformation. Thereafter, supervised classification of moderate and high spatiotemporal resolution optical satellite time series was used to assess the relationship between land deformation and built-up area. The findings revealed both significant land deformation and rapid socio-ecological changes. Vertical deformation rates were as high as ~6 cm/year and were primarily attributable to tectonic activity; they were particularly apparent in rapidly developing and highly populated residential areas. Rapid shrinkage of a lake resulted from the local geological system and socioeconomic changes in the region, which together possibly exacerbated the hazard risk because of their effects on land deformation. These results indicate the potential danger to both infrastructure and human inhabitants at a regional level due to the synergistic effects of natural processes and socio-ecological changes. The study design and data that were used facilitated a comprehensive assessment of the potential impacts on disaster risk. These findings are expected to be integrated into locally specific hazard (e.g., flood inundation and ground fissuring) risk mitigation and management strategies. Full article
(This article belongs to the Special Issue Remote Sensing in Hazards Monitoring and Risk Assessment)
Show Figures

Figure 1

28 pages, 5914 KiB  
Article
Predicting Landslide Deposit Zones: Insights from Advanced Sampling Strategies in the Ilopango Caldera, El Salvador
by Laura Paola Calderon-Cucunuba, Abel Alexei Argueta-Platero, Tomás Fernández, Claudio Mercurio, Chiara Martinello, Edoardo Rotigliano and Christian Conoscenti
Land 2025, 14(2), 269; https://doi.org/10.3390/land14020269 - 27 Jan 2025
Viewed by 844
Abstract
In landslide susceptibility modeling, research has predominantly focused on predicting landslides by identifying predisposing factors, often using inventories primarily based on the highest points of landslide crowns. However, a significant challenge arises when the transported mass impacts human activities directly, typically occurring in [...] Read more.
In landslide susceptibility modeling, research has predominantly focused on predicting landslides by identifying predisposing factors, often using inventories primarily based on the highest points of landslide crowns. However, a significant challenge arises when the transported mass impacts human activities directly, typically occurring in the deposition areas of these phenomena. Therefore, identifying the terrain characteristics that facilitate the transport and deposition of displaced material in affected areas is equally crucial. This study aimed to evaluate the predictive capability of identifying where displaced material might be deposited by using different inventories of specific parts of a landslide, including the source area, intermediate area, and deposition area. A sample segmentation was conducted that included inventories of these distinct parts of the landslide in the hydrographic basin of Lake Ilopango, which experienced debris flows and debris floods triggered by heavy rainfall from Hurricane Ida in November 2009. Given the extensive variables extracted for this evaluation (20 variables), the Induced Smoothed (IS) version of the Least Absolute Shrinkage and Selection Operator (LASSO) methodology was employed to determine the significance of each variable within the datasets. Additionally, the Multivariate Adaptive Regression Splines (MARS) algorithm was used for modeling. Our findings revealed that models developed using the deposition area dataset were more effective compared with those based on the source area dataset. Furthermore, the accuracy of models using deposition area data surpassed that of that using data from both the source and intermediate areas. Full article
Show Figures

Figure 1

16 pages, 3455 KiB  
Article
Ecosystem Service Changes and Water Management in the Manas River Basin
by Huiying Zhang, Zeeshan Ahmed, Wei Han and Gang Sun
Water 2024, 16(24), 3585; https://doi.org/10.3390/w16243585 (registering DOI) - 12 Dec 2024
Viewed by 1148
Abstract
Arid river basins face critical ecological challenges due to climate change and human activities, exacerbating water scarcity and disrupting ecosystem functions. This study assesses the spatial variability and ecosystem service value (ESV) dynamics of lakes and wetlands in the Manas River Basin, an [...] Read more.
Arid river basins face critical ecological challenges due to climate change and human activities, exacerbating water scarcity and disrupting ecosystem functions. This study assesses the spatial variability and ecosystem service value (ESV) dynamics of lakes and wetlands in the Manas River Basin, an arid region in northern Xinjiang, from 1990 to 2020. Using the InVEST model and structural equation modeling, we analyzed the climatic and anthropogenic factors affecting midstream wetlands and the downstream lake. The results suggest a potential inverse dynamic relationship between lake expansion and wetland shrinkage, particularly in 2003 and 2017, indicating a competitive hydrological interaction, although our linear regression analysis did not capture a strong relationship. Wetland ESV has notably declined, driven by reduced water availability and increased cultivation, whereas lake ESV has remained stable due to water management practices. Precipitation, evapotranspiration, and temperature negatively impact wetland ESV, while human activities and temperature positively affect lake ESV. These findings highlight the need for tailored water management strategies to address the distinct vulnerabilities of lakes and wetlands, emphasizing balanced water distribution and the mitigation of climate and human impacts to preserve the Manas River Basin’s ecological health. Full article
Show Figures

