Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (23)

Search Parameters:
Keywords = lacustrine mixed rock

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 3653 KiB  
Article
The Origin and Mixed-Source Proportion of Natural Gas in the Dixin Area of the Junggar Basin: Geochemical Insights from Molecular and Isotopic Composition
by Sizhe Deng, Dujie Hou and Wenli Ma
Appl. Sci. 2025, 15(13), 7130; https://doi.org/10.3390/app15137130 - 25 Jun 2025
Viewed by 243
Abstract
The Dixi area of the Junggar Basin has favorable petroleum geological conditions, with the Cretaceous system representing one of the principal hydrocarbon-bearing strata. However, the genetic origin and mixing characteristics of natural gas across different tectonic zones remain insufficiently understood. In this study, [...] Read more.
The Dixi area of the Junggar Basin has favorable petroleum geological conditions, with the Cretaceous system representing one of the principal hydrocarbon-bearing strata. However, the genetic origin and mixing characteristics of natural gas across different tectonic zones remain insufficiently understood. In this study, a total of 65 natural gas samples were analyzed using molecular composition and stable carbon isotopic data to determine gas origins and quantify the contributions of different source rocks. A novel multivariate mathematical analysis method was developed and applied to convert compositional and isotopic data into quantitative parameters, enabling the accurate estimation of end-member mixing ratios in natural gas. This methodological innovation addresses the challenge of interpreting multi-source gas systems under complex geological conditions. The results show that the Cretaceous natural gas in the Dixi area is derived from three main sources, comprising both oil-type gas from Permian lacustrine source rocks and coal-type gas from Carboniferous coal-measure source rocks. The calculated mixing proportions exhibit significant spatial variation: in the northern Dixi area, coal-type gas dominates (67.8–84.3%), while the southern zone presents a broader mixture (25.6–68.4% coal-type gas). In the Dongdaohaizi Depression, oil-type gas is predominant, accounting for 89.4–97.7%. This study not only clarifies the genetic classification and mixing dynamics of natural gas in the Dixi area but also provides a quantitative framework for evaluating accumulation processes and source contributions in multi-source gas reservoirs. The proposed method offers valuable guidance for assessing resources and optimizing exploration strategies in the Junggar Basin and other similar basins. Full article
Show Figures

Figure 1

33 pages, 48291 KiB  
Article
The Influence of Seasonal Variations in a Continental Lacustrine Basin in an Arid Climate on the Occurrence Characteristics of Gypsum: A Case Study from the Paleogene Bottom Sandstone Member, Tabei Uplift
by Xiaoyang Gao, Wenxiang He, Luxing Dou, Jingwen Yan, Qi Sun, Zhenli Yi and Bin Li
Minerals 2025, 15(6), 639; https://doi.org/10.3390/min15060639 - 12 Jun 2025
Viewed by 403
Abstract
The occurrence of gypsum in clastic rocks of continental saline lake basins reflects complex depositional and diagenetic processes. However, its genesis remains relatively understudied. Based on core descriptions and thin-section analyses, this study investigates the occurrence types and genetic mechanisms of gypsum in [...] Read more.
The occurrence of gypsum in clastic rocks of continental saline lake basins reflects complex depositional and diagenetic processes. However, its genesis remains relatively understudied. Based on core descriptions and thin-section analyses, this study investigates the occurrence types and genetic mechanisms of gypsum in the Bottom Sandstone Member of the northern Tabei Uplift. Five types of gypsum occurrences are identified: layered gypsum, gypsum clasts, spotted gypsum, gypsum nodules, and a mixed deposition of clastic rocks and gypsum. The mixed deposition of clastic rocks and gypsum includes gypsiferous mudstone, muddy gypsum, gypsiferous mudstone containing muddy clasts, and sandy gypsum. Layered gypsum, spotted gypsum, gypsiferous mudstone, and muddy gypsum mainly result from in situ chemical precipitation during periods of high evaporation and reduced runoff. In contrast, gypsum clasts, gypsiferous mudstone containing muddy clasts, and sandy gypsum reflect processes of transportation and reworking induced by flood events. Seasonal variations in hydrodynamic conditions play a critical role in the formation and distribution of gypsum. During dry periods, surface runoff weakens or ceases, and the salinity of lake water or pore water in clastic deposits increases due to intense evaporation, promoting gypsum precipitation. During flood periods, increased runoff can erode previously formed gypsum, which is subsequently transported and deposited as gypsum clasts. The morphology of gypsum varies with its transport distance. These findings enhance our understanding of clastic–evaporite mixed systems in arid continental lacustrine settings and provide insights into sedimentary processes influenced by seasonal climatic fluctuations. Full article
(This article belongs to the Special Issue Deep-Time Source-to-Sink in Continental Basins)
Show Figures

