Satellite Data Revealed That the Expansion of China’s Lakes Is Accompanied by Rising Temperatures and Wider Temperature Differences
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.2.1. Landsat Data and Joint Research Centre Global Surface Water (JRC Global Surface Water) Dataset
2.2.2. GLAKES Global Lakes Dataset
2.3. Method
2.3.1. Lake Surface Water Body and Temperature Extraction
2.3.2. Trend Analysis
3. Results and Analysis
3.1. Changes of Lake Surface Water Area in China
3.2. Changes of Lake Surface Water Temperature in China
3.3. Synthetic Changes of Lake Surface Water Area and Temperature in China
3.3.1. Coupling Relationship Between LSWA and Mean LSWT in China
3.3.2. Coupling Relationship Between LSWA and LSWT_mmd in China
4. Discussion
4.1. Comparison with Existing Studies
4.2. Implications to Water Resource Management
4.3. Limitations and Future Work
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liu, K.; Song, C.; Zhao, S.; Wang, J.; Chen, T.; Zhan, P.; Fan, C.; Zhu, J. Mapping inundated bathymetry for estimating lake water storage changes from SRTM DEM: A global investigation. Remote Sens. Environ. 2024, 301, 113960. [Google Scholar] [CrossRef]
- Lehner, B.; Döll, P. Development and validation of a global database of lakes, reservoirs and wetlands. J. Hydrol. 2004, 296, 1–22. [Google Scholar] [CrossRef]
- Wang, J.; Sheng, Y.; Tong, T.S.D. Monitoring decadal lake dynamics across the Yangtze Basin downstream of Three Gorges Dam. Remote Sens. Environ. 2014, 152, 251–269. [Google Scholar] [CrossRef]
- Ma, S.; Liao, J.; Jing, R.; Chen, J. A dataset of lake level changes in China between 2002 and 2023 using multi-altimeter data. Big Earth Data 2024, 8, 166–188. [Google Scholar] [CrossRef]
- Trumpickas, J.; Shuter, B.J.; Minns, C.K. Forecasting impacts of climate change on Great Lakes surface water temperatures. J. Great Lakes Res. 2009, 35, 454–463. [Google Scholar] [CrossRef]
- Woolway, R.I.; Kraemer, B.M.; Lenters, J.D.; Merchant, C.J.; O’Reilly, C.M.; Sharma, S. Global lake responses to climate change. Nat. Rev. Earth Environ. 2020, 1, 388–403. [Google Scholar] [CrossRef]
- Piccolroaz, S.; Zhu, S.; Ptak, M.; Sojka, M.; Du, X. Warming of lowland Polish lakes under future climate change scenarios and consequences for ice cover and mixing dynamics. J. Hydrol. Reg. Stud. 2021, 34, 100780. [Google Scholar] [CrossRef]
- Peng, Z.; Yang, K.; Shang, C.; Duan, H.; Tang, L.; Zhang, Y.; Cao, Y.; Luo, Y. Attribution analysis of lake surface water temperature changing—Taking China’s six main lakes as example. Ecol. Indic. 2022, 145, 109651. [Google Scholar] [CrossRef]
- Di Nunno, F.; Zhu, S.; Ptak, M.; Sojka, M.; Granata, F. A stacked machine learning model for multi-step ahead prediction of lake surface water temperature. Sci. Total Environ. 2023, 890, 164323. [Google Scholar] [CrossRef]
- Woolway, R.I.; Sharma, S.; Smol, J.P. Lakes in Hot Water: The Impacts of a Changing Climate on Aquatic Ecosystems. Bioscience 2022, 72, 1050–1061. [Google Scholar] [CrossRef]
- Gilarranz, L.J.; Narwani, A.; Odermatt, D.; Siber, R.; Dakos, V. Regime shifts, trends, and variability of lake productivity at a global scale. Proc. Natl. Acad. Sci. USA 2022, 119, e2116413119. [Google Scholar] [CrossRef]
