Lithofacies and Shale Oil Potential of Fine-Grained Sedimentary Rocks in Lacustrine Basin (Upper Cretaceous Qingshankou Formation, Songliao Basin, Northeast China)
Abstract
:1. Introduction
2. Geological Setting
3. Samples and Methods
3.1. Petrographic Analysis
3.2. Organic Geochemical Analysis
3.3. SEM Analysis
3.4. Low-Pressure N2 Adsorption Analysis
3.5. MICP Analysis
4. Results
4.1. Minerals Composition
4.2. Sedimentary Structures
4.3. Organic Geochemical Analysis
4.4. Lithofacies Classification
4.5. Pore Types
4.6. Pore-Throat Structure Characteristics
4.6.1. N2 Adsorption Experiment
4.6.2. MICP Experiment
5. Discussion
5.1. Laminae and Mineral Genesis and Sedimentary Environment
5.2. Factors Influencing Pore Development
5.3. Implications for Shale Oil Exploration
6. Conclusions
- (1).
- The lithofacies classification of FGSRs, which considered the total organic carbon (TOC) content, sedimentary structure, and rock mineral composition, can be used to evaluate shale oil reservoir quality. FGSRs of the Qingshankou Formation were deposited in a semi-deep to deep lacustrine environment; however, these sediments were further reworked by storm events and bottom current flows.
- (2).
- The TOC content of FGSRs ranged from 0.73 to 6.68 wt%, with an average of 2.18 wt%; the S1 values ranged from 0.76 to 8.25 mg/g, averaging 2.59 mg/g, and S2 values ranged from 0.84 to 24.83 mg/g, with an average of 6.19 mg/g; the OSI had an average of 120.06 mg/g. Organic matter types were mainly composed of type I kerogen, with small amounts of type II; the Ro values varied from 1.12 to 1.70%, with an average of 1.37%, indicating that source rocks had entered the maturity stage.
- (3).
- Intraparticle pores and intercrystalline pores were the main pore types of silty mudstone (SM), silty fine mixed sedimentary rocks (SFMR), and argillaceous fine mixed sedimentary rocks (AFMR). The N2 adsorption experiment showed that these FGSRs had ink-bottle-shaped and slit-shaped pores, with mesopores accounting for 77.4%, 71.9%, and 80.8% of the total pore volume, respectively. Mercury injection capillary pressure analysis indicated that FGSRs contained nanopores, and the steep slope in the mercury injection process indicated a relatively small pore-throat size.
- (4).
- Through the comprehensive analyses of organic chemistry, pore development, and brittleness characteristics, we concluded that organic-rich laminated SM and SFMR should be the focused shale oil exploration target lithofacies of the Qingshankou Formation in the northern Songliao Basin, followed by organic-rich or organic-moderate laminated and layered AFMR as well as calcareous fine mixed sedimentary rocks.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Slatt, R.M.; O’Brien, N.R. Pore types in the Barnett and Woodford gas shales: Contribution to understanding gas storage and migration pathways in fine-grained rocks. AAPG Bull. 2011, 95, 2017–2030. [Google Scholar] [CrossRef]
- Jarvie, D.M. Shale resource systems for oil and gas: Part 2—Shale oil resource systems. In Shale Reservoirs—Giant Resources for the 21st Century; Breyer, J.A., Ed.; AAPG Memoir: Tulsa, OK, USA, 2012; Volume 97, pp. 89–119. [Google Scholar]
- Zou, C.; Zhu, R.; Chen, Z.Q.; Ogg, J.G.; Wu, S.; Dong, D.; Qiu, Z.; Wang, Y.; Wang, L.; Lin, S.; et al. Organic-matter-rich shales of China. Earth Sci. Rev. 2019, 189, 51–78. [Google Scholar] [CrossRef]
- Solarin, S.A.; Gil-Alana, L.A.; Lafuente, C. An investigation of long range reliance on shale oil and shale gas production in the US market. Energy 2020, 195, 116933. [Google Scholar] [CrossRef]
- Hackley, P.C.; Ryder, R.T. Organic geochemistry and petrology of Devonian shale in eastern Ohio: Implications for petroleum systems assessment. AAPG Bull. 2021, 105, 543–573. [Google Scholar] [CrossRef]
- Jin, Z.; Zhi, R.; Liang, X.; Shen, Y. Several issues worthy of attention in current lacustrine shale oil exploration and development. Petrol. Explor. Dev. 2021, 48, 1471–1484. [Google Scholar] [CrossRef]