Figure 1

18 pages, 6145 KiB  
Article
Classification and Analysis of Dominant Lithofacies of the Fengcheng Formation Shale Oil Reservoirs in the Mahu Sag, Junggar Basin, NW China
by An Xie, Heyuan Wu, Yong Tang, Wenjun He, Jingzhou Zhao, Weitao Wu, Jun Li, Yubin Bai and Liang Yue
Processes 2025, 13(4), 1065; https://doi.org/10.3390/pr13041065 - 2 Apr 2025
Viewed by 465
Abstract
The exploration of the Fengcheng Formation has revealed the characteristic orderly coexistence of conventional reservoirs, tight reservoirs, and shale reservoirs, constituting a full spectrum of reservoir types, and is important for unconventional oil and gas exploration and development. Affected by frequent volcanic tectonic [...] Read more.
The exploration of the Fengcheng Formation has revealed the characteristic orderly coexistence of conventional reservoirs, tight reservoirs, and shale reservoirs, constituting a full spectrum of reservoir types, and is important for unconventional oil and gas exploration and development. Affected by frequent volcanic tectonic movement, hot and dry paleoclimate, and the close provenance supply distance, unique saline–alkaline lacustrine deposits formed during the depositional period of the Fengcheng Formation. The lithologies of the Fengcheng Formation are highly diverse, with endogenous rocks, volcanic rocks, terrigenous debris, and mixed rocks overlapping and forming vertical reservoir changes ranging from meters to centimeters. Owing to the complexity of rock types and scarcity of rock samples, the evaluation of reservoirs in mixed-rock has progressed slowly. Hence, we aimed to evaluate the characteristics of Fengcheng Formation shale oil reservoirs. Centimeter-level core characteristics were analyzed based on the lithological change and structural characteristics. To investigate the lithofacies of the Fengcheng Formation in the Mahu Sag and factors affecting reservoir development, high-frequency sedimentary structures were analyzed using sub-bio-buffering electron microscopy, energy spectrum testing, and fluorescence analysis. The results showed that the shale oil reservoirs in the study area can be divided into four categories: glutenite, volcanic rock, mixed rock, and endogenous rock. The reservoir capacity has improved and can be divided into eight subcategories. Mixed-rock reservoirs can be further divided into four subcategories based on differences in structure and composition. Differences in the bedding and dolomite content are the main factors controlling the differences in the physical properties of this type of reservoir. This study provides a reference for the classification and characteristic study of shale oil reservoirs in saline–alkali lake basins. Full article
Show Figures

Figure 1

32 pages, 6811 KiB  
Article
Probing Petroleum Sources Using Geochemistry, Multivariate Analysis, and Basin Modeling: A Case Study from the Dibei Gas Field in the Northern Kuqa Foreland Basin, NW China
by Xinzhuo Wei, Keyu Liu, Xianzhang Yang, Jianliang Liu, Lu Zhou and Xiujian Ding
Appl. Sci. 2025, 15(5), 2425; https://doi.org/10.3390/app15052425 - 24 Feb 2025
Viewed by 546
Abstract
The Dibei Gas Field, located in the northern Kuqa Foreland Basin, Tarim Basin, western China, is one of the most important condensate gas-producing areas in China, with over one trillion cubic feet of gas reserves discovered in the Jurassic terrestrial reservoirs. However, further [...] Read more.
The Dibei Gas Field, located in the northern Kuqa Foreland Basin, Tarim Basin, western China, is one of the most important condensate gas-producing areas in China, with over one trillion cubic feet of gas reserves discovered in the Jurassic terrestrial reservoirs. However, further hydrocarbon exploration and development in the area is hampered by uncertainties on the petroleum sources. A robust oil–source and gas-source correlation analysis was carried out in the Dibei area to enhance our understanding of the gas accumulation potential. An integrated molecular geochemical analysis, multivariate analysis, and basin modeling were conducted to investigate source rocks, inclusion oils, reservoir oils, and gas from the Dibei area. Two types of source rocks have been identified in the Dibei area: a Jurassic coaly source rock and a Triassic lacustrine source rock based on multivariate analysis. The compositions of the n-alkanes, steranes, and terpanes and the carbon isotope ratios of individual n-alkanes in the inclusion oil extracts and reservoir oils from Jurassic Yangxia and Ahe reservoirs show distinct differences when compared with the two types of source extracts. Multiple oil sources are revealed in the Dibei area, with various degrees of mixing between reservoir oil (present) and inclusion oil (paleo), reflecting evolving oil sources. Basin modeling shows that during the late Himalayan orogeny, the Jurassic strata in the Dibei area experienced a rapid burial within ~20 Ma, with the oil generation window of the source rocks expanding greatly. This caused the shallowly buried Jurassic source rocks to enter the oil generation window, resulting in the occurrence of two oil sources for the inclusion oils and reservoir oils, and an increasing degree of mixing over time. Our finding confirms that the accumulated condensate gas in the Dibei area is mainly derived from the Jurassic source rocks. This allows the extent of prospective exploration to be better defined. Full article
(This article belongs to the Section Energy Science and Technology)
Show Figures