- Zhang, Y.; An, C.B.; Zheng, L.Y.; Liu, L.Y.; Zhang, W.S.; Lu, C.; Zhang, Y.Z. Assessment of lake area in response to climate change at varying elevations: A case study of Mt. Tianshan, Central Asia. Sci. Total Environ. 2023, 869, 161665. [Google Scholar] [CrossRef]
- Luo, Y.; Chen, R.; Yang, K.; Zhou, X.; Jia, T.; Shang, C.; Pei, X.; Wang, Q.; Li, D.; Peng, C.; et al. Response of changes in lake area to drought and land use change. Sci. Total Environ. 2024, 947, 174638. [Google Scholar] [CrossRef]
- Ma, F.; Chen, J.; Chen, J.; Wang, T.; Han, L.; Zhang, X.; Yan, J. Evolution of the hydro-ecological environment and its natural and anthropogenic causes during 1985–2019 in the Nenjiang River basin. Sci. Total Environ. 2021, 799, 149256. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, H.; Liu, Q.; Duan, L.; Zhou, Q. Total nitrogen and community turnover determine phosphorus use efficiency of phytoplankton along nutrient gradients in plateau lakes. J. Environ. Sci. 2023, 124, 699–711. [Google Scholar] [CrossRef]
- Nie, Y.; Sheng, Y.; Liu, Q.; Liu, L.; Liu, S.; Zhang, Y.; Song, C. A regional-scale assessment of Himalayan glacial lake changes using satellite observations from 1990 to 2015. Remote Sens. Environ. 2017, 189, 1–13. [Google Scholar] [CrossRef]
- Zhang, Z.; Chang, J.; Xu, C.Y.; Zhou, Y.; Wu, Y.; Chen, X.; Jiang, S.; Duan, Z. The response of lake area and vegetation cover variations to climate change over the Qinghai-Tibetan Plateau during the past 30 years. Sci. Total Environ. 2018, 635, 443–451. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Zhou, T.; Liu, M.; Chen, Y.; Shang, H.; Zhu, L.; Shedayi, A.A.; Yu, H.; Cheng, G.; Liu, G.; et al. Linkages of the dynamics of glaciers and lakes with the climate elements over the Tibetan Plateau. Earth-Sci. Rev. 2018, 185, 308–324. [Google Scholar] [CrossRef]
- Woolway, R.I.; Albergel, C.; Frölicher, T.L.; Perroud, M. Severe Lake Heatwaves Attributable to Human-Induced Global Warming. Geophys. Res. Lett. 2022, 49, e2021GL097031. [Google Scholar] [CrossRef]
- O’Reilly, C.M.; Sharma, S.; Gray, D.K.; Hampton, S.E.; Read, J.S.; Rowley, R.J.; Schneider, P.; Lenters, J.D.; McIntyre, P.B.; Kraemer, B.M.; et al. Rapid and highly variable warming of lake surface waters around the globe. Geophys. Res. Lett. 2015, 42, 773–781. [Google Scholar] [CrossRef]
- Wang, W.; Shi, K.; Wang, X.; Zhang, Y.; Qin, B.; Zhang, Y.; Woolway, R.I. The impact of extreme heat on lake warming in China. Nat. Commun. 2024, 15, 70. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.; Zheng, H.; Wu, Y.; Fan, L.; Wen, M.; Li, J.; Zhang, F.; Zhu, L.; Zhang, B. An integrated dataset of daily lake surface water temperature over the Tibetan Plateau. Earth Syst. Sci. Data 2022, 14, 3411–3422. [Google Scholar] [CrossRef]
- Xie, C.; Zhang, X.; Zhuang, L.; Zhu, R.; Guo, J. Analysis of surface temperature variation of lakes in China using MODIS land surface temperature data. Sci. Rep. 2022, 12, 2415. [Google Scholar] [CrossRef]
- Zhang, G.; Bolch, T.; Chen, W.; Cretaux, J.F. Comprehensive estimation of lake volume changes on the Tibetan Plateau during 1976–2019 and basin-wide glacier contribution. Sci. Total Environ. 2021, 772, 145463. [Google Scholar] [CrossRef]