- Loucks, R.G.; Ruppel, S.C. Mississippian Barnett Shale: Lithofacies and depositional setting of a deep-water shale-gas succession in the Fort Worth Basin, Texas. AAPG Bull. 2007, 91, 579–601. [Google Scholar] [CrossRef] [Green Version]
- Macquaker, J.H.; Taylor, K.G.; Keller, M.; Polya, D. Compositional controls on early diagenetic pathways in fine-grained sedimentary rocks: Implications for predicting unconventional reservoir attributes of mudstones. AAPG Bull. 2014, 98, 587–603. [Google Scholar] [CrossRef]
- Wei, W.; Swennen, R. Sedimentology and lithofacies of organic-rich Namurian Shale, Namur Synclinorium and Campine Basin (Belgium and S-Netherlands). Mar. Pet. Geol. 2022, 138, 105553. [Google Scholar] [CrossRef]
- Pan, Y.; Huang, Z.; Guo, X.; Li, T.; Zhao, J.; Li, Z.; Qu, T.; Wang, B.; Fan, T.; Xu, X. Lithofacies types, reservoir characteristics, and hydrocarbon potential of the lacustrine organic-rich fine-grained rocks affected by tephra of the Permian Lucaogou Formation, Santanghu basin, western China. J. Petrol. Sci. Eng. 2022, 208, 109631. [Google Scholar] [CrossRef]
- Krumbein, W.C. The mechanical analysis of fine-grained sediments. J. Sediment. Res. 1932, 2, 140–149. [Google Scholar] [CrossRef]
- Aplin, A.C.; Macquaker, J.H. Mudstone diversity: Origin and implications for source, seal, and reservoir properties in petroleum systems. AAPG Bull. 2011, 95, 2031–2059. [Google Scholar] [CrossRef]
- Chiarella, D.; Longhitano, S.G.; Tropeano, M. Types of mixing and heterogeneities in siliciclastic-carbonate sediments. Mar. Petrol. Geol. 2017, 88, 617–627. [Google Scholar] [CrossRef] [Green Version]
- Potter, P.E.; Maynard, J.B.; Depetris, P.J. Muddy Depositional Systems. In Mud and Mudstones; Potter, P.E., Maynard, J.B., Depetris, P.J., Eds.; Springer: Berlin/Heidelberg, Germany, 2005; pp. 75–126. [Google Scholar]
- Schieber, J.; Southard, J.; Thaisen, K. Accretion of mudstone beds from migrating floccule ripples. Science 2007, 318, 1760–1763. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yawar, Z.; Schieber, J. On the origin of silt laminae in laminated shales. Sediment. Geol. 2017, 360, 22–34. [Google Scholar] [CrossRef]
- Schieber, J.; Southard, J.; Schimmelmann, A. Lenticular shale fabrics resulting from intermittent erosion of water-rich muds-interpreting the rock record in the light of recent flume experiments. J. Sediment. Res. 2010, 80, 119–128. [Google Scholar] [CrossRef] [Green Version]
- Macquaker, J.H.; Adams, A.E. Maximizing information from fine-grained sedimentary rocks: An inclusive nomenclature for mudstones. J. Sediment. Res. 2003, 73, 735–744. [Google Scholar] [CrossRef]
- Crombez, V.; Baudin, F.; Rohais, S.; Riquier, L.; Euzen, T.; Pauthier, S.; Ducros, M.; Caron, B.; Vaisblat, N. Basin scale distribution of organic matter in marine fine-grained sedimentary rocks: Insight from sequence stratigraphy and multi-proxies analysis in the Montney and Doig formations. Mar. Petrol. Geol. 2017, 83, 382–401. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Cao, J.; Shi, C.; Xu, T.; Zhang, H.; Zhang, Y. Shale oil in saline lacustrine systems: A perspective of complex lithologies of fine-grained rocks. Mar. Petrol. Geol. 2020, 116, 104351. [Google Scholar] [CrossRef]
- Sun, N.; Chen, T.; Zhong, J.; Gao, J.; Shi, X.; Xue, C.; Swennen, R. Petrographic and geochemical characteristics of deep-lacustrine organic-rich mudstone and shale of the Upper Triassic Chang 7 member in the southern Ordos Basin, northern China: Implications for shale oil exploration. J. Asian Earth Sci. 2022, 227, 105118. [Google Scholar] [CrossRef]
- Fathy, D.; Abart, R.; Wagreich, M.; Gier, S.; Ahmed, M.S.; Sami, M. Late Campanian climatic-continental weathering assessment and its influence on source rocks deposition in Southern Tethys, Egypt. Minerals 2023, 13, 160. [Google Scholar] [CrossRef]
