Differences in the Genesis and Sources of Hydrocarbon Gas Fluid from the Eastern and Western Kuqa Depression
Abstract
:1. Introduction
2. Geologic Setting
3. Samples and Methods
4. Results
4.1. Composition and Distribution Characteristics of Natural Gas Components
Well | Depth/m | Formation | Gas Components/% | Drying Coefficient | Data | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
CH4 | C2H6 | C3H8 | iC4H10 | nC4H10 | N2 | CO2 | |||||
D-30 | 3856.5–3878 | K1bs | 94.01 | 2.09 | 0.47 | 0.09 | 0.17 | 2.50 | 0.01 | 97.1 | This study |
D-15 | 4069–4330 | K1bs + K1bx | 93.68 | 2.24 | 0.50 | 0.09 | 0.15 | 2.80 | 0.01 | 96.9 | |
D-9 | 4802–4900 | K1bs | 93.80 | 1.21 | 0.18 | 0.04 | 0.04 | 3.56 | 0.17 | 98.5 | |
D-13 | 5132–5261 | K1bs | 97.97 | 0.88 | 0.09 | 0.02 | 0.02 | 0.73 | 0.25 | 99.0 | |
D-102 | 5315–5479 | K1bs | 94.60 | 2.01 | 0.40 | 0.09 | 0.01 | 1.81 | 0.43 | 97.3 | |
D-12 | 5461–6038 | K1bs + K1bx | 96.60 | 0.83 | 0.07 | 0.01 | 0.02 | 1.93 | 0.22 | 99.0 | |
D-12 | 5524–5620 | K1bs | 98.06 | 0.81 | 0.07 | 0.01 | 0.02 | 0.80 | 0.20 | 99.1 | |
D-16 | 5543–5727 | K1bs + K1bx | 97.60 | 1.20 | 0.21 | 0.04 | 0.07 | 0.53 | 0.25 | 98.5 | |
D-12 | 5650.5–5916 | K1bs + K1bx | 96.60 | 0.82 | 0.07 | 0.01 | 0.02 | 1.88 | 0.21 | 99.0 | |
D-16 | 5681–5727 | K1bs | 94.00 | 0.96 | 0.17 | 0.03 | 0.06 | 0.41 | 4.31 | 98.7 | |
D-202 | 5711–5845 | K1bs | 93.90 | 1.55 | 0.32 | 0.07 | 0.07 | 2.75 | 0.52 | 97.9 | |
D-12 | 5716–5833 | K1bs | 97.50 | 1.08 | 0.11 | 0.02 | 0.03 | 1.01 | 0.25 | 98.7 | |
D-12 | 5740–5800 | K1bx | 95.68 | 0.77 | 0.07 | 0.01 | 0.01 | 2.42 | 0.52 | 99.1 | |
D-11 | 5751–6008 | K1bs | 90.85 | 2.78 | 0.46 | 0.08 | 0.08 | 4.10 | 0.19 | 96.4 | |
D-208 | 5755–5830 | / | 96.23 | 1.72 | 0.29 | 0.06 | 0.07 | 0.86 | 0.523 | 97.8 | |
D-11 | 5788–5823 | K1bs | 94.41 | 3.21 | 0.59 | 0.11 | 0.13 | 1.03 | 0.21 | 95.9 | |
D-204 | 5917–6038 | / | 93.99 | 1.74 | 0.29 | 0.06 | 0.07 | 2.61 | 0.46 | 97.8 | |
D-201 | 5932.45–6145 | / | 94.92 | 1.85 | 0.31 | 0.07 | 0.07 | 1.66 | 0.65 | 97.6 | |
D-301 | 6754–7005 | K1bs | 95.77 | 3.08 | 0.53 | 0.1 | 0.10 | 0.12 | 0.20 | 96.2 | |
D-7 | 6758.35–6856 | K1bs | 97.82 | 0.79 | 0.06 | 0.01 | 0.01 | 0.54 | 0.73 | 99.1 | |
D-304 | 6873–6991 | K1bs | 95.94 | 1.11 | 0.12 | 0.02 | 0.02 | 1.44 | 0.98 | 98.7 | |
D-306 | 6939–7051.5 | K1bs | 96.81 | 1.19 | 0.13 | 0.03 | 0.03 | 1.10 | 0.51 | 98.6 | |
D-3 | 7154.5–7278 | K1bs | 96.10 | 1.20 | 0.20 | 0.04 | 0.04 | 1.57 | 0.50 | 98.5 | |