Figure 1

23 pages, 11008 KiB  
Article
Dynamic Changes and Driving Factors in the Surface Area of Ebinur Lake over the Past Three Decades
by Yuan Liu, Qingyu Wang, Dian Wang, Yunrui Si, Tianci Qi, Hongtao Duan and Ming Shen
Remote Sens. 2024, 16(20), 3876; https://doi.org/10.3390/rs16203876 - 18 Oct 2024
Cited by 2 | Viewed by 1396
Abstract
Dryland lakes are indispensable to regional water resource systems. Ebinur Lake, the largest saline lake in Xinjiang Uygur Autonomous Region, is vital for regional biodiversity and environmental stability but has been facing the predicament of gradual shrinkage in recent decades. In this study, [...] Read more.
Dryland lakes are indispensable to regional water resource systems. Ebinur Lake, the largest saline lake in Xinjiang Uygur Autonomous Region, is vital for regional biodiversity and environmental stability but has been facing the predicament of gradual shrinkage in recent decades. In this study, we proposed a new dual-index method for Landsat (-5, -7, -8, and -9) data to extract water with the combinations of the normalized difference water index (NDWI) and the modified NDWI for turbid waters (NDWIturbid). The dual-index method showed a high overall accuracy of 96.36% for Ebinur Lake. Landsat series images from 1992 to 2023 were employed to acquire the water areas of Ebinur Lake. The results showed that, over the past three decades, the area of Ebinur Lake exhibited a fluctuating decreasing trend, with an average lake area of 568.74 ± 152.43 km². The northwest intermittent water areas showed significant changes, and there was a close connection between the northwest and core water areas. Seasonally, the lake area decreased from spring to autumn. River inflow, driven by rainfall and human activities, was the primary factor affecting the inter/inner annual changes in Ebinur Lake. Furthermore, due to the valley effects, wind was found to be a critical factor in the diurnal changes in the water areas. This study should deepen the understanding of the variations of Ebinur Lake and benefit local water resource management. Full article
Show Figures

Figure 1

19 pages, 3938 KiB  
Article
Rapid Identification of the Geographical Origin of the Chinese Mitten Crab (Eriocheir sinensis) Using Near-Infrared Spectroscopy
by Renhao Liu, Qingxu Li and Hongzhou Zhang
Foods 2024, 13(20), 3226; https://doi.org/10.3390/foods13203226 - 10 Oct 2024
Cited by 2 | Viewed by 1430
Abstract
The Chinese mitten crab (Eriocheir sinensis) is highly valued by consumers for its delicious taste and high nutritional content, including proteins and trace elements, giving it significant economic value. However, variations in taste and nutritional value among crabs from different regions [...] Read more.
The Chinese mitten crab (Eriocheir sinensis) is highly valued by consumers for its delicious taste and high nutritional content, including proteins and trace elements, giving it significant economic value. However, variations in taste and nutritional value among crabs from different regions lead to considerable price differences, fueling the prevalence of counterfeit crabs in the market. Currently, there are no rapid detection methods to verify the origin of Chinese mitten crabs, making it crucial to develop fast and accurate detection techniques to protect consumer rights. This study focused on Chinese mitten crabs from different regions, specifically Hongze Lake, Tuo Lake, and Weishan Lake, by collecting near-infrared (NIR) diffuse reflectance spectral data from both the abdomen and carapace regions of the crabs. To eliminate noise from the spectral data, pretreatment was performed using Savitzky–Golay (SG) smoothing, Standard Normal Variate (SNV) transformation, and Multiplicative Scatter Correction (MSC). Key wavelengths reflecting the origin of Chinese mitten crabs were selected using Competitive Adaptive Reweighted Sampling (CARS), Bootstrap Soft Shrinkage (BOSS), and Uninformative Variable Elimination (UVE) algorithms. Finally, Support Vector Machine (SVM), Convolutional Neural Network (CNN), and Back Propagation Neural Network (BP) models were developed for rapid detection of crab origin. The results demonstrated that MSC provided the best preprocessing performance for NIR spectral data from both the abdomen and back of the crabs. For abdomen data, the SVM model developed using feature wavelengths selected by the CARS algorithm after MSC preprocessing achieved the highest accuracy (Acc) of 90.00%, with precision (P), recall (R), and F1-score for crabs from Weishan Lake at 89.29%, 86.21%, and 87.72%, respectively; for crabs from Tuo Lake at 86.96%, 95.24%, and 90.91%; and for crabs from Hongze Lake at 90.00%, 93.10%, and 91.53%. For carapace data, the SVM model based on wavelengths selected by the BOSS algorithm after MSC pretreatment achieved the best performance, with an Acc of 87.50%, and P, R, and F1 for crabs from Weishan Lake at 77.14%, 93.10%, and 84.38%; for Tuo Lake crabs at 100%, 90.47%, and 95.00%; and for Hongze Lake crabs at 92.31%, 80.00%, and 85.71%. In conclusion, NIR spectroscopy can effectively detect the origin of Chinese mitten crabs, providing technical support for developing rapid detection instruments and thereby safeguarding consumer rights. Full article
Show Figures