Figure 1

18 pages, 9717 KiB  
Article
Lithofacies Characteristics of the Lower Cretaceous Qing 1 Member in the Heiyupao Depression, Northern Binbei Area of the Songliao Basin
by Yali Liu, Wangpeng Li, Jiapeng Yuan, Pei Li, Xun Ge, Xiaotong Ge, Pengfei Liu, Haiguang Wu, Xuntao Yu and Botao Huang
Minerals 2025, 15(2), 125; https://doi.org/10.3390/min15020125 - 27 Jan 2025
Viewed by 844
Abstract
Strategic breakthroughs have been made in the exploration and evaluation of Gulong shale oil in the Songliao Basin. However, the Heiyupao Depression, located near the Gulong Depression, hosts a thick section of the Qingshankou Formation shale that has not been extensively studied. This [...] Read more.
Strategic breakthroughs have been made in the exploration and evaluation of Gulong shale oil in the Songliao Basin. However, the Heiyupao Depression, located near the Gulong Depression, hosts a thick section of the Qingshankou Formation shale that has not been extensively studied. This paper presents novel insights into the lithofacies characteristics, depositional environment, and reservoir features of the Qingshankou Formation shale in the Heiyupao Depression, with a specific focus on the origin and maturation of organic-rich shale. Four core wells were drilled, and 152 core samples were analyzed through a variety of techniques, including rock type classification, mineral composition, TOC content, rare earth elements, rock pyrolysis, organic matter type determination, and CT scanning. Results indicate that the Qingshankou shale is dominated by felsic compositions and Type I kerogen, with organic maturity varying across the section. Based on lithology, sedimentary structures, mineralogy, and organic matter abundance, five distinct lithofacies are identified: high-organic mud-rich felsic shale, high-organic sand-rich felsic shale, medium-organic sand-rich felsic shale, medium-organic massive shale, and low-organic sand-rich felsic shale. Notably, the Type A lithofacies (high-organic mud-rich felsic shale) is identified as a primary source rock due to its intergranular and organic matter pores, albeit with low porosity and poor connectivity. In contrast, the Type E lithofacies (low-organic sand-rich felsic shale) have high porosity, well-developed micro- and nano-scale pores, and strong connectivity, marking them as the primary reservoirs. The characteristics of this region differ significantly from those of Gulong shale oil, requiring different extraction strategies. The mineral composition of such shale is predominantly felsic rather than mixed. The findings not only provide theoretical support for the exploration of complex lacustrine shale in the Songliao Basin but also offer valuable insights for the resource development of similar non-marine shale systems worldwide. Full article
Show Figures

Figure 1

17 pages, 10016 KiB  
Article
Differences in the Genesis and Sources of Hydrocarbon Gas Fluid from the Eastern and Western Kuqa Depression
by Xianzhang Yang, Taohua He, Bin Wang, Lu Zhou, Ke Zhang, Ya Zhao, Qianghao Zeng, Yahao Huang, Jiayi He and Zhigang Wen
Energies 2024, 17(20), 5064; https://doi.org/10.3390/en17205064 - 11 Oct 2024
Cited by 1 | Viewed by 989
Abstract
The Kuqa Depression is rich in oil and gas resources and serves as a key production area in the Tarim Basin. However, controversy persists over the genesis of oil and gas in the various structural zones of the Kuqa Depression. This study employs [...] Read more.
The Kuqa Depression is rich in oil and gas resources and serves as a key production area in the Tarim Basin. However, controversy persists over the genesis of oil and gas in the various structural zones of the Kuqa Depression. This study employs natural gas composition analysis, gas carbon isotope analysis and gold pipe thermal simulation experiments, to comprehensively analyze the differences in the genesis and sources of hydrocarbon gas fluid from the eastern and western Kuqa Depression. The results show that the Kuqa Depression is dominated by alkane gas, with an average gas drying coefficient of 95.6, with nitrogen and carbon dioxide as the primary non-hydrocarbon gases. The average of δ13C1, δ13C2 and δ13C3 values in natural gas are −27.70‰, −20.43‰ and −21.75‰, respectively. Based on comprehensive natural gas geochemical maps, the CO2 in the natural gas from the Tudong and Dabei areas, as well as the KT-1 well of the Kuqa Depression, is thought to be of organic origin. Additionally, natural gas formation in the Tudong area is relatively simple, consisting entirely of thermally generated coal gas derived from the initial cracking of kerogen. The natural gas in the KT-1 well and the Dabei area are mixed gasses, formed by the initial cracking of kerogen from highly evolved lacustrine and coal-bearing source rocks, exhibiting characteristics resembling those of crude oil cracking gas. The methane (CH4) content of natural gas in the Dabei area is high and the carbon isotopes are unusually heavy. Considering the regional geological background, potential source rock characteristics and geochemical features may be related to the large-scale invasion of dry gas contributed by CH4 from highly evolved, underlying coal-bearing source rocks. Consequently, the CH4 content in the mixed gas is generally high (Ln (C1/C2) can reach up to 5.38), while the relative content of heavy components is low, though remains relatively unchanged. Thus, the map of the relative content of heavy components still reflects the characteristics of the original gas genesis (initial cracking of kerogen). Mixed-source gas was analyzed using thermal simulation experiments and natural gas composition ratio diagrams. The contributions of natural gas from deep, highly evolved coal-bearing source rocks in the KT-1 well and the Dabei area accounted for more than 90% and approximately 60%, respectively. This analysis provides theoretical guidance for natural gas exploration in the research area. Full article
(This article belongs to the Section H: Geo-Energy)
Show Figures