- Jia, B.; Xian, C.G. Permeability measurement of the fracture-matrix system with 3D embedded discrete fracture model. Petrol. Sci. 2022, 19, 1757–1765. [Google Scholar] [CrossRef]
- Chen, T.Y.; Feng, X.T.; Cui, G.L.; Tan, Y.L.; Pan, Z.J. Experimental study of permeability change of organic-rich gas shales under high effective stress. J. Nat. Gas Sci. Eng. 2019, 64, 1–14. [Google Scholar] [CrossRef]
- Schmitt, M.; Fernandes, C.P.; da Cunha Neto, J.A.B.; Wolf, F.G.; dos Santos, V.S.S. Characterization of pore systems in seal rocks using nitrogen gas adsorption combined with mercury injection capillary pressure techniques. Mar. Pet. Geol. 2013, 39, 138–149. [Google Scholar] [CrossRef]
- Loucks, R.G.; Reed, R.M.; Ruppel, S.C.; Jarvie, D.M. Morphology, genesis, and distribution of nanometer-scale pores in siliceous mudstones of the Mississippian Barnett shale. J. Sediment. Res. 2009, 79, 848–861. [Google Scholar] [CrossRef] [Green Version]
- Liu, K.; Ostadhassan, M. Microstructural and geomechanical analysis of Bakken shale at nanoscale. J. Pet. Sci. Eng. 2017, 153, 133–144. [Google Scholar] [CrossRef]
- Davudov, D.; Moghanloo, R.G.; Lan, Y. Evaluation of accessible porosity using mercury injection capillary pressure data in shale samples. Energy Fuel 2018, 32, 4682–4694. [Google Scholar] [CrossRef]
- Gou, Q.; Xu, S.; Hao, F.; Yang, F.; Zhang, B.; Shu, Z.; Zhang, A.; Wang, Y.; Lu, Y.; Cheng, X.; et al. Full-scale pores and micro-fractures characterization using FE-SEM, gas adsorption, nano-CT and micro-CT: A case study of the Silurian Longmaxi Formation shale in the Fuling area, Sichuan Basin, China. Fuel 2019, 253, 167–179. [Google Scholar] [CrossRef]
- Li, S.; Liu, L.; Chai, P.; Li, X.; He, J.; Zhang, Z.; Wei, L. Imaging hydraulic fractures of shale cores using combined positron emission tomography and computed tomography (PET-CT) imaging technique. J. Pet. Sci. Eng. 2019, 182, 106283. [Google Scholar] [CrossRef]
- Chandra, D.; Vishal, V. A critical review on pore to continuum scale imaging techniques for enhanced shale gas recovery. Earth Sci. Rev. 2021, 217, 103638. [Google Scholar] [CrossRef]
- Pang, X.; Wang, G.; Kuang, L.; Li, H.; Zhao, Y.; Li, D.; Zhao, X.; Wu, S.; Feng, Z.; Lai, J. Insights into the pore structure and oil mobility in fine-grained sedimentary rocks: The Lucaogou Formation in Jimusar Sag, Junggar Basin, China. Mar. Petrol. Geol. 2022, 137, 105492. [Google Scholar] [CrossRef]
- Zhang, P.; Lu, S.; Li, J.; Zhang, J.; Xue, H.; Chen, C. Comparisons of SEM, lowfield NMR, and mercury intrusion capillary pressure in characterization of the pore size distribution of Lacustrine Shale: A case study on the Dongying depression, Bohai Bay Basin, China. Energy Fuel 2017, 31, 9232–9239. [Google Scholar] [CrossRef]
- Wu, Y.Q.; Tahmasebi, P.; Lin, C.; Zahid, M.A.; Dong, C.; Golab, A.N.; Ren, L. A comprehensive study on geometric, topological and fractal characterizations of pore systems in low-permeability reservoirs based on SEM, MICP, NMR, and X-ray CT experiments. Mar. Pet. Geol. 2019, 103, 12–28. [Google Scholar] [CrossRef]
- Bhattacharya, S.; Carr, T.R. Integrated data-driven 3D shale lithofacies modeling of the Bakken Formation in the Williston Basin, North Dakota, United States. J. Pet. Sci. Eng. 2019, 177, 1072–1086. [Google Scholar] [CrossRef]
- Bowker, K.A. Barnett shale gas production, Fort Worth Basin: Issues and discussion. AAPG Bull. 2007, 91, 523–533. [Google Scholar] [CrossRef]
- Jennings, D.S.; Antia, J. Petrographic characterization of the Eagle Ford Shale, south Texas: Mineralogy, common constituents, and distribution of nanometer-scale pore types. In Electron Microscopy of Shale Hydrocarbon Reservoirs; Camp, W., Diaz, E., Wawak, B., Eds.; AAPG Memoir: Tulsa, OK, USA, 2013; Volume 102, pp. 101–113. [Google Scholar]
- Li, G.X.; Luo, K.; Shi, D.Q. Key technologies, engineering management and important suggestions of shale oil/gas development: Case study of a Duvernay shale project in western Canada sedimentary basin. Petrol. Explor. Dev. 2020, 47, 791–802. [Google Scholar] [CrossRef]