Figure 1

22 pages, 6670 KiB  
Article
Spatiotemporal Changes of Glaciers in the Yigong Zangbo River Basin over the Period of the 1970s to 2023 and Their Driving Factors
by Suo Yuan, Ninglian Wang, Jiawen Chang, Sugang Zhou, Chenlie Shi and Mingjie Zhao
Remote Sens. 2024, 16(17), 3272; https://doi.org/10.3390/rs16173272 - 3 Sep 2024
Viewed by 1354
Abstract
The glaciers in southeastern Tibet Plateau (SETP) influenced by oceanic climate are sensitive to global warming, and there remains a notable deficiency in accurate multitemporal change analyses of these glaciers. We conduct glacier inventories in the Yigong Zangbo River Basin (YZRB) in SETP [...] Read more.
The glaciers in southeastern Tibet Plateau (SETP) influenced by oceanic climate are sensitive to global warming, and there remains a notable deficiency in accurate multitemporal change analyses of these glaciers. We conduct glacier inventories in the Yigong Zangbo River Basin (YZRB) in SETP for the years 1988, 2015, and 2023 utilizing Landsat and Sentinel-2 imagery, and analyze the glacier spatiotemporal variation incorporating the existing glacier inventory data. Since the 1970s until 2023, the glaciers significantly retreated at a rate of 0.76 ± 0.11%·a−1, with the area decreasing from 2583.09 ± 88.80 km2 to 1635.89 ± 71.74 km2, and the ice volume reducing from 221.7017 ± 7.9618 km3 to 152.7429 ± 6.1747 km3. The most significant retreat occurred in glaciers smaller than 1 km2. Additionally, glaciers on southern aspects retreated slower than the northern counterparts. The glaciers in the western YZRB witnessed a significantly greater shrinkage rate than those in the eastern section, with the most pronounced changes occurring in Aso Longbu River Basin. Furthermore, severe glacier mass deficits were observed from 2000 to 2019, averaging a loss rate of 0.57 ± 0.06 m w.e. a−1. The continuous rise in air temperature has primarily induced a general widespread glacier change in the YZRB. However, diverse topography led to spatial variability in glacier changes with discrepancies as large as several times. The features of individual glaciers, such as glacier size, debris cover, and the development of ice-contact glacial lakes enhanced the local complexity of glacier change and elusive response behaviors to climate warming led by the different topographic conditions. Full article
(This article belongs to the Special Issue Remote Sensing of the Cryosphere (Second Edition))
Show Figures