- Zhang, G.; Yao, T.; Shum, C.K.; Yi, S.; Yang, K.; Xie, H.; Feng, W.; Bolch, T.; Wang, L.; Behrangi, A.; et al. Lake volume and groundwater storage variations in Tibetan Plateau’s endorheic basin. Geophys. Res. Lett. 2017, 44, 5550–5560. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, G.; Zhu, T. Seasonal cycles of lakes on the Tibetan Plateau detected by Sentinel-1 SAR data. Sci. Total Environ. 2020, 703, 135563. [Google Scholar] [CrossRef] [PubMed]
- Webb, E.E.; Liljedahl, A.K. Diminishing lake area across the northern permafrost zone. Nat. Geosci. 2023, 16, 202–209. [Google Scholar] [CrossRef]
- Bonnema, M.; David, C.H.; Frasson, R.P.d.M.; Oaida, C.; Yun, S.H. The global surface area variations of lakes and reservoirs as seen from satellite remote sensing. Geophys. Res. Lett. 2022, 49, e2022GL098987. [Google Scholar] [CrossRef]
- Hayes, N.M.; Deemer, B.R.; Corman, J.R.; Razavi, N.R.; Strock, K.E. Key differences between lakes and reservoirs modify climate signals: A case for a new conceptual model. Limnol. Oceanogr. Lett. 2017, 2, 47–62. [Google Scholar] [CrossRef]
- Tao, S.; Fang, J.; Ma, S.; Cai, Q.; Xiong, X.; Tian, D.; Zhao, X.; Fang, L.; Zhang, H.; Zhu, J.; et al. Changes in China’s lakes: Climate and human impacts. Natl. Sci. Rev. 2020, 7, 132–140. [Google Scholar] [CrossRef]
- Ma, R.; Yang, G.; Duan, H.; Jiang, J.; Wang, S.; Feng, X.; Li, A.; Kong, F.; Xue, B.; Wu, J.; et al. China’s lakes at present: Number, area and spatial distribution. Sci. China Earth Sci. 2010, 54, 283–289. [Google Scholar] [CrossRef]
- Wang, S.; Dou, H. Chinese Lakes Inventory. In Institute of Geography and Limnology, Beijing; Publisher Science Press: Beijing, China, 1998. [Google Scholar]
- Ma, R.; Duan, H.; Hu, C.; Feng, X.; Li, A.; Ju, W.; Jiang, J.; Yang, G. A half-century of changes in China’s lakes: Global warming or human influence? Geophys. Res. Lett. 2010, 37, L24106. [Google Scholar] [CrossRef]
- Zhang, G.; Yao, T.; Chen, W.; Zheng, G.; Shum, C.K.; Yang, K.; Piao, S.; Sheng, Y.; Yi, S.; Li, J.; et al. Regional differences of lake evolution across China during 1960s–2015 and its natural and anthropogenic causes. Remote Sens. Environ. 2019, 221, 386–404. [Google Scholar] [CrossRef]
- Zhang, Y.; Deng, J.; Qin, B.; Zhu, G.; Zhang, Y.; Jeppesen, E.; Tong, Y. Importance and vulnerability of lakes and reservoirs supporting drinking water in China. Fundam. Res. 2023, 3, 265–273. [Google Scholar] [CrossRef]
- Wang, X.; Shi, K.; Zhang, Y.; Qin, B.; Zhang, Y.; Wang, W.; Woolway, R.I.; Piao, S.; Jeppesen, E. Climate change drives rapid warming and increasing heatwaves of lakes. Sci. Bull. 2023, 68, 1574–1584. [Google Scholar] [CrossRef]
- Wu, Y.; Zhong, Y.; Liu, S.; Xu, G.; Xiao, C.; Wu, X.; Xie, B.; Li, Z.; Shum, C.K. Hydrogeodesy Facilitates the Accurate Assessment of Extreme Drought Events. J. Earth Sci. 2025, 36, 347–350. [Google Scholar] [CrossRef]
- Wu, X.; Wang, Z.; Zhou, X.; Lai, C.; Chen, X. Trends in temperature extremes over nine integrated agricultural regions in China, 1961–2011. Theor. Appl. Climatol. 2016, 129, 1279–1294. [Google Scholar] [CrossRef]
- Liang, J.; Pan, S.; Xia, N.; Chen, W.; Li, M. Threshold response of the agricultural modernization to the open crop straw burning CO2 emission in China’s nine major agricultural zones. Agric. Ecosyst. Environ. 2024, 368, 109005. [Google Scholar] [CrossRef]