Figure 1

27 pages, 10437 KiB  
Article
Lithofacies Characteristics of Continental Lacustrine Fine-Grained Sedimentary Rocks and Their Coupling Relationship with Sedimentary Environments: Insights from the Shahejie Formation, Dongying Sag
by Hao Guo, Juye Shi, Shaopeng Fu, Zitong Liu, Linhong Cai and Siyuan Yin
Minerals 2024, 14(5), 479; https://doi.org/10.3390/min14050479 - 30 Apr 2024
Cited by 5 | Viewed by 3820
Abstract
Lacustrine fine-grained sedimentary rocks in the Dongying Sag of the Bohai Bay Basin in China exhibit significant potential for hydrocarbon exploration. This study investigates the lithofacies types and sedimentary evolution of the Paleogene Shahejie Formation’s lower third member (Es3l) and upper fourth member [...] Read more.
Lacustrine fine-grained sedimentary rocks in the Dongying Sag of the Bohai Bay Basin in China exhibit significant potential for hydrocarbon exploration. This study investigates the lithofacies types and sedimentary evolution of the Paleogene Shahejie Formation’s lower third member (Es3l) and upper fourth member (Es4u), integrating petrological and geochemical analyses to explore the relationship between lithofacies characteristics and sedimentary environments. The results show that the fine-grained sedimentary rocks in the study area can be classified into 18 lithofacies, with seven principal ones, including organic-rich laminated carbonate fine-grained mixed sedimentary rock lithofacies and organic-rich laminated limestone lithofacies. In conjunction with analyses of vertical changes in geochemical proxies such as paleoclimate (e.g., CIA, Na/Al), paleoproductivity (e.g., Ba), paleosalinity (e.g., Sr/Ba), paleo-redox conditions (e.g., V/Sc, V/V + Ni), and terrigenous detrital influx (e.g., Al, Ti), five stages are delineated from bottom to top. These stages demonstrate a general transition from an arid to humid paleoclimate, a steady increase in paleoproductivity, a gradual decrease in paleosalinity, an overall reducing water body environment, and an increasing trend of terrestrial detrital input. This study demonstrates that the abundance of organic matter is primarily influenced by paleoproductivity and paleo-redox conditions. The variations in rock components are predominantly influenced by paleoclimate, and sedimentary structures are affected by the depth of the lake basin. Special depositional events, such as storm events in Stage II, have significantly impacted the abundance of organic matter, rock components, and sedimentary structures by disturbing the water column and disrupting the reducing conditions at the lake bottom. The present study offers crucial insights into the genesis mechanisms of continental lacustrine fine-grained sedimentary rocks, facilitates the prediction of lithofacies distribution, and advances the exploration of China’s shale oil resources in lacustrine environments. Full article
Show Figures