- Song, J.; Littke, R.; Weniger, P.; Ostertag-Henning, C.; Nelskamp, S. Shale oil potential and thermal maturity of the Lower Toarcian Posidonia Shale in NW Europe. Int. J. Coal Geol. 2015, 150, 127–153. [Google Scholar] [CrossRef]
- Salygin, V.; Guliev, I.; Chernysheva, N.; Sokolova, E.; Toropova, N.; Egorova, L. Global shale revolution: Successes, challenges, and prospects. Sustainability 2019, 11, 1627. [Google Scholar] [CrossRef] [Green Version]
- Zou, C.; Yang, Z.; Cui, J.; Zhu, R.; Hou, L.; Tao, S.; Yuan, X.; Wu, S.; Lin, S.; Wang, L.; et al. Formation mechanism, geological characteristics and development strategy of nonmarine shale oil in China. Petrol. Explor. Dev. 2013, 40, 15–27. [Google Scholar] [CrossRef]
- Ma, Y.S.; Cai, Y.Y.; Zhao, P.R.; Hu, Z.Q.; Liu, H.M.; Gao, B.; Wang, W.Q.; Li, Z.M.; Zhang, Z.L. Geological characteristics and exploration practices of continental shale in China. Acta Geol. Sin. 2022, 96, 155–171, (In Chinese with English abstract). [Google Scholar]
- Li, Y.; Yin, J.; Wang, Z. Lithofacies Characteristics and Controlling Factors of Fine-Grained Sedimentary Rocks in the Lower First Member of the Shahejie Formation in the Northern Lixian Slope of Raoyang Sag, China. Minerals 2022, 12, 1414. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, S.; Song, G.; Xuejun, W.; Teng, J.; Wang, M.; Bao, Y.; Yao, S.; Weng, W.; Zhang, S.; et al. Effect of shale diagenesis on pores and storage capacity in the Paleogene Shahejie Formation, Dongying Depression, Bohai Bay Basin, east China. Mar. Petrol. Geol. 2019, 103, 738–752. [Google Scholar] [CrossRef]
- Zhang, S.; Cao, Y.; Liu, K.; Jahren, J.; Xi, K.; Zhu, R.; Yang, T.; Cao, X.; Wang, W. Characterization of lacustrine mixed fine-grained sedimentary rocks using coupled chemostratigraphic-petrographic analysis: A case study from a tight oil reservoir in the Jimusar Sag, Junggar Basin. Mar. Petrol. Geol. 2019, 99, 453–472. [Google Scholar] [CrossRef]
- Li, M.; Wu, S.; Hu, S.; Zhu, R.; Meng, S.; Yang, J. Lamination texture and its effects on reservoir and geochemical properties of the Palaeogene Kongdian Formation in the Cangdong Sag, Bohai Bay Basin, China. Minerals 2021, 11, 1360. [Google Scholar] [CrossRef]
- Yang, R.; Wang, F.; Yun, N.; Zeng, H.; Han, Y.; Hu, X.; Diao, N. Pore structure characteristics and permeability stress sensitivity of Jurassic continental shale of Dongyuemiao Member of Ziliujing Formation, Fuxing Area, eastern Sichuan Basin. Minerals 2022, 12, 1492. [Google Scholar] [CrossRef]
- Cai, Y.; Zhu, R.; Luo, Z.; Wu, S.; Zhang, T.; Liu, C.; Zhang, J.; Wang, Y.; Meng, S.; Wang, H.; et al. Lithofacies and source rock quality of organic-rich shales in the Cretaceous Qingshankou Formation, Songliao Basin, NE China. Minerals 2022, 12, 465. [Google Scholar] [CrossRef]
- He, W.; Zhong, J.; Sun, N. Discovery and significance of tempestites and storm deposits in the Qignshankou Formation of the Gulong Sag, northeastern China. Front. Earth Sci. 2023, 10, 999135. [Google Scholar] [CrossRef]
- Zhang, B.; Zhang, J.; Feng, Z.; Zeng, H.; Huo, L.; Zhang, K. Geological conditions and resource potential for the formation of light crude oil from Gulong shale in Qingshankou Formaiton, Songliao Basin. Acta Petrol. Sin. 2021, 42, 1625–1639, (In Chinese with English abstract). [Google Scholar]
- He, W.; Bai, X.; Meng, Q.; Li, J.; Zhang, D.; Wang, Y. Accumulation geological characteristics and major discoveries of lacustrine shale oil in Sichuan Basin. Acta Petrol. Sin. 2022, 43, 885–898, (In Chinese with English abstract). [Google Scholar]
- Sun, L.; Liu, H.; He, W.; Li, G.; Zhang, S.; Zhu, R.; Jin, X.; Meng, S.; Jiang, H. An analysis of major scientific problems and research paths of Gulong shale oil in Daqing Oilfield, NE China. Petrol. Explor. Dev. 2021, 48, 527–540. [Google Scholar] [CrossRef]