- Wang, R.; Wang, M.; Ren, C.; Chen, G.; Mills, G.; Ching, J. Mapping local climate zones and its applications at the global scale: A systematic review of the last decade of progress and trend. Urban. Clim. 2024, 57, 102129. [Google Scholar] [CrossRef]
- Masek, J.G.; Vermote, E.F.; Saleous, N.E.; Wolfe, R.; Hall, F.G.; Huemmrich, K.F.; Gao, F.; Kutler, J.; Lim, T.-K. A Landsat surface reflectance dataset for North America, 1990–2000. IEEE Geosci. Remote Sens. Lett. 2006, 3, 68–72. [Google Scholar] [CrossRef]
- Vermote, E.; Justice, C.; Claverie, M.; Franch, B. Preliminary analysis of the performance of the Landsat 8/OLI land surface reflectance product. Remote Sens. Environ. 2016, 185, 46–56. [Google Scholar] [CrossRef] [PubMed]
- Malakar, N.K.; Hulley, G.C.; Hook, S.J.; Laraby, K.; Cook, M.; Schott, J.R. An Operational Land Surface Temperature Product for Landsat Thermal Data: Methodology and Validation. IEEE Trans. Geosci. Remote Sens. 2018, 56, 5717–5735. [Google Scholar] [CrossRef]
- Pi, X.; Luo, Q.; Feng, L.; Xu, Y.; Tang, J.; Liang, X.; Ma, E.; Cheng, R.; Fensholt, R.; Brandt, M.; et al. Mapping global lake dynamics reveals the emerging roles of small lakes. Nat. Commun. 2022, 13, 5777. [Google Scholar] [CrossRef] [PubMed]
- Meng, Y.A.; Yu, Y.; Cupples, L.A.; Farrer, L.A.; Lunetta, K.L. Performance of random forest when SNPs are in linkage disequilibrium. BMC Bioinform. 2009, 10, 78. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Breiman, L.; Friedman, J.H.; Olshen, R.A.; Stone, C.J. Classification and Regression Trees. In The Wadsworth & Brooks/Cole Statistics/Probability Series: Statistics: A Guide to the Unknown; Wadsworth & Brooks Series; Publisher Routledge: Abingdon, UK, 1984. [Google Scholar]
- Breiman, L. Bagging predictors. Mach. Learn. 1996, 24, 123–140. [Google Scholar] [CrossRef]
- Freund, Y.; Schapire, R.E. Experiments with a New Boosting Algorithm. In Proceedings of the ICML, Murray Hill, NJ, USA, 22 January 1996; pp. 148–156. [Google Scholar]
- Friedman, J.; Hastie, T.; Tibshirani, R. Additive logistic regression: A statistical view of boosting (with discussion and a rejoinder by the authors). Ann. Stat. 2000, 28, 337–407. [Google Scholar] [CrossRef]
- Salman, H.A.; Kalakech, A.; Steiti, A. Random Forest Algorithm Overview. Babylon. J. Mach. Learn. 2024, 2024, 69–79. [Google Scholar] [CrossRef]
- Wang, R.; Wang, M. Multi-scale analysis of surface thermal environment in relation to urban form: A case study of the Guangdong-Hong Kong-Macao Greater Bay Area. Sustain. Cities Soc. 2023, 99, 104953. [Google Scholar] [CrossRef]
- Montgomery, D.C.; Peck, E.A.; Vining, G.G. Introduction to Linear Regression Analysis; John Wiley & Sons: Hoboken, NJ, USA, 2021. [Google Scholar]
- Parchami, N.; Mostafazadeh, R.; Ouri, A.E.; Imani, R. Spatio-temporal analysis of river flow master recession curve characteristics over Ardabil province rivers. Phys. Chem. Earth Parts A/B/C 2024, 134, 103586. [Google Scholar] [CrossRef]
- Liu, W.; Dai, X.; Wang, M.; Lan, Y.; Qu, G.; Shan, Y.; Ren, J.; Li, W.; Liang, S.; Wang, Y.; et al. Area Changes and Influencing Factors of Large Inland Lakes in Recent 20 Years: A Case Study of Sichuan Province, China. Water 2022, 14, 2856. [Google Scholar] [CrossRef]