D-302 | 7209–7244 | K1bs | 94.18 | 1.26 | 0.12 | 0.02 | 0.01 | 2.58 | 0.78 | 98.5 | |
D-4 | 8022–8265 | K1bs | 92.91 | 2.19 | 0.35 | 0.08 | 0.07 | 2.73 | 0.85 | 97.2 | |
KT-1 | 6168 | / | 55.91 | 0.32 | 0.01 | / | / | 40.19 | 3.24 | 99.4 | |
KT-1 | 6183.86 | / | 89.55 | 0.77 | 0.03 | / | / | 8.21 | 1.41 | 99.1 | |
KT-1 | 6184.78 | / | 94.00 | 0.70 | 0.03 | / | / | 1.87 | 3.28 | 99.2 | |
KT-1 | 6209.81 | / | 62.49 | 0.33 | 0.02 | / | / | 32.71 | 4.35 | 99.4 | |
KT-1 | 6249.62 | / | 67.84 | 0.37 | 0.02 | / | / | 28.10 | 3.57 | 99.4 | |
KT-1 | 6289.4 | / | 55.72 | 0.27 | 0.02 | / | / | 41.36 | 2.56 | 99.5 | |
KT-1 | 6289.6 | / | 76.04 | 0.36 | 0.02 | / | / | 21.94 | 1.60 | 99.5 | |
KT-1 | 6300 | / | 70.01 | 0.32 | 0.01 | / | / | 27.50 | 2.01 | 99.5 | |
T-2 | / | J2kz | 83.49 | 6.11 | 2.33 | / | / | 2.51 | 0.91 | 90.8 | [32] |
T-2 | / | J2kz | 75.56 | 14.10 | 5.30 | / | / | 2.44 | 1.50 | 79.6 | |
T-2 | / | J1y | 86.90 | 7.65 | 1.83 | / | / | 0.02 | 2.34 | 90.2 | |
T-2 | 4171–4175 | J1a | 80.00 | 12.00 | 6.00 | / | / | 1.00 | 1.00 | 91.6 | |
T-201 | 3475–3486 | J2kz | 80.00 | 12.10 | 4.50 | / | / | 0 | 1.20 | 82.8 | |
T-201 | 4150–4185 | J1y | 65.30 | 4.04 | 1.11 | 0.20 | 0.24 | 5.06 | 22.31 | 92.1 | This study |
T-201 | 4647–4693 | J1a | 64.28 | 4.00 | 1.07 | 0.20 | 0.30 | 25.66 | 1.70 | 92.1 | |
T-204 | 2935–4146.5 | J1y + J2kz | 84.93 | 7.47 | 2.57 | 0.56 | 0.64 | 0.33 | 2.71 | 88.3 | |
T-3 | 3350–3360 | J1y | 80.65 | 9.87 | 3.73 | 0.80 | 0.79 | 0.77 | 2.76 | 84.2 | |
T-302 | 3360–3392 | J1y | 84.78 | 7.84 | 2.685 | 0.57 | 0.63 | 0.31 | 2.51 | 87.8 |
4.2. Distribution Characteristics of Carbon Isotopes in Natural Gas
Well | Depth/m | Formation | Carbon Isotope of Gas Components/‰ | Data | |||||
---|---|---|---|---|---|---|---|---|---|
CO2 | CH4 | C2H6 | C3H8 | iC4H10 | nC4H10 | ||||
D-1 | 5552–5586 | E + K1bs | / | −33.10 | −21.40 | / | / | / | This study |
D-1 | 5584.5–5586 | K1bs | / | −32.80 | −20.90 | −24.90 | −25.00 | / | |
D-101 | 5725–5783 | K | −18.30 | −30.50 | −22.60 | −21.80 | −22.80 | −22.60 | |
D-102 | 5425–5479 | K | −12.50 | −30.40 | −22.50 | −21.60 | −21.30 | −21.90 | |
D-104 | 5922–5949 | K | −21.80 | −27.10 | −21.40 | / | / | / | |
D-104 | 5981–5985 | K | −18.60 | −26.70 | −19.20 | / | / | / | |
D-2 | 5658–5669.5 | K1bs | −9.60 | −30.80 | −21.50 | −19.80 | / | / | |
D-201 | 5932.45–6112.50 | K1bs | −19.00 | −30.90 | −22.10 | −21.90 | −23.60 | −23.40 | |
D-202 | 5711–5845 | K1bs | −16.40 | −29.70 | −20.80 | −20.80 | −22.10 | −22.70 | |