Figure 1

29 pages, 29985 KiB  
Article
Research on Jianghan Plain Water System Dynamics and Influences with Multiple Landsat Satellites
by Feiyan Dong, Jie Huang, Linkui Meng, Linyi Li and Wen Zhang
Remote Sens. 2024, 16(15), 2770; https://doi.org/10.3390/rs16152770 - 29 Jul 2024
Viewed by 1247
Abstract
The study of the spatio-temporal distribution and evolution trends of water resources in large regions plays an important role in the study of regional water resource planning, regional economic and social development, and water disasters. In this study, a Landsat multi-index relationship and [...] Read more.
The study of the spatio-temporal distribution and evolution trends of water resources in large regions plays an important role in the study of regional water resource planning, regional economic and social development, and water disasters. In this study, a Landsat multi-index relationship and water probability thresholding method is developed based on the Google Earth Engine (GEE) platform, which can support the integration of multiple Landsat satellites. The algorithm jointly combines multiple remote sensing metrics along with the calculation of water probability to produce an interannual water body product for the Jianghan Plain on a 20-year time series. The results indicate that the Landsat multi-index relationship algorithm used in this study has high accuracy in extracting long-term water bodies in extensive, flat terrain areas such as the Jianghan Plain, with an overall accuracy (OA) of 97.23%. By analyzing the water body products and landscape patterns, we have identified the following features: (1) From 2002 to 2021, the changes in river water bodies in the Jianghan Plain were relatively small, and some lakes experienced a shrinkage in area. Overall, there is a strong correlation between water distribution and precipitation. (2) The complexity index of water bodies shows a strong negative correlation with effective irrigation area and population, indicating a strong mutual influence between water bodies and socio-economic activities. (3) Through the study of the distribution characteristics of built-up areas and the water system, it was found that for large rivers, the larger the size of the river, the more built-up areas are nearby. Most extensive built-up areas are located near large rivers. This study contributes to providing methods and data support for urban planning, water resource management, and disaster research in the Jianghan Plain. Full article
(This article belongs to the Section Remote Sensing for Geospatial Science)
Show Figures

Graphical abstract

20 pages, 7207 KiB  
Article
Multi-Source Remote Sensing Analysis of Yilong Lake’s Surface Water Dynamics (1965–2022): A Temporal and Spatial Investigation
by Ningying Bao, Weifeng Song, Jiangang Ma and Ya Chu
Water 2024, 16(14), 2058; https://doi.org/10.3390/w16142058 - 20 Jul 2024
Cited by 1 | Viewed by 1259
Abstract
With the acceleration of global warming and the intensification of anthropogenic activities, numerous lakes worldwide are experiencing reductions in their water surface areas. Yilong Lake, a typical shallow plateau lake located on the Yunnan–Guizhou Plateau in China, serves as a crucial water resource [...] Read more.
With the acceleration of global warming and the intensification of anthropogenic activities, numerous lakes worldwide are experiencing reductions in their water surface areas. Yilong Lake, a typical shallow plateau lake located on the Yunnan–Guizhou Plateau in China, serves as a crucial water resource for local human production, daily life, and ecosystem services. Hence, long-term comprehensive monitoring of its dynamic changes is essential for its effective protection. However, previous studies have predominantly utilized remote sensing data with limited temporal resolution, thus failing to reflect the long-term variations in Yilong Lake’s water body. This study employs high temporal resolution monitoring, utilizing multi-source satellite data (e.g., KeyHole, Landsat, HJ-1 A/B) images spanning from 1965 to 2022 to investigate the changes in Yilong Lake’s surface area, analyzing the influencing factors and ecological impacts of these changes. The results indicate that from 1965 to 2022, Yilong Lake’s water surface area decreased by 8.33 km2, with a maximum surface area of 40.49 km2 on 7 January 1986, and a minimum surface area of 10.64 km2 on 20 April 2013. These changes are characterized by three significant phases: (1) a rapid shrinking phase (1965–1979); (2) a fluctuating shrinking period (1986–2016); and (3) an expanding recovery phase (2016–2022). Spatially, the most significant shrinkage was observed along the southern and southwestern shores of the lake. The driving factors varied across different periods: sunshine duration was the dominant influence during the rapid shrinking phase (1965–1979), accounting for 82% of the changes; population and cropland area were the main drive factors during the fluctuating shrinking period (1986–2016), accounting for 56% of the changes; and during the expanding recovery phase (2016–2022), the population accounted for 75% of the changes in the lake’s surface area. Currently, the protection of Yilong Lake depends on water supplementation and strict regulation of outflow, resulting in the lake exhibiting characteristics similar to a reservoir. This long-term investigation provides baseline information for future lake monitoring. Our research findings can also guide decision-makers in urban water resource management and environmental protection, ensuring the scientific and rational use of watershed water resources, effectively curbing the shrinkage of Yilong Lake, and achieving long-term sustainable restoration of the lake’s ecology. Full article
(This article belongs to the Section Hydrology)
Show Figures