- Feng, Z.Q.; Jia, C.Z.; Xie, X.N.; Zhang, S.; Feng, Z.H.; Cross, T.A. Tectonostratigraphic units and stratigraphic sequences of the nonmarine Songliao Basin, Northeast China. Basin Res. 2010, 22, 79–95. [Google Scholar]
- Song, Y.; Stepashko, A.; Liu, K.; He, Q.; Shen, C.; Shi, B.; Ren, J. Post-rift Tectonic history of the Songliao Basin, NE China: Cooling events and Post-rift unconformities driven by Orogenic Pulses from Plate Boundaries. J. Geophys. Res. Solid Earth 2018, 123, 2363–2395. [Google Scholar] [CrossRef]
- Wang, P.J.; Mattern, F.; Didenko, N.A.; Zhu, D.F.; Singer, B.; Sun, X.M. Tectonics and cycle system of the Cretaceous Songliao Basin: An inverted active continental margin basin. Earth Sci. Rev. 2016, 159, 82–102. [Google Scholar] [CrossRef] [Green Version]
- Liu, K.; Zhang, J.; Xiao, W.; Wilde, S.A.; Alexandrov, I. A review of magmatism and deformation history along the NE Asian margin from ca. 95 to 30 Ma: Transition from the Izanagi to Pacific plate subduction in the early Cenozoic. Earth Sci. Rev. 2020, 209, 103317. [Google Scholar] [CrossRef]
- Xu, C.; Shan, X.; He, W.; Zhang, K.; Rexiti, Y.; Su, S.; Zou, X. The influence of paleoclimate and a marine transgression event on organic matter accumulation in lacustrine black shales from the Late Cretaceous, southern Songliao Basin, Northeast China. Int. J. Coal Geol. 2021, 246, 103842. [Google Scholar] [CrossRef]
- Moore, D.M.; Reynolds, R.C. X-ray Diffraction and the Identification and Analysis of Clay Minerals; Oxford University Press: Oxford, UK, 1997; pp. 28–371. [Google Scholar]
- Hillier, S. Quantitative analysis of clay and other minerals in sandstones by X-ray powder diffraction (XRPD). In Clay Mineral Cements in Sandstones, International Association of Sedimentologists; Worden, R., Morad, S., Eds.; Special Publication. International: Oxford, UK, 2003; pp. 213–251. [Google Scholar]
- GB/T 18602-2012; Rock Pyrolysis Analysis. G.A.O.Q. Supervision: Beijing, China, 2012. (In Chinese)
- Behar, F.; Beaumont, V.; Penteado, H.D.B. Rock-Eval 6 technology: Performances and developments. Oil Gas Sci. Technol. 2001, 56, 111–134. [Google Scholar] [CrossRef]
- Brunauer, S.; Emmett, P.; Teller, E. Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 1938, 60, 309–319. [Google Scholar] [CrossRef]
- Coasne, B.; Gubbins, K.E.; Pellenq, R.J.-M. A Grand Canonical Monte Carlo study of adsorption and capillary phenomena in nanopores of various morphologies and topologies: Testing the BET and BJH characterization methods. Part. Part. Syst. Charact. 2004, 21, 149–160. [Google Scholar] [CrossRef]
- Gregg, S.J.; Sing, K.S.W. Adsorption, Surface Area and Porosity, 2nd ed.; Academic Press: New York, NY, USA, 1982. [Google Scholar]
- Ross, D.J.K.; Bustin, R.M. The importance of shale composition and pore structure upon gas storage potential of shale gas reservoirs. Mar. Petrol. Geol. 2009, 26, 916–927. [Google Scholar] [CrossRef]
- Groen, J.C.; Peffer, L.A.; Pérez-Ramírez, J. Pore size determination in modified micro-and mesoporous materials. Pitfalls and limitations in gas adsorption data analysis. Microporous Mesoporous Mater. 2003, 60, 1–17. [Google Scholar] [CrossRef]
- Washburn, E.W. The dynamics of capillary flow. Phys. Rev. 1921, 17, 273–283. [Google Scholar] [CrossRef] [Green Version]
- Jennings, J.B. Capillary pressure techniques: Application to exploration and development geology. AAPG. Bull. 1987, 71, 1196–1209. [Google Scholar]
- Li, P.; Zheng, M.; Bi, H.; Wu, S.; Wang, X. Pore throat structure and fractal characteristics of tight oil sandstone: A case study in the Ordos Basin, China. J. Pet. Sci. Eng. 2017, 149, 665–674. [Google Scholar] [CrossRef]
- Tissot, B.; Welte, D.H. Petroleum Formation and Occurrence; Springer: Berlin/Heidelberg, Germany, 1984. [Google Scholar]
- Huang, D.; Zhang, D.; Li, J.; Huang, X. Hydrocarbon genesis of Jurassic coal measures in the Turpan Basin, China. Org. Geochem. 1991, 17, 827–837. [Google Scholar]