D-10 | 5228–5320 | K1bs | / | −30.70 | −21.00 | −20.20 | −21.70 | −20.80 | |
D-20 | 5876–5976 | K1bs | / | −26.10 | −19.90 | −19.10 | / | / | |
D-201 | 5941–5973 | K1bs | / | −25.70 | −18.90 | −19.20 | / | / | |
D-209 | 5776–5878 | K1bs | / | −25.90 | −20.40 | −20.10 | / | / | |
D-301 | 6930–7012 | K1bs | / | −29.60 | −19.40 | −18.90 | −19.90 | −19.60 | |
D-302 | 7209–7244 | K1bs | / | −29.40 | −19.40 | −20.00 | / | / | |
T-2 | 4122–4220 | J2q | / | −34.12 | −25.79 | −22.40 | / | / | [32] |
T-2 | 4171–4175 | J2q | / | −33.80 | −26.30 | −25.50 | −21.91 | −21.24 | |
T-201 | 3475–3486 | J2kz | / | −35.10 | −25.80 | −24.50 | −25.10 | −23.50 | |
T-3 | 3457–3472 | J1y | −4.69 | −31.84 | −23.33 | −21.99 | −21.91 | −21.24 | This study |
T-3 | 3350–3360 | J1y | −14.43 | −33.63 | −24.84 | −23.27 | −23.78 | −22.26 | |
T-302 | 3119 | J2kz | −12.83 | −37.80 | −27.70 | −25.45 | −25.298 | −24.47 | |
KT-1 | 6168.6 | T | −16.95 | −28.27 | −15.78 | / | / | / | |
KT-1 | 6183.9 | T | −19.43 | −26.74 | −15.33 | / | / | / | |
KT-1 | 6184.8 | T | −21.80 | −27.08 | −15.71 | / | / | / | |
KT-1 | 6209.8 | T | −19.10 | −29.31 | −16.13 | / | / | / | |
KT-1 | 6249.6 | T | −22.49 | −25.24 | −15.78 | / | / | / | |
KT-1 | 6289.4 | T | −21.09 | −25.76 | −15.96 | / | / | / | |
KT-1 | 6289.6 | T | −22.37 | −25.86 | −16.00 | / | / | / | |
KT-1 | 6300.0 | T | −17.92 | −27.65 | −16.55 | / | / | / |
5. Discussions
5.1. Comprehensive Identification of Natural Gas Genesis Types
5.2. Reasons for High CH4 Content and Abnormal Carbon Isotope in Natural Gas in the Dabei Areas
5.3. Evaluation of Natural Gas Mixed Source Ratio in Dabei Area and KT-1 Well
6. Conclusions
- (1)
- The analysis of the natural gas composition indicates that the CO2 in the natural gas from the Tudong, Dabei areas and the KT-1 well in the Kuqa Depression is of organic origin. Among these, the natural gas in the Tudong area, located in the eastern part of the Kuqa Depression, has a relatively simple genesis as thermogenic coal gas from the initial cracking of kerogen, while the natural gas in the KT-1 well and Dabei area may have a mixed origin;
- (2)
- The natural gas in the KT-1 well and Dabei areas has a high CH4 content and abnormally heavy carbon isotopes, likely due to the large-scale influx of dry gas, primarily contributed by CH4 from the underlying highly evolved coal-bearing source rocks. As a result, the CH4 content in the mixed gas is generally high and the related Ln(C1/C2) ratio is abnormally high at 5.38, leading to the appearance of oil-cracking gas on the Ln(C1/C2) vs. Ln(C2/C3) plate;