- Zhang, G.; Yao, T.; Xie, H.; Yang, K.; Zhu, L.; Shum, C.K.; Bolch, T.; Yi, S.; Allen, S.; Jiang, L.; et al. Response of Tibetan Plateau lakes to climate change: Trends, patterns, and mechanisms. Earth-Sci. Rev. 2020, 208, 103269. [Google Scholar] [CrossRef]
- Jing, Z.; Yannian, Z.; Juan, W.; Huijuan, H.; Jiye, Z. Spatio-temporal change of water area in Hongjiannao Lake and the effectiveness of protection measures. J. Desert Res. 2019, 39, 195. [Google Scholar]
- Chen, X.; Wang, Y.; Pei, H.; Guo, Y.; Zhang, J.; Shen, Y. Expansion of irrigation led to inland lake shrinking in semi-arid agro-pastoral region, China: A case study of Chahannur Lake. J. Hydrol. Reg. Stud. 2022, 41, 101086. [Google Scholar] [CrossRef]
- Wang, Y.; Shen, Y.; Guo, Y.; Li, B.; Chen, X.; Guo, X.; Yan, H. Increasing shrinkage risk of endorheic lakes in the middle of farming-pastoral ecotone of Northern China. Ecol. Indic. 2022, 135, 108523. [Google Scholar] [CrossRef]
- Wen, L.; Wang, C.; Li, Z.; Zhao, L.; Lyu, S.; Leppäranta, M.; Kirillin, G.; Chen, S. Thermal Responses of the Largest Freshwater Lake in the Tibetan Plateau and Its Nearby Saline Lake to Climate Change. Remote Sens. 2022, 14, 1774. [Google Scholar] [CrossRef]
- Zheng, S.; Zhang, B.; Peng, D.; Yu, L.; Lin, B.; Pan, Y.; Xie, Q. The trend towards a warmer and wetter climate observed in arid and semi-arid areas of northwest China from 1959 to 2019. Environ. Res. Commun. 2021, 3, 115011. [Google Scholar] [CrossRef]
- Liu, J.; Liu, S.; Tang, X.; Ding, Z.; Ma, M.; Yu, P. The Response of Land Surface Temperature Changes to the Vegetation Dynamics in the Yangtze River Basin. Remote Sens. 2022, 14, 5093. [Google Scholar] [CrossRef]
- Duo, A.; Zhao, W.; Qu, X.; Jing, R.; Xiong, K. Spatio-temporal variation of vegetation coverage and its response to climate change in North China plain in the last 33 years. Int. J. Appl. Earth Obs. Geoinf. 2016, 53, 103–117. [Google Scholar]
- Wang, W.; Teng, H.; Zhao, L.; Han, L. Long-Term Changes in Water Body Area Dynamic and Driving Factors in the Middle-Lower Yangtze Plain Based on Multi-Source Remote Sensing Data. Remote Sens. 2023, 15, 1816. [Google Scholar] [CrossRef]
- Chen, L.; Zhang, G.; Xu, Y.J.; Chen, S.; Wu, Y.; Gao, Z.; Yu, H. Human Activities and Climate Variability Affecting Inland Water Surface Area in a High Latitude River Basin. Water 2020, 12, 382. [Google Scholar] [CrossRef]
- Ma, W.; Bai, L.; Ma, W.; Hu, W.; Xie, Z.; Su, R.; Wang, B.; Ma, Y. Interannual and Monthly Variability of Typical Inland Lakes on the Tibetan Plateau Located in Three Different Climatic Zones. Remote Sens. 2022, 14, 5015. [Google Scholar] [CrossRef]
- Feng, S.; Liu, S.; Huang, Z.; Jing, L.; Zhao, M.; Peng, X.; Yan, W.; Wu, Y.; Lv, Y.; Smith, A.R.; et al. Inland water bodies in China: Features discovered in the long-term satellite data. Proc. Natl. Acad. Sci. USA 2019, 116, 25491–25496. [Google Scholar] [CrossRef]
- Mao, D.; Wang, Z.; Yang, H.; Li, H.; Thompson, J.; Li, L.; Song, K.; Chen, B.; Gao, H.; Wu, J. Impacts of Climate Change on Tibetan Lakes: Patterns and Processes. Remote Sens. 2018, 10, 358. [Google Scholar] [CrossRef]
- Gao, K.; Duan, A.; Chen, D. Interdecadal summer warming of the Tibetan Plateau potentially regulated by a sea surface temperature anomaly in the Labrador Sea. Int. J. Climatol. 2020, 41, E2633–E2643. [Google Scholar] [CrossRef]