- Lazar, O.R.; Bohacs, K.M.; Macquaker, J.H.; Schieber, J.; Demko, T.M. Capturing key attributes of fine-grained sedimentary rocks in outcrops, cores, and thin sections: Nomenclature and description guidelines. J. Sediment. Res. 2015, 85, 230–246. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Li, Z. The lithofacies and reservoir characteristics of the fine-grained sedimentary rocks of the Permian Lucaogou Formation at the northern foot of Bogda Mountains, Junggar Basin (NW China). J. Pet. Sci. Eng. 2018, 170, 21–39. [Google Scholar] [CrossRef]
- Fu, X.; Meng, Q.; Zheng, Q.; Wang, Z.; Jin, M.; Bai, Y.; Cui, K. Cyclicity of organic matter abundance and lithofacies paleogeography of Gulong shale in Songliao Basin. Petr. Geol. Oilfield Dev. Daqing 2022, 41, 38–52, (In Chinese with English abstract). [Google Scholar]
- Loucks, R.G.; Reed, R.M.; Ruppel, S.C.; Hammes, U. Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores. AAPG Bull. 2012, 96, 1071–1098. [Google Scholar] [CrossRef] [Green Version]
- Sing, K.S. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure Appl. Chem. 1985, 57, 603–619. [Google Scholar] [CrossRef]
- Xue, C.; Wu, J.; Qiu, L.; Zhong, J.; Zhang, S.; Zhang, B.; Wu, X.; Hao, B. Lithofacies classification and its controls on the pore structure distribution in Permian transitional shale in the northeastern Ordos Basin, China. J. Petrol. Sci. Eng. 2020, 195, 107657. [Google Scholar] [CrossRef]
- Lai, J.; Wang, G.; Wang, Z.; Chen, J.; Pang, X.; Wang, S.; Zhou, Z.; He, Z.; Qin, Z.; Fan, X. A review on pore structure characterization in tight sandstones. Earth Sci. Rev. 2018, 177, 436–457. [Google Scholar] [CrossRef]
- Zhao, J.; Jin, Z.; Jin, Z.; Wen, X.; Geng, Y. Origin of authigenic quartz in organic-rich shales of the Wufeng and Longmaxi Formations in the Sichuan Basin, South China: Implications for pore evolution. J. Nat. Gas Sci. Eng. 2017, 38, 21–38. [Google Scholar] [CrossRef]
- Milliken, K.L.; Ergene, S.M.; Ozka, A. Quartz types, authigenic and detrital, in the upper cretaceous eagle ford formation, south Texas, USA. Sediment. Geol. 2016, 339, 273–288. [Google Scholar] [CrossRef]
- Talling, P.J.; Masson, D.G.; Sumner, E.J.; Malgesini, G. Subaqueous sediment density flows: Depositional processes and deposit types. Sedimentology 2012, 59, 1937–2003. [Google Scholar] [CrossRef]
- Chen, X.; Shi, W.; Hu, Q.; Hou, Y.; Zhai, G.; Dong, T.; Zhou, Z.; Du, X. Origin of authigenic quartz in organic-rich shales of the Niutitang Formation in the northern margin of Sichuan Basin, South China: Implications for pore network development. Mar. Petrol. Geol. 2022, 138, 105548. [Google Scholar] [CrossRef]
- Campo, D.M.; Papa, D.C.; Nieto, F.; Petrinovic, I. Integrated analysis for constraining palaeoclimatic and volcanic influences on clay-mineral assemblages in orogenic basins (Palaeogene Andean foreland, Northwestern Argentina). Sediment. Geol. 2010, 228, 98–122. [Google Scholar] [CrossRef]
- Sun, N.; Zhong, J.; Hao, B.; Ge, Y.; Swennen, R. Sedimentological and diagenetic control on the reservoir quality of deep-lacustrine sedimentary gravity flow sand reservoirs of the Upper Triassic Yanchang Formation in Southern Ordos Basin, China. Mar. Pet. Geol. 2020, 112, 104050. [Google Scholar] [CrossRef]
- Bai, B.; Dai, C.; Hou, X.; Liu, X.; Wang, R.; Yang, L.; Li, S.; He, J.; Dong, R. Authigenic silica in continental lacustrine shale and its hydrocarbon significance. Petrol. Explor. Dev. 2022, 49, 1033–1045. [Google Scholar] [CrossRef]
- Hua, G.; Wu, S.; Zhang, J.; Liu, R.; Guan, M.; Cai, Y.; Zhang, S. Laminar Structure and Reservoir Quality of Shales with High Clay Mineral Content in the Qingshankou Formation, Songliao Basin. Energies 2022, 15, 6132. [Google Scholar] [CrossRef]
- He, W.; Zhao, Y.; Zhong, J.; Sun, N. Study on organic matter and micropores of Qingshankou Formation shale oil reservoir in Gulong Sag, Songliao Basin. Geol. Rev. 2022. (In Chinese with English abstract). [Google Scholar]