- (3)
- Thermal simulation experiments of the two primary source rock types (coal-bearing and lacustrine source rocks) in the study area and the resulting artificial mixing source ratio curves indicate that over 90% of the natural gas in the KT-1 well is contributed by deep, over-mature coal-bearing source rocks. In contrast, around 60% of the natural gas in the Dabei area is sourced from these same deep, over-mature coal-bearing rocks.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, J.; She, Y.; Gao, Y.; Li, M.; Yang, G.; Shi, Y. Natural gas industry in China: Development situation and prospect. Nat. Gas Ind. B 2020, 7, 604–613. [Google Scholar] [CrossRef]
- Li, W.; Wang, J.; Jia, C.; Lu, S.; Li, J.; Zhang, P.; Wei, Y.; Song, Z.; Chen, G.; Zhou, N. Carbon isotope fractionation during methane transport through tight sedimentary rocks: Phenomena, mechanisms, characterization, and implications. Geosci. Front. 2024, 15, 101912. [Google Scholar] [CrossRef]
- Jia, C.; Gu, J.; Zhang, G. Geological Conditions for the Formation of Large and Medium-sized Gas Fields in Kuqa Depression. Sci. Bull. 2002, 47 (Suppl. S1), 49–55, (In Chinese with English Abstract). [Google Scholar]
- Zou, Y.; Zhao, C.; Wang, Y.; Zhao, W.; Peng, P.; Shuai, Y. Characteristics and origin of natural gases in the Kuqa Depression of Tarim Basin, NW China. Org. Geochem. 2006, 47, 322. [Google Scholar] [CrossRef]
- Liu, Q.; Qiu, S.; Li, J.; Liu, W.; Zhang, D.; Zhou, Q.; Hu, A. Natural gas geochemistry and its origins in Kuqa depression. Sci. China Ser. D Earth Sci. 2008, 51 (Suppl. S1), 174–182. [Google Scholar] [CrossRef]
- Fan, S.; Lu, Y.; Li, L.; Wei, H.; Zhang, H.; Shen, L. Geochemical characteristics, distribution and petroleum geological significance of Triassic-Jurassic source rocks in the Tugeerming and surrounding areas of Kuqa Depression, Tarim Basin. Nat. Gas Geosci. 2022, 33, 2074–2086, (In Chinese with English Abstract). [Google Scholar]
- Yang, H.; Shi, W.; Du, H.; Shi, L.; Wang, X.; Dong, G.; Mo, T.; Zuo, T.; Xu, L.; Jiang, X. Hydrocarbon charging periods and maturities in Bozi-Dabei area of Kuqa depression and their indication to the structural trap sequence. Acta Pet. Sin. 2024. Available online: https://link.cnki.net/urlid/11.2128.TE.20240417.1121.004 (accessed on 9 September 2024). (In Chinese with English Abstract).