- Chu, D.; Yong, Y.; Luobu, J.; Bianba, C. The variations of snow cover days over the Tibetan Plateau during 1981–2010. J. Glaciol. Geocryol. 2015, 37, 1461–1472. [Google Scholar] [CrossRef]
- Huang, X.; Deng, J.; Wang, W.; Feng, Q.; Liang, T. Impact of climate and elevation on snow cover using integrated remote sensing snow products in Tibetan Plateau. Remote Sens. Environ. 2017, 190, 274–288. [Google Scholar] [CrossRef]
- Wang, W.; Lee, X.; Xiao, W.; Liu, S.; Schultz, N.; Wang, Y.; Zhang, M.; Zhao, L. Global lake evaporation accelerated by changes in surface energy allocation in a warmer climate. Nat. Geosci. 2018, 11, 410–414. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, X.; Zhang, W.; Zhou, H.; Shang, C.; Hua, M. The performance evaluation for δ18 O in precipitation simulated by iGCM of global typical station and investigating the reasons of δ18 O inter-annual oscillation in Hongkong station. Quat. Sci. 2018, 38, 1518–1531. [Google Scholar]
- Wan, W.; Zhao, L.; Xie, H.; Liu, B.; Li, H.; Cui, Y.; Ma, Y.; Hong, Y. Lake Surface Water Temperature Change Over the Tibetan Plateau From 2001 to 2015: A Sensitive Indicator of the Warming Climate. Geophys. Res. Lett. 2018, 45, 11177–11186. [Google Scholar] [CrossRef]
- Su, Y.; Ran, Y.; Zhang, G.; Li, X. Remotely sensed lake area changes in permafrost regions of the Arctic and the Tibetan Plateau between 1987 and 2017. Sci. Total Environ. 2023, 880, 163355. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Yao, T.; Xie, H.; Zhang, K.; Zhu, F. Lakes’ state and abundance across the Tibetan Plateau. Chin. Sci. Bull. 2014, 59, 3010–3021. [Google Scholar] [CrossRef]
- Xu, Y.; Cheng, X.; Gun, Z. What Drive Regional Changes in the Number and Surface Area of Lakes Across the Yangtze River Basin During 2000–2019: Human or Climatic Factors? Water Resour. Res. 2022, 58, e2021WR030616. [Google Scholar] [CrossRef]
- Tao, Y.; Wang, Y.; Rhoads, B.; Wang, D.; Ni, L.; Wu, J. Quantifying the impacts of the Three Gorges Reservoir on water temperature in the middle reach of the Yangtze River. J. Hydrol. 2020, 582, 124476. [Google Scholar] [CrossRef]
- Huang, L.; Wang, X.; Yan, Y.; Jin, L.; Yang, K.; Chen, A.; Zheng, R.; Ottlé, C.; Wang, C.; Cui, Y.; et al. Attribution of Lake Surface Water Temperature Change in Large Lakes Across China Over Past Four Decades. J. Geophys. Res. Atmos. 2023, 128, e2022JD038465. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change (IPCC). Climate Change 2021—The Physical Science Basis; Cambridge University Press: Cambridge, UK, 2023. [Google Scholar] [CrossRef]
- Duan, H.; Luo, J.; Cao, Z.; Xue, K.; Xiao, Q.; Liu, D. Progress in remote sensing of aquatic environments at the watershed scale. Prog. Geogr. 2019, 38, 1182–1195. [Google Scholar] [CrossRef]
- Chen, T.; Song, C.; Zhan, P.; Yao, J.; Li, Y.; Zhu, J. Remote sensing estimation of the flood storage capacity of basin-scale lakes and reservoirs at high spatial and temporal resolutions. Sci. Total Environ. 2022, 807, 150772. [Google Scholar] [CrossRef]
- Ho, L.T.; Goethals, P.L.M. Opportunities and Challenges for the Sustainability of Lakes and Reservoirs in Relation to the Sustainable Development Goals (SDGs). Water 2019, 11, 1462. [Google Scholar] [CrossRef]