Figure 1

21 pages, 12429 KiB  
Article
High-Frequency Lacustrine Lithological and Geochemical Variations in the Eocene Qaidam Basin: Implications for Paleoenvironment Reconstruction
by Kunyu Wu, Xiucheng Tan, Xiangjun Liu, Peng Pang, Songtao Wu, Shituan Xue, Haoting Xing, Ying Xiong, Yafeng Li, Menglin Zhang, Wei Deng and Juan Wang
Minerals 2024, 14(1), 79; https://doi.org/10.3390/min14010079 - 10 Jan 2024
Cited by 3 | Viewed by 2065
Abstract
Lacustrine sedimentary processes exhibit high sensitivity to paleoenvironmental changes, often manifesting as high-frequency sedimentary cycles that control the complex variations in sedimentary structure, mineral composition, and element distribution. However, the intricate co-variation mechanism among paleoclimate and paleowater properties at a high precision level [...] Read more.
Lacustrine sedimentary processes exhibit high sensitivity to paleoenvironmental changes, often manifesting as high-frequency sedimentary cycles that control the complex variations in sedimentary structure, mineral composition, and element distribution. However, the intricate co-variation mechanism among paleoclimate and paleowater properties at a high precision level (centimeter to meter scale) is still controversial. This study focuses on conducting a high-frequency cycle analysis of lacustrine mixed rocks from the Eocene Lower Ganchaigou Formation (LGCG) in the Qaidam Basin, employing petrology, mineralogy, organic geochemistry, and elemental geochemistry techniques. The lithological variation was characterized by the superposition of three lithofacies types from the bottom to the top with a single sequence: massive sandstone, laminated silty shale, and bedded calcareous dolostone. Geochemical data revealed cyclical variations in the paleoenvironment in the vertical profile, which conformed to the high-frequency lithofacies cycles. Based on the reconstruction of the lake level and paleowater properties, a synthesized paleoclimate–sedimentary model that comprised three consecutive periods within an individual sequence was established. From the bottom to the top of each cycle, the Eocene paleoenvironment varied from reduction and desalination to oxidation and salinization, which was controlled by a decline in the lake level resulting from a transformation of the paleoclimate from warm and humid to cold and arid. The variations in petrology and geochemistry observed in the Eocene Qaidam Basin play a crucial role in comprehending the sedimentary response to paleoenvironmental changes at high precision levels within lacustrine settings. Full article
Show Figures

Figure 1

23 pages, 9367 KiB  
Article
Origin, Migration, and Characterization of Gas in the Xinglongtai Area, Liaohe Subbasin (Northeast China): Insight from Geochemical Evidence and Basin Modeling
by Sibo Yang, Meijun Li, Yanshan Wang, Hong Xiao, Shuangquan Huang, Wujiang Kang and Fangzheng Wang
Energies 2023, 16(18), 6429; https://doi.org/10.3390/en16186429 - 5 Sep 2023
Cited by 1 | Viewed by 1296
Abstract
Buried hill zones in the rift basins have a significant impact on the enrichment of natural gas resources, and this is of great significance for exploration and development. This study aims to unravel the origins, migration, and dynamic accumulation process of natural gas [...] Read more.
Buried hill zones in the rift basins have a significant impact on the enrichment of natural gas resources, and this is of great significance for exploration and development. This study aims to unravel the origins, migration, and dynamic accumulation process of natural gas in the Xinglongtai structural belt, Liaohe Subbasin. A comprehensive geological and geochemical analysis was performed on source rocks and natural gas samples from various geological structures within the Xinglongtai structural belt. Moreover, basin modeling techniques were employed to trace the genesis and migration of natural gas, offering an in-depth understanding of the dynamic process of accumulation. We identified the Fourth Mbr (Es4) and Third Mbr (Es3) of the Shahejie Fm as the main source rocks in the Qingshui and Chenjia Sags. The Es4, primarily Shallow Lacustrine Mudstones, contributed mainly type II organic matter, while the Es3, consisting of Nearshore Subaqueous Fan and Deep Lacustrine Mudstones, contributed mainly type III and type II organic matter, respectively. Two distinct hydrocarbon accumulation systems were observed, one inside and one outside the buried hills. The system outside the buried hill is governed by a complex fault system within the lacustrine basin, resulting in dual-source directions, dual-source rock types, two migration phases, and late-stage accumulation. In contrast, the system within the buried hill primarily involves reservoirs nested in the basement, exhibiting dual-source directions, dual-source rock types, a single migration phase, and early-stage charging. The understanding of this interplay, alongside dynamic simulation of generation, migration, and accumulation, can provide valuable insights for predicting natural gas distribution and accumulation patterns in terrestrial faulted lacustrine basins. This knowledge can guide more effective exploration and development strategies for natural gas. Full article
Show Figures