- Schiener, E.; Stober, G.; Faber, E. Geochemical surface exploration for hydrocarbons in the North Sea. AAPG Bull. 1984, 68, 363–368. [Google Scholar]
- Mattavelli, L.; Ricchiuto, T.; Grignani, D.; Cahoell, M. Geochemistry and habitat of natural gases in Po basin, Northern Italy. Am. Assoc. Pet. Geol. Bull. 1983, 67, 2239–2254. [Google Scholar]
- Schoell, M. The hydrogen and carbon isotopic composition of methane from natural gases of various origins. Geochim. Cosmochim. Acta 1980, 44, 649–661. [Google Scholar] [CrossRef]
- Schoell, M. Genetic characteristics of natural gases. AAPG Bull. 1983, 67, 2225–2238. [Google Scholar]
- Whiticar, M.J. Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane. Chem. Geol. 1999, 161, 291–314. [Google Scholar] [CrossRef]
- Dai, J.; Qi, H.; Song, Y. On the indicators for identifying gas from oil and gas from coal measure. Acta Pet. Sin. 1985, 6, 31–38. [Google Scholar]
- Dai, J.; Qi, H. The relationship δ13C-Ro of the coal-derived gas in China. Chin. Sci. Bull. 1989, 34, 690–692. [Google Scholar]
- Dai, J. Natural gas carbon isotope characteristics and various natural gas identification. Nat. Gas Geosci. 1993, 4, 1–40. [Google Scholar]
- Xu, Y.; Shen, P. A preliminary study on geochemical characteristics of coal-type gas in Zhongyuan-Huabei oil-gas area. Acta Sediment Ologica Sin. 1985, 3, 37–46. [Google Scholar]
- Shen, P.; Shen, Q.; Wang, X.; Xu, Y. The gas hydrocarbon isotope characteristics and the coal-type gas identification. Sci. China Ser. B 1987, 6, 647–656. [Google Scholar]
- Liu, W.; Xu, Y. A two-stage model of carbon isotopic fractionation in coal-gas. Geochimica 1999, 28, 359–365. [Google Scholar]
- Chen, A.; Zhang, W.; Xu, Y. Application research and Isotope characteristics of pyrolysis simulation production of sedimentary rock. Sci. China Ser. B 1993, 23, 209–217. [Google Scholar]
- Berner, U.; Faber, E. Maturity related mixing model for methane, ethane and propane, based on carbon isotopes. Adv. Org. Geochem. 1987, 13, 67–72. [Google Scholar] [CrossRef]
- Faber, E.; Gerling, P.; Dumke, I. Gaseous hydrocarbon of unknown origin found while drilling. Org. Geochem. 1987, 13, 875–879. [Google Scholar] [CrossRef]
- Stahl, W.; Carey, J. Source rock identification by isotope analyses of natural gases from fields in the Val Varde Delaware Basins, West Texas. Chem. Geol. 1975, 16, 257–267. [Google Scholar] [CrossRef]
- Wang, Z. Formation Mechanism and Enrichment Regularities of Kelasu Subsalt Deep Large Gas Field in Kuqa Depression, Tarim Basin. Nat. Gas Geosci. 2014, 25, 153–166, (In Chinese with English Abstract). [Google Scholar]
- Wang, Q.; Yang, H.; Cai, Z.; Yang, X.; Zhang, L.; Jiang, J.; Zhou, L. Major break through and significance of petroleum exploration in Well Tuotan 1 on the south slope of Kuqa Depression, Tarim Basin. China Pet. Explor. 2023, 28, 28–42, (In Chinese with English Abstract). [Google Scholar]
- Jia, C.; Zhou, X.; Wang, Z.; Li, Q.; Pi, X.; Cai, Z.; Hu, X. Petroleum geological characteristics of Kela 2 gas field. Chin. Sci. Bull. 2002, 47 (Suppl. S1), 91–96, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- He, D.; Zhou, X.; Yang, H.; Lei, G.; Ma, Y. Geological Structure and Its Controls on Giant Oil and Gas Fields in Kuqa Depression, Tarim Basin:A Clue from New Shot Seismic Data. Geotecton. Metallog. 2009, 33, 19–32, (In Chinese with English Abstract). [Google Scholar]