- Plint, A.G. Mud dispersal across a Cretaceous prodelta: Storm-generated, wave-enhanced sediment gravity flows inferred from mudstone microtexture and microfacies. Sedimentology 2014, 61, 609–647. [Google Scholar] [CrossRef]
- Abdlmutalib, A.; Abdullatif, O.; Alqubalee, A.; Gonzalez, L.; Humphrey, J. Effects of lithofacies on pore system evolution of storm-wave silt-rich fine-grained sediments. Early Silurian Qusaiba Member (Qaliba Formation), NW Saudi Arabia. Mar. Petrol. Geol. 2021, 128, 105048. [Google Scholar] [CrossRef]
- Jia, J.; Liu, Z.; Bechtel, A.; Strobl, S.A.; Sun, P. Tectonic and Climate Control of Oil Shale Deposition in the Upper Cretaceous Qingshankou Formation (Songliao Basin, NE China). Int. J. Earth Sci. 2013, 102, 1717–1734. [Google Scholar] [CrossRef]
- Liu, B.; Wang, H.; Fu, X.; Bai, Y.; Bai, L.; Jia, M.; He, B. Lithofacies and depositional setting of a highly prospective lacustrine shale oil succession from the Upper Cretaceous Qingshankou Formation in the Gulong sag, northern Songliao Basin, northeast China. AAPG Bull. 2019, 103, 405–432. [Google Scholar] [CrossRef] [Green Version]
- Hackley, P.C.; Cardott, B.J. Application of organic petrography in North American shale petroleum systems: A review. Int. J. Coal Geol. 2016, 163, 8–51. [Google Scholar] [CrossRef] [Green Version]
- Fishman, N.S.; Hackley, P.C.; Lowers, H.A.; Hill, R.J.; Egenhoff, S.O.; Eberl, D.D.; Blum, A.E. The nature of porosity in organic-rich mudstone of the upper Jurassic Kimmeridge clay formation, North sea, offshore United Kingdom. Int. J. Coal Geol. 2012, 103, 32–50. [Google Scholar] [CrossRef]
- Jarvie, D.M.; Hill, R.J.; Ruble, T.E.; Pollastro, R.M. Unconventional shale-gas systems: The Mississippian Barnett Shale of north-central Texas as one model for thermogenic shale-gas assessment. AAPG Bull. 2007, 91, 475–499. [Google Scholar] [CrossRef]
Mineralogical Facies | Classification Principles | |||
---|---|---|---|---|
Carbonate Minerals Content/% | Quartz + Feldspar Content/% | Clay Minerals Content/% | Relative Content | |
Ⅰ–SM | <50 | ≥50 | < 50 | Vqf > Vca; Vqf > Vcl |
Ⅱ–AM | <50 | <50 | ≥50 | Vcl > Vca; Vcl > Vqf |
Ⅲ–CM | ≥50 | <50 | <50 | Vca > Vcl; Vca > Vqf |
Ⅳ–SFMR | <50 | <50 | <50 | Vqf > Vca; Vqf > Vcl |
Ⅴ–AFMR | <50 | <50 | <50 | Vcl > Vca; Vcl > Vqf |
Ⅵ–CFMR | <50 | <50 | <50 | Vca > Vcl; Vca > Vqf |
Well | Depth (m) | Layer | Lithofacies | BET SSA (m2/g) | Micropore Volume (cm3/g) | Micropore Volume (cm3/g) | Micropore Volume (cm3/g) | Average Pore Diameter (nm) |
---|---|---|---|---|---|---|---|---|
X8HC | 2417.10 | K1qn2 | SM | 22.36 | 0.0012 | 0.0315 | 0.0091 | 6.85 |
X8HC | 2421.08 | K1qn2 | SM | 28.02 | 0.0013 | 0.0329 | 0.0083 | 6.25 |
X8HC | 2425.10 | K1qn2 | SM | 32.63 | 0.0018 | 0.0369 | 0.0099 | 6.19 |
X8HC | 2435.05 | K1qn2 | SM | 34.51 | 0.0009 | 0.0411 | 0.0116 | 6.85 |
X8HC | 2439.05 | K1qn2 | SM | 36.16 | 0.0018 | 0.0410 | 0.0109 | 6.16 |
X8HC | 2449.10 | K1qn2 | SM | 29.19 | 0.0013 | 0.0326 | 0.0068 | 5.79 |
X8HC | 2409.10 | K1qn2 | SM | 32.03 | 0.0010 | 0.0301 | 0.0079 | 5.47 |
X8HC | 2415.10 | K1qn2 | SM | 21.39 | 0.0005 | 0.0299 | 0.0077 | 6.37 |
X8HC | 2459.10 | K1qn2 | SM | 38.62 | 0.0020 | 0.0389 | 0.0053 | 5.20 |
X8HC | 2465.10 | K1qn2 | SM | 38.10 | 0.0023 | 0.0409 | 0.0081 | 5.68 |
X8HC | 2469.19 | K1qn2 | SM | 13.69 | 0.0003 | 0.0310 | 0.0061 | 7.04 |
X8HC | 2473.23 | K1qn1 | SM | 27.90 | 0.0015 | 0.0324 | 0.0064 | 6.00 |
X8HC | 2481.10 | K1qn1 | SM | 37.01 | 0.0018 | 0.0408 | 0.0075 | 5.63 |
X8HC | 2505.12 | K1qn1 | SM | 35.41 | 0.0018 | 0.0395 | 0.0095 | 6.05 |
X8HC | 2512.10 | K1qn1 | SM | 35.30 | 0.0021 | 0.0376 | 0.0066 | 5.72 |
Average | 30.82 | 0.0014 | 0.0358 | 0.0081 | 6.08 | |||
X8HC | 2487.10 | K1qn1 | SFMR | 26.09 | 0.0016 | 0.0321 | 0.0102 | 7.74 |
X8HC | 2520.10 | K1qn1 | SFMR | 34.40 | 0.0019 | 0.0372 | 0.0085 | 5.72 |
Average | 30.24 | 0.0018 | 0.0346 | 0.0093 | 6.73 | |||
X8HC | 2497.10 | K1qn1 | AFMR | 31.87 | 0.0017 | 0.0365 | 0.0083 | 6.06 |