Figure 1

20 pages, 10369 KiB  
Article
Vegetation Dynamics since the Last Glacial Maximum in Central Yunnan, Southwest China
by Min Wang, Caiming Shen, Qifa Sun, Hongwei Meng, Linpei Huang, Hucai Zhang and Huiling Sun
Forests 2024, 15(7), 1075; https://doi.org/10.3390/f15071075 - 21 Jun 2024
Cited by 2 | Viewed by 1685
Abstract
Vegetation dynamics data since the Last Glacial Maximum (LGM) are essential for our understanding of ecosystem shifts and vegetation responses to climate change. Here, we present a pollen record covering the last 25,000 years from Lake Fuxian in central Yunnan, southwest China. Our [...] Read more.
Vegetation dynamics data since the Last Glacial Maximum (LGM) are essential for our understanding of ecosystem shifts and vegetation responses to climate change. Here, we present a pollen record covering the last 25,000 years from Lake Fuxian in central Yunnan, southwest China. Our study shows seven stages of vegetation dynamics since the LGM: The early LGM (stage 7 of 25,000–21,200 cal. a BP) witnessed less dense regional vegetation dominated by pine forests, evergreen broadleaved forests (EBFs), deciduous broadleaved forests (DBFs), montane hemlock forests, and fir/spruce forests. The late LGM (stage 6 of 21,200–17,500 cal. a BP) saw an expansion of grasslands, wetlands, and montane fir/spruce forests as well as a shrinkage of EBFs and DBFs. During the last deglaciation (stage 5 of 17,500–13,300 cal. a BP), dense regional vegetation was dominated by EBFs as well as deciduous oak and alder forests. The densest regional vegetation occurred in stage 4 of 13,300–11,200 cal. a BP, roughly equal to the Younger Dryas Chron, when pine forests, DBFs, EBFs, grasslands, and wetlands grew in the Lake Fuxian catchment. During the early to mid-Holocene (stage 3 of 11,200–5000 cal. a BP), dense regional vegetation was dominated by sweetgum forests, in addition to some pine forests and EBFs. After 5000 cal. a BP, the regional vegetation density became lower and lower, and forests became thinner and thinner. Pine forests expanded to their maximum of the entire sequence in stage 2 of 5000–2500 cal. a BP. A big deforestation event occurred in stage 1 (the last 2500 years), when grasslands, wetlands, and cultivated vegetation dominated regional vegetation in the catchment of Lake Fuxian. The regional vegetation since the LGM in the catchment of Lake Fuxian also experienced six major transitions, five centennial shift events, and one big large-scale and long-term deforestation event. These resulted from the responses of regional vegetation to climate changes during the LGM, last deglaciation, and early–mid-Holocene, as well as human influence in the late Holocene. The vegetation density since the LGM has changed with the 25° N summer insolation. Full article
(This article belongs to the Special Issue Quaternary Forest Dynamics in Monsoon Asia)
Show Figures

Figure 1

19 pages, 10014 KiB  
Article
Landscape Pattern Changes of Aquatic Vegetation Communities and Their Response to Hydrological Processes in Poyang Lake, China
by Zhengtao Zhu, Huilin Wang, Zhonghua Yang, Wenxin Huai, Dong Huang and Xiaohong Chen
Water 2024, 16(11), 1482; https://doi.org/10.3390/w16111482 - 23 May 2024
Cited by 5 | Viewed by 1843
Abstract
Hydrology is an important environmental factor for the evolution of wetland landscape patterns. In the past 20 years, Poyang Lake, the largest freshwater lake in China, has experienced significant inundation shrinkage and water level decrease, posing a significant threat to the local vegetation [...] Read more.
Hydrology is an important environmental factor for the evolution of wetland landscape patterns. In the past 20 years, Poyang Lake, the largest freshwater lake in China, has experienced significant inundation shrinkage and water level decrease, posing a significant threat to the local vegetation community. To explore the potential relationship between aquatic vegetation and hydrological processes in the recent hydrological situation, in this study, the landscape patterns of aquatic vegetation communities in Poyang Lake were studied using time-series Landsat remote sensing images and a support vector machine classifier. The stepwise regression analysis method was adopted to analyze the relationship between the vegetation area and hydrological factors. The results indicated that the area of submerged and emergent vegetation in the entire lake decreased significantly from 2001 to 2017, whereas the area of moist vegetation showed a remarkably increasing trend. The average distribution elevation of the submerged vegetation increased by 0.06 m per year. The corresponding landscape patterns showed that the degree of fragmentation of aquatic vegetation communities in Poyang Lake increased. Several hydrological factors were selected to quantify the potential impact of water level fluctuations. The correlation analysis results indicated that hydrological conditions during the rising- and high-water periods may be the key factors affecting the area of aquatic vegetation. This study systematically investigated the evolution of vegetation communities in Poyang Lake wetlands over the past two decades, which contributes to the protection and management of this unique ecosystem. Full article
Show Figures