- Guo, X.; Liu, K.; Jia, C.; Song, Y.; Zhao, M.; Lu, X. Effects of early petroleum charge and overpressure on reservoir porosity preservation in the giant Kela-2 gas field, Kuqa depression, Tarim Basin, northwest China. AAPG Bull. 2016, 100, 191–212. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, B.; Zhu, G.; Wang, H.; Li, Z. Geochemical evidence for coal-derived hydrocarbons and their charge history in the Dabei Gas Field, Kuqa Thrust Belt, Tarim Basin, NW China. Mar. Pet. Geol. 2011, 28, 1364–1375. [Google Scholar] [CrossRef]
- Lei, G.; Xie, H.; Zhang, J.; Wang, Y.; Huang, S.; Ye, M.; Zhang, G. Structural features and natural gas exploration in the Kelasu structural belt, Kuqa Depression. Oil Gas Geol. 2007, 28, 816–835, (In Chinese with English Abstract). [Google Scholar]
- Wang, Q.; Xu, Z.; Zhang, R.; Yang, H.; Yang, X. New fields, new types of hydrocarbon explorations and their resource potentials in Tarim Basin. Acta Pet. Sin. 2024, 45, 15–32, (In Chinese with English Abstract). [Google Scholar]
- Wang, Q.; Deng, H.; Mo, T.; Zhang, H.; Cheng, B.; Wang, Y.; Liao, Z. Carbon and hydrogen isotopic compositions of C7 hydrocarbons and their geochemical significance in light oils/condensates from the Kuqa Depression, Tarim Basin, NW China. Org. Geochem. 2024, 192, 104783. [Google Scholar] [CrossRef]
- Liu, Y.; Li, H.; Zhao, G.; Liu, M.; Dong, C.; Li, J.; Xiao, Z. Geochemical Characteristics of Natural Gas and Hydrocarbon Charging History of the Tugeerming Area in the Eastern Kuqa Depression. Geoscience 2022, 36, 988–997, (In Chinese with English Abstract). [Google Scholar]
- Bao, J.; Zhu, C.; Zhang, Q.; Li, M.; Lu, Y. Geochemical characteristics of natural gas from different structural units of the Kuqa Depression, the Tarim Basin. Oil Gas Geol. 2007, 28, 664–668, (In Chinese with English Abstract). [Google Scholar]
- Wang, K.; Zhang, R.; Zeng, Q.; Wang, J.; Xia, J.; Mo, T. Characteristics and formation mechanism of Lower Cretaceous deep and ultra-deep reservoir in Bozi-Dabei area, Kuqa depression. J. China Univ. Min. Technol. 2022, 51, 311–328, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Wang, Z.; Wang, C.; Xu, K.; Zhang, H.; Chen, N.; Deng, H.; Hu, X.; Yang, Y.; Feng, X.; Du, Y.; et al. Characteristics and controlling factors of tectonic fractures of ultra-deep tight sandstone: Case study of the Lower Cretaceous reservoir in Bozi-Dabei area, Kuqa Depression, Tarim Basin. Nat. Gas Geosci. 2023, 34, 1535–1551, (In Chinese with English Abstract). [Google Scholar]
- Liang, D.; Zhang, S.; Chen, J.; Wang, F.; Wang, P. Organic geochemistry of oil and gas in the Kuqa depression, Tarim Basin, NW China. Org. Geochem. 2003, 34, 873–888. [Google Scholar] [CrossRef]
- Jiang, X.; Shi, L.; Mo, T.; Yang, H.; Du, H.; Shi, W.; Dong, G. Characteristics and causes of difference of physical properties of deep andultra deep tight sandstone reservoirs: A case study of the BashijiqikeFormation in Bozi area of Kuqa Depression. Bull. Geol. Sci. Technol. 2024. (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- GB/T18340.2-2010; Organic Geochemical Analysis Method for Geological Samples—Part 2: Determination of Organic Carbon Stable Isotopic Component—Isotopic Mass Spectrometry. China Standard Press: Beijing, China, 2005.