X8HC | 2501.24 | K1qn1 | AFMR | 31.88 | 0.0009 | 0.0370 | 0.0066 | 6.38 |
Average | 31.88 | 0.0013 | 0.0367 | 0.0075 | 6.22 | |||
X8HC | 2455.10 | K1qn2 | CM | 2.13 | 0.0000 | 0.0291 | 0.0049 | 7.14 |
X8HC | 2491.10 | K1qn1 | CM | 30.44 | 0.0017 | 0.0334 | 0.0073 | 5.27 |
Average | 16.29 | 0.0009 | 0.0312 | 0.0061 | 6.21 |
Well | Depth (m) | Lithofacies | Permeability (10−3μm2) | Porosity (%) | Pore-Throat Radius (μm) | Sorting Coefficient Sp | Skewness Skp | Maximum Mercury Saturation (SHgmax) (%) | Displacement Pressure (mPa) | ||
---|---|---|---|---|---|---|---|---|---|---|---|
Maximum Value Ra | Average value Rp | Median Value R50 | |||||||||
X8HC | 2471.1 | SM | 0.02 | 8.14 | 0.04 | 0.01 | 0.005 | 0.93 | −1.000 | 46.77 | 20.68 |
X8HC | 2473.23 | SM | 0.39 | 7.12 | 1.56 | 0.32 | 0.004 | 2.24 | −0.996 | 50.27 | 0.47 |
X8HC | 2477.1 | SM | 0.02 | 7.05 | 0.02 | 0.01 | 0.006 | 0.66 | −0.391 | 76.73 | 48.23 |
X8HC | 2479.1 | SM | 0.01 | 7.69 | 0.02 | 0.01 | 0.006 | 0.67 | −0.315 | 75.31 | 48.21 |
X8HC | 2505.12 | SM | 0.01 | 9.27 | 1.09 | 0.15 | 0.004 | 1.86 | −0.919 | 54.03 | 0.68 |
X8HC | 2512.1 | SM | 0.02 | 9.52 | 0.02 | 0.01 | 0.004 | 0.63 | −0.900 | 52.29 | 48.23 |
X3HC | 2488.6 | SM | 0.01 | 7.60 | 0.05 | 0.01 | 0.005 | 0.93 | −1.000 | 38.80 | 13.76 |
X3HC | 2490.5 | SM | 0.11 | 7.10 | 0.05 | 0.02 | 0.005 | 1.14 | −1.000 | 44.20 | 13.77 |
X3HC | 2491.7 | SM | 0.01 | 6.90 | 0.05 | 0.01 | 0.005 | 1.15 | −0.804 | 58.68 | 13.78 |
X3HC | 2493.45 | SM | 0.01 | 7.10 | 0.05 | 0.01 | 0.005 | 1.08 | −0.823 | 55.24 | 13.76 |
Average | 0.06 | 7.75 | 0.29 | 0.05 | 0.005 | 1.13 | −0.815 | 55.23 | 22.16 | ||
X8HC | 2487.1 | SFMR | 0.38 | 7.81 | 1.55 | 0.28 | 0.004 | 2.16 | −0.963 | 52.62 | 0.47 |
X8HC | 2497.1 | SFMR | 0.03 | 8.06 | 0.02 | 0.01 | 0.005 | 0.63 | −0.662 | 61.66 | 48.23 |
X8HC | 2501.24 | SFMR | 0.10 | 9.01 | 0.54 | 0.10 | 0.004 | 1.56 | −1.000 | 43.54 | 1.37 |
X8HC | 2510.1 | SFMR | 0.01 | 9.69 | 0.54 | 0.08 | 0.005 | 1.60 | −0.894 | 56.03 | 1.36 |
X8HC | 2516.1 | SFMR | 0.02 | 7.05 | 0.02 | 0.01 | 0.005 | 0.64 | −0.517 | 68.49 | 48.23 |
X3HC | 2460 | SFMR | 0.01 | 7.00 | 0.05 | 0.01 | 0.005 | 1.01 | −1.000 | 38.77 | 13.77 |
Average | 0.09 | 8.10 | 0.45 | 0.08 | 0.005 | 1.26 | −0.839 | 53.52 | 18.90 | ||
X3HC | 2487.7 | AFMR | 0.01 | 7.00 | 0.04 | 0.01 | 0.004 | 0.93 | −1.000 | 44.71 | 20.66 |
X3HC | 2476.87 | AFMR | 0.01 | 6.00 | 1.10 | 0.16 | 0.005 | 1.87 | −1.000 | 42.12 | 0.67 |
Average | 0.01 | 6.50 | 0.57 | 0.09 | 0.005 | 1.4 | −1.000 | 43.41 | 10.67 | ||
X8HC | 2524.25 | CM | 2.63 | 7.35 | 1.09 | 0.17 | 0.004 | 2.16 | −0.952 | 52.86 | 0.68 |
X3HC | 2433.3 | CM | 0.21 | 8.30 | 1.57 | 0.20 | 0.006 | 2.13 | −0.796 | 61.10 | 0.47 |
Average | 1.42 | 7.83 | 1.33 | 0.19 | 0.005 | 2.15 | −0.874 | 56.98 | 0.57 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, N.; He, W.; Zhong, J.; Gao, J.; Sheng, P. Lithofacies and Shale Oil Potential of Fine-Grained Sedimentary Rocks in Lacustrine Basin (Upper Cretaceous Qingshankou Formation, Songliao Basin, Northeast China). Minerals 2023, 13, 385. https://doi.org/10.3390/min13030385
Sun N, He W, Zhong J, Gao J, Sheng P. Lithofacies and Shale Oil Potential of Fine-Grained Sedimentary Rocks in Lacustrine Basin (Upper Cretaceous Qingshankou Formation, Songliao Basin, Northeast China). Minerals. 2023; 13(3):385. https://doi.org/10.3390/min13030385
Chicago/Turabian StyleSun, Ningliang, Wenyuan He, Jianhua Zhong, Jianbo Gao, and Pengpeng Sheng. 2023. "Lithofacies and Shale Oil Potential of Fine-Grained Sedimentary Rocks in Lacustrine Basin (Upper Cretaceous Qingshankou Formation, Songliao Basin, Northeast China)" Minerals 13, no. 3: 385. https://doi.org/10.3390/min13030385
APA StyleSun, N., He, W., Zhong, J., Gao, J., & Sheng, P. (2023). Lithofacies and Shale Oil Potential of Fine-Grained Sedimentary Rocks in Lacustrine Basin (Upper Cretaceous Qingshankou Formation, Songliao Basin, Northeast China). Minerals, 13(3), 385. https://doi.org/10.3390/min13030385