Figure 1

13 pages, 10519 KiB  
Article
Lithofacies Characteristics and Methodology to Identify Lacustrine Carbonate Rocks via Log Data: A Case Study in the Yingxi Area, Qaidam Basin
by Mingzhi Tian, Zhanguo Liu, Chao Zhu, Kunyu Wu, Yanqing Wang, Guangyong Song, Zhiyuan Xia and Senming Li
Energies 2023, 16(16), 6041; https://doi.org/10.3390/en16166041 - 18 Aug 2023
Cited by 1 | Viewed by 1351
Abstract
Lacustrine carbonate reservoirs, extensively distributed in China, have extensive oil and gas exploration potential. However, such reservoirs are characterized by high content of terrigenous debris and complex lithofacies, and the resultant high difficulty in lithofacies identification severely restrains exploration expansion and efficient development, [...] Read more.
Lacustrine carbonate reservoirs, extensively distributed in China, have extensive oil and gas exploration potential. However, such reservoirs are characterized by high content of terrigenous debris and complex lithofacies, and the resultant high difficulty in lithofacies identification severely restrains exploration expansion and efficient development, especially for the Upper Member of the Paleogene Lower Ganchaigou Formation (E32) of the Yingxi area in the Qaidam Basin, with burial depths generally greater than 4000 m. This research targets this area and develops a methodology for detailed lithofacies identification, after systematically investigating the characteristics of lithofacies and well log responses of lacustrine carbonate rocks, on the basis of a massive volume of data of cores, thin sections, and experiments of the study area. The analysis identified lithofacies in the Upper Member of the Paleogene Lower Ganchaigou Formation of the Yingxi area, namely, pack-wackestone, mudstone, laminated carbonate, muddy gypsum, and limy claystone. The analysis of well log response characteristics suggested that natural gamma ray, matrix density, and bulk density were sensitive to lithofacies. Then, for the first time, the rock fabric factor (RFF) method was proposed, and the lithofacies identification plot was based on the calculated RFF and high-definition spectroscopy log. The presented methodology was applied to 55 wells in the study area. The average accuracy of lithofacies interpretation in 14 cored wells reached 82.4%, indicating good application performance. This method improves the lithofacies identification accuracy of lacustrine carbonate rocks, which is of great significance for investigating the reservoir distribution law and guiding exploration and development. Full article
(This article belongs to the Special Issue Exploring Hydrocarbons in Carbonate Reservoirs)
Show Figures

Figure 1

17 pages, 14542 KiB  
Article
Lacustrine Shale Diagenesis—A Case Study of the Second Member of the Funing Formation in the Subei Basin
by Shuping Wang, Cunfei Ma, Xue Sun and Shili Liu
Processes 2023, 11(7), 2009; https://doi.org/10.3390/pr11072009 - 5 Jul 2023
Cited by 4 | Viewed by 1564
Abstract
Shale diagenesis differs from that of sandstone and carbonate rocks with regard to the type, evolution stage, and evolution mode. The quality of shale reservoirs is closely linked to the extent of diagenetic evolution. This study identifies the types and characteristics of shale [...] Read more.
Shale diagenesis differs from that of sandstone and carbonate rocks with regard to the type, evolution stage, and evolution mode. The quality of shale reservoirs is closely linked to the extent of diagenetic evolution. This study identifies the types and characteristics of shale diagenesis using thin sections and scanning electron microscopy (SEM) observations. The stages of shale diagenesis are determined by analyzing organic matter evolution and clay mineral transformation and establishing a diagenetic evolution sequence. This paper describes the comprehensive diagenetic evolution of organic matter, clay minerals, clastic particles, and carbonate minerals to determine the diagenesis types, diagenetic sequences, and pore evolution occurring during diagenetic evolution. The results show that the diagenesis types of shale in the second member of the Funing Formation include compaction, dissolution, cementation, metasomatism, dolomitization, syneresis, and transformation of clay minerals, as well as thermal evolution of organic matter. The middle diagenetic A stage is prevalent, with some areas in the early and middle diagenetic B stages. The shale underwent a diagenetic evolution sequence, including the collapse and shrinkage of montmorillonite interlayers in the early stage; the rapid formation and transformation of illite and smectite mixed layers, massive hydrocarbon generation of organic matters, and dissolution of unstable components in the middle stage; and the occurrence of fractures filled with gypsum, quartz, ferrocalcite, or other authigenic minerals in the later stage. Dissolution pores and fractures are the dominant shale reservoirs of the second member of the Funing Formation in the Subei Basin. The results provide new insights into understanding the formation and evolution of reservoir spaces during shale diagenesis and information for the exploration and development of lacustrine shale oil and gas. Full article
Show Figures