- Huang, Y.; Liao, Y.; Liu, W.; Chen, C.; Xu, T.; Wang, Y.; Peng, P. Comparison of two liquid hydrocarbon collection methods in gold tube pyrolysisand their influence on hydrocarbon phase state characteristics. Geochimica 2020, 49, 528–538, (In Chinese with English Abstract). [Google Scholar]
- Dai, J.; Song, Y.; Hong, F.; Dai, C. Inorganic enetic carbon dioxide gas accumulations and their characteristics in east part of China. China Offshore Oil Gas 1994, 8, 3–10, (In Chinese with English Abstract). [Google Scholar]
- Song, Y.; Xu, Y. Origin and identification of natural gases. Pet. Explor. Dev. 2005, 32, 24–29. [Google Scholar]
- Dai, J.X.; Song, Y.; Dai, C. Inorganic Gas and Its Reservoir Froming Conditions in Eastern China; Science Press: Beijing, China, 1995. [Google Scholar]
- Zuo, Y.; Zheng, Z.; Shao, D.; Wang, H.; Yang, L.; Wang, C.; Zhang, Y. Reviews on CO2 Genesis, Controlling Factors of Hydrocarbon Accumulation and Degassing Model. Sci. Technol. Eng. 2021, 21, 12356–12367, (In Chinese with English abstract). [Google Scholar]
- Meng, Q.; Shi, J.; Zhao, H.; Huang, J.; Liu, Y.; Wang, Y.; Xie, X.; Xu, Y. Origin of natural gas from the Ordovician paleo-weathering crust and gas-filling model in Jingbian gas field, Ordos basin, China. Nat. Gas Geosci. 2023, 34, 1696–1709, (In Chinese with English Abstract). [Google Scholar]
- Meng, Q.; Wang, X.; Shi, G.; Lei, Y.; Zhao, H.; Zhao, Q.; Yin, J.; Gao, C. The 13C-depleted methane in terrigenous shale gas: A case study in the Triassic Yanchang Formation, Ordos Basin. Mar. Pet. Geol. 2022, 141, 105688. [Google Scholar] [CrossRef]
- Dai, J.; Ni, Y.; Gong, D.; Huang, T.; Liu, Q.; Hong, F.; Zhang, Y. Characteristics of carbon isotopic composition of alkane gas in large gas fields in China. Pet. Explor. Dev. 2024, 51, 223–233. [Google Scholar] [CrossRef]
- Dai, J. Significance of the study on carbon isotopes of alkane gases. Nat. Gas Ind. 2011, 31, 1–6+123, (In Chinese with English Abstract). [Google Scholar]
- Dai, J.; Zou, C.; Liao, S.; Dong, D.; Ni, Y.; Huang, J.; Wu, W.; Gong, D.; Huang, S.; Hu, G. Geochemistry of the extremely high thermal maturity Longmaxi shale gas, southern Sichuan Basin. Org. Geochem. 2014, 74, 3–12. [Google Scholar] [CrossRef]
- Dai, J.; Xia, X.; Wei, Y.; Tao, S. Carbon isotope characteristics of characteristics of natural gas in the Sichuan basin, China. Exp. Pet. Geol. 2001, 23, 115–121+132, (In Chinese with English Abstract). [Google Scholar]
- Dai, J. Coal-derived gas theory and its discrimination. Chin. Sci. Bull. 2018, 63, 1291–1305+1290, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Cheng, X.; Dou, L.; Wang, J.; Li, W.; Wen, Z. Geochemical characteristics and genesis of natural gas in the Bongor Basin. Earth Sci. Front. 2018, 25, 112–120, (In Chinese with English Abstract). [Google Scholar]
- Zhang, M.; Song, D.; Wang, T.; He, F.; Zhang, W.; An, C.; Liu, Y.; Lu, Z. Geochemical characteristics and sources of natural gas in Hangjinqi area of Ordos Basin. Pet. Geol. Exp. 2024, 46, 124–135, (In Chinese with English Abstract). [Google Scholar]