- Belgiu, M.; Drăguţ, L. Random forest in remote sensing: A review of applications and future directions. ISPRS J. Photogramm. Remote Sens. 2016, 114, 24–31. [Google Scholar] [CrossRef]
- Hirabayashi, Y.; Mahendran, R.; Koirala, S.; Konoshima, L.; Yamazaki, D.; Watanabe, S.; Kim, H.; Kanae, S. Global flood risk under climate change. Nat. Clim. Change 2013, 3, 816–821. [Google Scholar] [CrossRef]
- Li, H.; Zhao, X.; Ding, X.; Zhang, R. The Impact of Rapid Urbanization on the Efficiency of Industrial Green Water Use in Urban Agglomerations around Poyang Lake. Sustainability 2024, 16, 8698. [Google Scholar] [CrossRef]
- Nainwal, A. Water Resource Management for Sustainable Urban Development. Math. Stat. Eng. Appl. 2021, 70, 706–712. [Google Scholar] [CrossRef]
- Wang, M.; He, G.; Hu, T.; Yang, M.; Zhang, Z.; Zhang, Z.; Wang, G.; Li, H.; Gao, W.; Liu, X. Innovative hybrid algorithm for simultaneous land surface temperature and emissivity retrieval: Case study with SDGSAT-1 data. Remote Sens. Environ. 2024, 315, 114449. [Google Scholar] [CrossRef]
Distinct Geographical Regions | Number of Lakes | Different Types of Lakes | Number of Lakes | |
---|---|---|---|---|
NCP | 548 | permafrost or non-permafrost | recharge from permafrost | 1045 |
YGP | 185 | non-recharge from permafrost | 3048 | |
NAASR | 641 | total number of lakes of this category | 4093 | |
SC | 222 | Endorheic or exorheic | endorheic | 1212 |
SBASR | 67 | exorheic | 2881 | |
MLYP | 1051 | total number of lakes of this category | 4093 | |
QTP | 1014 | Manmade reservoirs or natural lakes | manmade reservoirs | 852 |
LP | 57 | natural lakes | 3241 | |
HHHP | 308 | total number of lakes of this category | 4093 | |
Total number of lakes studied | 4093 |
Index | Formula | Serial Number |
---|---|---|
MNDWI | (1) | |
NDBI | (2) | |
NDVI | (3) | |
EWI | (4) | |
NDWI | (5) | |
LSWI | (6) | |
NBR2 | (7) | |
AWEI | (8) |
Evaluation Indicators | Precision Value |
---|---|
Validation overall accuracy | 0.98989898989899 |
User accuracy | [[0], [0.9772727272727273], [1]] |
Producer accuracy | [[0], [1], [0.9821428571428571]] |
Kappa | 0.9794988610478361 |
Region | The Mean Value of RKLSWA (%/year) | Variance |
---|---|---|
HHHP | −0.003636 | 0.003119 |
LP | 0.029050 | 0.001098 |
MLYP | −0.000839 | 0.002282 |
NAASR | 0.021927 | 0.002273 |
NCP | 0.007927 | 0.001454 |
QTP | 0.020254 | 0.001417 |
SBASR | 0.045260 | 0.002793 |
Region | The Mean Value of RKLSWA (%/year) | Variance |
---|---|---|
non-permafrost | 0.678165 | 23.838035 |
permafrost | 2.559002 | 12.817852 |
exorheic | 0.78819 | 23.254914 |
endorheic | 2.176142 | 15.868552 |
natural lakes | 0.929816 | 20.185217 |
manmade lakes | 3.153732 | 20.994347 |
Region | The Mean Value of KLSWT_max (°C/Year) | The Variance of KLSWT_max | The Mean Value of KLSWT_mean (°C/Year) | The Variance of KLSWT_mean | The Mean Value of KLSWT_min (°C/Year) | The Variance of Kmin |
---|---|---|---|---|---|---|
HHHP | −0.0573 | 0.013 | −0.054 | 0.0048 | −0.0296 | 0.0021 |
LP | 0.0239 | 0.0199 | 0.0083 | 0.0075 | 0.0066 | 0.0037 |
MLYP | −0.0333 | 0.005 | −0.0309 | 0.0023 | −0.0216 | 0.0019 |
NAASR | −0.0043 | 0.0143 | −0.0136 | 0.0048 | −0.0161 | 0.0071 |