Figure 1

14 pages, 10940 KiB  
Article
The Geochemical Characteristics of Source Rock and Oil in the Fukang Sag, Junggar Basin, NW China
by Bocai Li, Youjun Tang, Zhonghong Chen, Yifeng Wang, Daxiang He, Kai Yan and Lin Chen
Minerals 2023, 13(3), 432; https://doi.org/10.3390/min13030432 - 17 Mar 2023
Cited by 3 | Viewed by 2549
Abstract
The Fukang Sag in the Junggar Basin is the main exploration block. However, the origin and source of crude oil are still controversial, which seriously affects the well locating and exploration in this area. In the present work, 30 source rocks and 21 [...] Read more.
The Fukang Sag in the Junggar Basin is the main exploration block. However, the origin and source of crude oil are still controversial, which seriously affects the well locating and exploration in this area. In the present work, 30 source rocks and 21 crude oils were collected for geochemical analysis to clarify the source of the organic matter, the sedimentary environment, and the evolution degree. Among them, the source rocks of the Pingdiquan Formation are type II1 organic matter with good quality, the source rocks of the Badaowan Formation are type II2-III organic matter with fair–good quality, and the source rocks of the Xishanyao Formation are type II2 organic matter with fair quality. All source rocks are in the mature stage. The results of the biomarker compounds show that the lacustrine mudstone of the Xishanyao Formation and the coal-measure mudstone of the Badaowan Formation were deposited in reducing environments. The former was mainly from lower aquatic organisms, and the latter was from terrestrial higher plants. The mudstone of the Pingdiquan Formation was formed in a weakly oxidizing–weakly reducing depositional environment, and its parent material was of mixed origin. Based on the results of the biomarker compounds and carbon isotopes, the crude oils were divided into three categories. The Family I crude oil has the characteristics of low maturity, low salinity, and more input of low-level aquatic organisms, and the carbon isotope has a good affinity with the lacustrine mudstone of the Xishanyao Formation. The Family II crude oil shows medium maturity, low salinity, mainly higher plant input, and heavy carbon isotope, mainly derived from the Badaowan Formation coal-measure mudstone. The Family III crude oil is characterized by high maturity, high salinity, mixed parent materials, and light carbon isotope and originates from the mudstone of the Pingdiquan Formation. The results provide a reference for oil and gas exploration and development in the eastern area of the Junggar Basin; the future research will focus on well areas with high maturity near the Fukang fault zone. Full article
(This article belongs to the Special Issue Geochemical Characterization of Source Rocks in Oil and Gas Fields)
Show Figures

Figure 1

31 pages, 21764 KiB  
Article
Lithofacies and Shale Oil Potential of Fine-Grained Sedimentary Rocks in Lacustrine Basin (Upper Cretaceous Qingshankou Formation, Songliao Basin, Northeast China)
by Ningliang Sun, Wenyuan He, Jianhua Zhong, Jianbo Gao and Pengpeng Sheng
Minerals 2023, 13(3), 385; https://doi.org/10.3390/min13030385 - 9 Mar 2023
Cited by 6 | Viewed by 2246
Abstract
Shale oil has become a global hotspot of unconventional exploration and development. In this study, the latest drill core and experiment analyses of the Qingshankou Formation in the northern Songliao Basin were used to evaluate its lithofacies classification, sedimentary environment, pore types, pore-throat [...] Read more.
Shale oil has become a global hotspot of unconventional exploration and development. In this study, the latest drill core and experiment analyses of the Qingshankou Formation in the northern Songliao Basin were used to evaluate its lithofacies classification, sedimentary environment, pore types, pore-throat structure characterization, and shale oil potential. Lithofacies classification was determined according to the total organic carbon (TOC) content, sedimentary structure, and rock mineral content. Laminae genesis and micro-sedimentary structures indicate the deposition of fine-grained sedimentary rocks (FGSRs) in a semi-deep to deep lacustrine environment; however, evidence also suggests partial reworking by storm events and bottom current flows. FGSRs mostly comprise type I kerogen, with small amounts of type II1. The average vitrinite reflectance of the FGSRs was 1.37%, indicating middle to high stages of thermal maturation within the oil generation window. The N2 adsorption experiment indicated that silty mudstone (SM), silty fine mixed sedimentary rock (SFMR), and argillaceous fine mixed sedimentary rock (AFMR) had ink-bottle-shaped and slit-shaped pores, and the lithofacies were dominated by mesopores, accounting for 77.4%, 71.9%, and 80.8% of the total pore volume, respectively. Mercury injection capillary pressure analysis indicated that SM and SFMR had an average pore-throat radius of 0.01–0.04 μm, whereas AFMR and CM were dominated by nanopores, mainly distributed in the range of 0.004–0.0063 μm. Based on the comprehensive studies of TOC content, pore development, and brittleness, we concluded that organic-rich laminated SM and SFMR should be the focus of shale oil exploration of the Qingshankou Formation in the northern Songliao Basin, followed by organic-rich or organic-moderate laminated and layered AFMR, as well as calcareous fine mixed sedimentary rocks. Full article
Show Figures