- Han, Z.; Li, J.; Gou, Y.; Yan, Q.; Wang, S.; Li, J.; Liu, J.; Ge, S. The application of methane and ethane carbon isotopes as an identification index for gas origin study. Nat. Gas Geosci. 2016, 27, 665–671, (In Chinese with English Abstract). [Google Scholar]
- Wang, X.; Li, X.; Wang, X.; Shi, B.; Luo, X.; Zhang, L.; Lei, Y.; Jiang, C.; Meng, Q. Carbon isotopic fractionation by desorption of shale gases. Mar. Pet. Geol. 2015, 60, 79–86. [Google Scholar] [CrossRef]
- Wang, X.; Liu, P.; Meng, Q. Physical selectivity on isotoplogues of gaseous alkanes by shale pore network: Evidence from dynamic adsorption process of natural gas. J. Nat. Gas Sci. Eng. 2021, 97, 104252. [Google Scholar] [CrossRef]
- Li, J.; Li, Z.; Wang, X.; Wang, D.; Xie, Z.; Li, J.; Wang, Y.; Han, Z.; Ma, C.; Wang, Z.; et al. New indexes and charts for genesis identification of multiple natural gases. Pet. Explor. Dev. 2017, 44, 503–512. [Google Scholar] [CrossRef]
- Prinzhofer, A.A.; Huc, A.Y. Genetic and post-genetic molecular and isotopic fractionations in natural gases. Chem. Geol. 1995, 126, 281–290. [Google Scholar] [CrossRef]
- Shi, J.; Li, J.; Li, Z.; Qi, Q.; Hao, A. Organic geochemical characteristics and genetic type of natural gas in the Tazhong uplift, Tarim Basin. J. Northeast Pet. Univ. 2016, 40, 19–25, (In Chinese with English Abstract). [Google Scholar]
- Wang, P.; Shen, Z.; He, C.; Wang, J.; Huang, F.; Pan, S.; Yin, S. The geochemical characteristics of butane and its application. Nat. Gas Geosci. 2017, 28, 529–538, (In Chinese with English Abstract). [Google Scholar]
- Qin, S.; Huang, C.; Zhang, B.; Yang, Y.; Yuan, M. Relationships of the iC4/nC4 and iC5/nC5 ratios with maturity of coal-derived gases of Triassic Xujiahe Formation in central Sichuan Basin, SW China. Pet. Explor. Dev. 2019, 46, 496–503. [Google Scholar] [CrossRef]
- Wang, K.; Zhang, R.; Yu, Z.; Yang, Z.; Tang, Y.; Wei, H. Characteristics and controlling factors of Jurassic A he reservoir of the northern tectonic belt, Kuqa Depression, Tarim Basin. Nat. Gas Geosci. 2020, 31, 623–635, (In Chinese with English Abstract). [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, X.; He, T.; Wang, B.; Zhou, L.; Zhang, K.; Zhao, Y.; Zeng, Q.; Huang, Y.; He, J.; Wen, Z. Differences in the Genesis and Sources of Hydrocarbon Gas Fluid from the Eastern and Western Kuqa Depression. Energies 2024, 17, 5064. https://doi.org/10.3390/en17205064
Yang X, He T, Wang B, Zhou L, Zhang K, Zhao Y, Zeng Q, Huang Y, He J, Wen Z. Differences in the Genesis and Sources of Hydrocarbon Gas Fluid from the Eastern and Western Kuqa Depression. Energies. 2024; 17(20):5064. https://doi.org/10.3390/en17205064
Chicago/Turabian StyleYang, Xianzhang, Taohua He, Bin Wang, Lu Zhou, Ke Zhang, Ya Zhao, Qianghao Zeng, Yahao Huang, Jiayi He, and Zhigang Wen. 2024. "Differences in the Genesis and Sources of Hydrocarbon Gas Fluid from the Eastern and Western Kuqa Depression" Energies 17, no. 20: 5064. https://doi.org/10.3390/en17205064
APA StyleYang, X., He, T., Wang, B., Zhou, L., Zhang, K., Zhao, Y., Zeng, Q., Huang, Y., He, J., & Wen, Z. (2024). Differences in the Genesis and Sources of Hydrocarbon Gas Fluid from the Eastern and Western Kuqa Depression. Energies, 17(20), 5064. https://doi.org/10.3390/en17205064