Figure 1

28 pages, 20313 KiB  
Article
Machine Learning-Based Wetland Vulnerability Assessment in the Sindh Province Ramsar Site Using Remote Sensing Data
by Rana Waqar Aslam, Hong Shu, Iram Naz, Abdul Quddoos, Andaleeb Yaseen, Khansa Gulshad and Saad S. Alarifi
Remote Sens. 2024, 16(5), 928; https://doi.org/10.3390/rs16050928 - 6 Mar 2024
Cited by 60 | Viewed by 5312
Abstract
Wetlands provide vital ecological and socioeconomic services but face escalating pressures worldwide. This study undertakes an integrated spatiotemporal assessment of the multifaceted vulnerabilities shaping Khinjhir Lake, an ecologically significant wetland ecosystem in Pakistan, using advanced geospatial and machine learning techniques. Multi-temporal optical remote [...] Read more.
Wetlands provide vital ecological and socioeconomic services but face escalating pressures worldwide. This study undertakes an integrated spatiotemporal assessment of the multifaceted vulnerabilities shaping Khinjhir Lake, an ecologically significant wetland ecosystem in Pakistan, using advanced geospatial and machine learning techniques. Multi-temporal optical remote sensing data from 2000 to 2020 was analyzed through spectral water indices, land cover classification, change detection and risk mapping to examine moisture variability, land cover modifications, area changes and proximity-based threats over two decades. The random forest algorithm attained the highest accuracy (89.5%) for land cover classification based on rigorous k-fold cross-validation, with a training accuracy of 91.2% and a testing accuracy of 87.3%. This demonstrates the model’s effectiveness and robustness for wetland vulnerability modeling in the study area, showing 11% shrinkage in open water bodies since 2000. Inventory risk zoning revealed 30% of present-day wetland areas under moderate to high vulnerability. The cellular automata–Markov (CA–Markov) model predicted continued long-term declines driven by swelling anthropogenic pressures like the 29 million population growth surrounding Khinjhir Lake. The research demonstrates the effectiveness of integrating satellite data analytics, machine learning algorithms and spatial modeling to generate actionable insights into wetland vulnerability to guide conservation planning. The findings provide a robust baseline to inform policies aimed at ensuring the health and sustainable management and conservation of Khinjhir Lake wetlands in the face of escalating human and climatic pressures that threaten the ecological health and functioning of these vital ecosystems. Full article
Show Figures

Figure 1

13 pages, 4446 KiB  
Communication
The Expanding of Proglacial Lake Amplified the Frontal Ablation of Jiongpu Co Glacier since 1985
by Xuanru Zhao, Jinquan Cheng, Weijin Guan, Yuxuan Zhang and Bo Cao
Remote Sens. 2024, 16(5), 762; https://doi.org/10.3390/rs16050762 - 22 Feb 2024
Viewed by 1490
Abstract
In High Mountain Asia, most glaciers and glacial lakes have undergone rapid variations throughout changes in the climate. Unlike land-terminating glaciers, lake-terminating glaciers show rapid shrinkage due to dynamic interactions between proglacial lakes and glacier dynamics. In this study, we conducted a detailed [...] Read more.
In High Mountain Asia, most glaciers and glacial lakes have undergone rapid variations throughout changes in the climate. Unlike land-terminating glaciers, lake-terminating glaciers show rapid shrinkage due to dynamic interactions between proglacial lakes and glacier dynamics. In this study, we conducted a detailed analysis of the changes in the surface elevation, velocity, and especially frontal ablation on Jiongpu Co lake-terminating glacier. The results show that the Jiongpu Co glacier has twice as much negative mass balance compared to other glaciers, and the annual surface velocity has anomalously increased (3.6 m a−1 per decade) while other glaciers show a decreased trend. The frontal ablation fraction in the net mass loss of the Jiongpu Co glacier increased from 26% to 52% with the accelerated expansion of the proglacial lake. All available evidence indicates the presence of positive feedback between the proglacial lake and its host glacier. Our findings highlight the existence of proglacial lake affects the spatial change patterns of the lake-terminating glacier. Furthermore, the ongoing enlargement of the lake area amplifies the changes associated with the evolution of the lake-terminating glacier. Full article
Show Figures

Graphical abstract

Back to TopTop