NCP | −0.0199 | 0.0087 | −0.0184 | 0.0028 | −0.0157 | 0.0035 |
QTP | 0.0138 | 0.0079 | 0.0040 | 0.0026 | −0.0007 | 0.0039 |
SBASR | 0.0080 | 0.0023 | 0.0066 | 0.0011 | 0.0053 | 0.0015 |
Type | The Mean Value of KLSWT_max (°C/Year) | The Variance of KLSWT_max | The Mean Value of KLSWT_mean (°C/Year) | The Variance of KLSWT_mean | The Mean Value of KLSWT_min (°C/Year) | The Variance of KLSWT_min |
---|---|---|---|---|---|---|
non-permafrost | 0.0007 | 0.0014 | 0.0008 | 0.0014 | 0.0023 | 0.0014 |
permafrost | 0.0227 | 0.0009 | 0.0209 | 0.0009 | 0.0222 | 0.0009 |
exorheic | 0.002 | 0.0014 | 0.0007 | 0.0014 | 0.0028 | 0.0014 |
endorheic | 0.0189 | 0.0011 | 0.0164 | 0.0011 | 0.0189 | 0.0012 |
natural lakes | 0.0057 | 0.0012 | 0.0035 | 0.0012 | 0.0056 | 0.0013 |
manmade lakes | 0.0192 | 0.0018 | 0.0201 | 0.0019 | 0.0211 | 0.0018 |
Type | Number of Lakes with Type 00 | Number of Lakes with Type 01 | Number of Lakes with Type 10 | Number of Lakes with Type 11 |
---|---|---|---|---|
PIA | 0 | 1 | 0 | 2 |
PIN | 32 | 14 | 0 | 429 |
POA | 0 | 2 | 0 | 3 |
PON | 19 | 4 | 0 | 88 |
UPIA | 0 | 0 | 0 | 3 |
UPIN | 61 | 14 | 0 | 81 |
UPOA | 90 | 40 | 2 | 93 |
UPON | 455 | 59 | 2 | 127 |
Region | Number of Lakes with Type 00 | Number of Lakes with Type 01 | Number of Lakes with Type 10 | Number of Lakes with Type 11 |
---|---|---|---|---|
HHHP | 57 | 13 | 0 | 13 |
LP | 3 | 2 | 0 | 6 |
MLYP | 275 | 50 | 1 | 54 |
NAASR | 76 | 20 | 1 | 172 |
NCP | 93 | 10 | 1 | 79 |
QTP | 62 | 25 | 0 | 451 |
SBASR | 10 | 1 | 0 | 17 |
SC | 52 | 6 | 1 | 8 |
YGP | 28 | 7 | 0 | 26 |
Type | Number of Lakes with Type 00 | Number of Lakes with Type 01 | Number of Lakes with Type 10 | Number of Lakes with Type 11 |
---|---|---|---|---|
PIA | 0 | 1 | 0 | 3 |
PIN | 23 | 49 | 3 | 379 |
POA | 0 | 4 | 0 | 2 |
PON | 15 | 7 | 1 | 77 |
UPIA | 1 | 0 | 0 | 2 |
UPIN | 53 | 28 | 3 | 69 |
UPOA | 74 | 54 | 13 | 86 |
UPON | 32 | 67 | 50 | 155 |
Region | Number of Lakes with Type 00 | Number of Lakes with Type 01 | Number of Lakes with Type 10 | Number of Lakes with Type 11 |
---|---|---|---|---|
HHHP | 46 | 11 | 6 | 24 |
LP | 3 | 6 | 0 | 8 |
MLYP | 195 | 59 | 30 | 57 |
NAASR | 61 | 37 | 4 | 167 |
NCP | 76 | 15 | 6 | 93 |
QTP | 54 | 63 | 3 | 387 |
SBASR | 6 | 3 | 2 | 15 |
SC | 38 | 11 | 11 | 4 |
YGP | 19 | 5 | 8 | 18 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiao, Y.; Lu, Z.; Wang, M. Satellite Data Revealed That the Expansion of China’s Lakes Is Accompanied by Rising Temperatures and Wider Temperature Differences. Remote Sens. 2025, 17, 1546. https://doi.org/10.3390/rs17091546
Jiao Y, Lu Z, Wang M. Satellite Data Revealed That the Expansion of China’s Lakes Is Accompanied by Rising Temperatures and Wider Temperature Differences. Remote Sensing. 2025; 17(9):1546. https://doi.org/10.3390/rs17091546
Chicago/Turabian StyleJiao, Yibo, Zifan Lu, and Mengmeng Wang. 2025. "Satellite Data Revealed That the Expansion of China’s Lakes Is Accompanied by Rising Temperatures and Wider Temperature Differences" Remote Sensing 17, no. 9: 1546. https://doi.org/10.3390/rs17091546
APA StyleJiao, Y., Lu, Z., & Wang, M. (2025). Satellite Data Revealed That the Expansion of China’s Lakes Is Accompanied by Rising Temperatures and Wider Temperature Differences. Remote Sensing, 17(9), 1546. https://doi.org/10.3390/rs17091546