Figure 1

18 pages, 8380 KiB  
Article
Control Effect of Deposition Processes on Shale Lithofacies and Reservoirs Characteristics in the Eocene Shahejie Formation (Es4s), Dongying Depression, China
by Yepeng Yang, Zaixing Jiang, Jianguo Zhang, Zongxuan Zhang and Chun Yang
Energies 2023, 16(5), 2200; https://doi.org/10.3390/en16052200 - 24 Feb 2023
Cited by 1 | Viewed by 1853
Abstract
The lacustrine fine-grained sedimentary rocks in the upper interval of the fourth member of the Eocene Shahejie Formation (Es4s) in the Dongying Depression are important shale oil exploration targets in Bohai Bay Basin. They are widely distributed and rich in organic matter. In [...] Read more.
The lacustrine fine-grained sedimentary rocks in the upper interval of the fourth member of the Eocene Shahejie Formation (Es4s) in the Dongying Depression are important shale oil exploration targets in Bohai Bay Basin. They are widely distributed and rich in organic matter. In this study, samples were observed under the optical microscope and FESEM, combined with geochemical test and physical property analysis to study the sedimentary characteristics and reservoir characteristics of them. Nine lithofacies are recognized based on the mineral composition, the content of organic matter and the beddings. The middle-high organic laminated calcareous fine-grained sedimentary rocks (LF1) and the middle-high organic laminated mixed fine-grained sedimentary rocks (LF2) resulted from seasonal sediment variations and settled by suspension in the deep lake. The middle-high organic flaggy mixed fine-grained sedimentary rocks (LF3), the middle-high organic flaggy calcareous fine-grained sedimentary rocks (LF4), the middle-high organic massive calcareous fine-grained sedimentary rocks (LF5) and the middle organic massive mixed fine-grained sedimentary rocks (LF6) were formed by redeposition. The low organic massive argillaceous fine-grained sedimentary rocks (LF7), the low organic massive felsic fine-grained sedimentary rocks (LF8) and the low organic massive mixed fine-grained sedimentary rocks (LF9) are affected by the terrigenous input events. The pore structures vary in different beddings which are influenced by the kinds and arrangement of minerals and particles. In the laminated lithofacies, the ink-bottle-shaped pores are dominant. In the flaggy and massive lithofacies, the ink-bottle-shaped pores and the slit-shaped pores coexist. LF1 and LF2 are the best target for shale oil exploration and the LF3, LF4, LF5 and LF6 are the second. The deposition processes control the lithofacies and reservoir characteristics of the fined-grained sedimentary rocks. Full article
Show Figures

Figure 1

26 pages, 19341 KiB  
Article
The Occurrence Mechanism of Lacustrine Shale Oil in the Second Member of the Paleogene Kongdian Formation, Cangdong Sag, Bohai Bay Basin
by Qingmin Dong, Xiugang Pu, Shiyue Chen, Jihua Yan, Zhannan Shi, Wenzhong Han, Delu Xie, Jiangchang Dong, Zheng Fang and Bo Wang
Minerals 2023, 13(2), 199; https://doi.org/10.3390/min13020199 - 30 Jan 2023
Cited by 1 | Viewed by 4167
Abstract
The lacustrine shale in the second member of the Kongdian Formation (Ek2) is the most significant target of shale oil exploration in the Cangdong Sag, Bohai Bay Basin, China. To investigate the occurrence mechanisms and to reveal the influencing factors of shale oil [...] Read more.
The lacustrine shale in the second member of the Kongdian Formation (Ek2) is the most significant target of shale oil exploration in the Cangdong Sag, Bohai Bay Basin, China. To investigate the occurrence mechanisms and to reveal the influencing factors of shale oil mobility in Ek2, a series of analyses (X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), total organic carbon (TOC) analysis, Rock-Eval pyrolysis, low-temperature nitrogen physisorption (LNP), mercury intrusion porosimetry (MIP), and multiple isothermal stage (MIS) pyrolysis) were conducted on samples collected from well cores in the Cangdong Sag. The results show that the lithofacies can be categorized as laminated felsic shales, laminated and massive mixed shales, and laminated and massive carbonate shales. The shales were characterized by a high organic matter abundance and moderate thermal evolution with good to excellent hydrocarbon generation potential and contained a high abundance of Type I and II1 kerogens. Laminated felsic shales and laminated mixed shales, compared with other lithofacies, had clear advantages in the amount of free hydrocarbon that can be volatilized from the rock (S1), the oil saturation index (OSI) value, and the free oil and movable oil content. LNP, MIP, and MIS pyrolysis analyses show that the residual shale oil mainly occurred in pores with diameters smaller than 200 nm, and the pore diameter when residual oil occurred in some laminated shale samples could reach 50 μm. The lower limits of the pore diameter where free oil and movable oil occurred were 7 and 30 nm, respectively. The mobility of shale oil is controlled by the shale oil component, thermal maturity, TOC content, and pore volume. The results herein provide a basis for the evaluation of optimal shale oil intervals. Full article
(This article belongs to the Special Issue Reservoir and Geochemistry Characteristics of Black Shale)
Show Figures

Figure 1

Back to TopTop