Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (60)

Search Parameters:
Keywords = kunitz-type inhibitor

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2437 KiB  
Article
Seed-Specific Silencing of Abundantly Expressed Soybean Bowman–Birk Protease Inhibitor Genes by RNAi Lowers Trypsin and Chymotrypsin Inhibitor Activities and Enhances Protein Digestibility
by Wonseok Kim, Sunhyung Kim and Hari B. Krishnan
Int. J. Mol. Sci. 2025, 26(14), 6943; https://doi.org/10.3390/ijms26146943 - 19 Jul 2025
Viewed by 285
Abstract
Soybean meal (SBM) is extensively used as a predominant protein source in animal feed. However, raw soybean cannot be directly utilized in animal feed, due to the presence of the Kunitz trypsin inhibitor (KTi) and the Bowman–Birk protease inhibitor (BBi). These antinutritional factors [...] Read more.
Soybean meal (SBM) is extensively used as a predominant protein source in animal feed. However, raw soybean cannot be directly utilized in animal feed, due to the presence of the Kunitz trypsin inhibitor (KTi) and the Bowman–Birk protease inhibitor (BBi). These antinutritional factors inhibit the digestive enzymes in animals, trypsin and chymotrypsin, resulting in poor animal performance. To inactivate the activity of protease inhibitors, SBM is subjected to heat processing, a procedure that can negatively impact the soybean protein quality. Thus, it would be beneficial to develop soybean varieties with little or no trypsin inhibitors. In this study, we report on the creation of experimental soybean lines with significantly reduced levels of Bowman–Birk protease inhibitors. RNA interference (RNAi) technology was employed to generate several transgenic soybean lines. Some of these BBi knockdown soybean lines showed significantly lower amounts of both trypsin and chymotrypsin inhibitor activities. Western blot analysis revealed the complete absence of BBi in selected RNAi-derived lines. RNA sequencing (RNAseq) analysis demonstrated a drastic reduction in the seed-specific expression of BBi genes in the transgenic soybean lines during seed development. Confocal fluorescence immunolabeling studies showed that the accumulation of BBi was drastically diminished in BBi knockdown lines compared to wild-type soybeans. The absence of BBi in the transgenic soybean did not alter the overall protein, oil, and sulfur amino acid content of the seeds compared to wild-type soybeans. The seed protein from the BBi knockdown lines were more rapidly hydrolyzed by trypsin and chymotrypsin compared to the wild type, indicating that the absence of BBi enhances protein digestibility. Our study suggests that these BBi knockdown lines could be a valuable resource in order for plant breeders to incorporate this trait into commercial soybean cultivars, potentially enabling the use of raw soybeans in animal feed. Full article
(This article belongs to the Special Issue Genetics and Novel Techniques for Soybean Pivotal Characters)
Show Figures

Figure 1

11 pages, 3240 KiB  
Article
SPINT1 Expressed in Epithelial Cells of Choroid Plexus in Human and Mouse Brains
by Ryuta Murakami, Yoichi Chiba, Genta Takebayashi, Keiji Wakamatsu, Yumi Miyai, Koichi Matsumoto, Naoya Uemura, Ken Yanase, Yuichi Ogino and Masaki Ueno
Int. J. Mol. Sci. 2025, 26(11), 5130; https://doi.org/10.3390/ijms26115130 - 27 May 2025
Viewed by 354
Abstract
The functional significance of the choroid plexus (CP), such as in the control of circadian rhythm as well as production of cerebrospinal fluid, is attracting attention. Transepithelial and junctional transport between epithelial cells of CP plays an important role in its function. Recently, [...] Read more.
The functional significance of the choroid plexus (CP), such as in the control of circadian rhythm as well as production of cerebrospinal fluid, is attracting attention. Transepithelial and junctional transport between epithelial cells of CP plays an important role in its function. Recently, an epithelial cadherin, E-cadherin, as well as non-epithelial cadherins were confirmed to be expressed in CP epithelial cells. The serine protease inhibitor Kunitz type 1 (SPINT1) is expressed in many kinds of epithelial cells and affects epithelial developmental function by controlling E-cadherin expression. However, it has not been confirmed whether SPINT1 is expressed in epithelial cells of CP. Thus, in this study, we examined whether SPINT1 is expressed in CP epithelial cells by immunohistochemistry and RT-PCR. Immunohistochemical expression of SPINT1 was noted in the cytoplasm of epithelial cells of humans and mice, and mRNA of SPINT1 was expressed in samples derived from the CP of mice. SPINT1 was typically expressed in CP epithelial cells with E-cadherin and Smad-interacting protein (SIP1), an E-cadherin transcriptional repressor. Some enlarged epithelial cells showed strong SPINT1 signals. These findings indicate that SPINT1 is expressed in epithelial cells of CP in relation to E-cadherin expression. Full article
(This article belongs to the Special Issue Molecular Mechanisms and Treatments in Neurodegenerative Diseases)
Show Figures

Figure 1

18 pages, 2783 KiB  
Article
Effects of a Proteinase Inhibitor from Inga laurina Seeds (ILTI) on Aedes aegypti Larval Development
by Ana Jacobowski, Welington Leite, Antolim Martinez Júnior, Eduarda Reis, Lorena Pires, Vitória Silva, Layza Rocha, Eduardo Arruda, Octávio Franco, Marlon Cardoso, Priscila Hiane and Maria Macedo
J. Xenobiot. 2025, 15(3), 77; https://doi.org/10.3390/jox15030077 - 22 May 2025
Viewed by 698
Abstract
Aedes aegypti (Linnaeus, 1762) is Brazil’s primary vector of epidemiologically significant arboviruses such as yellow fever, dengue, Zika, and chikungunya. Despite using conventional chemical control measures, this species has developed resistance to standard chemical insecticides, prompting the search for natural larvicidal compounds. Plant [...] Read more.
Aedes aegypti (Linnaeus, 1762) is Brazil’s primary vector of epidemiologically significant arboviruses such as yellow fever, dengue, Zika, and chikungunya. Despite using conventional chemical control measures, this species has developed resistance to standard chemical insecticides, prompting the search for natural larvicidal compounds. Plant protease inhibitors offer an insecticidal alternative as the primary digestive enzymes in the midgut of Ae. aegypti are proteases (trypsin and chymotrypsin). Ae. aegypti larvae fed with ILTI, a Kunitz-type trypsin inhibitor derived from Inga laurina seeds, at concentrations between 0.03 mg of protein per mL (mgP/mL) and 0.12 mgP/mL, exhibited delayed larval development, with a lethal concentration (LC50) of 0.095 mgP mL−1 of ILTI for 50% of fourth-instar larvae (L4). The ex vivo assay indicated that ILTI effectively inhibited the activity of larval trypsin, which remained susceptible to the inhibitor. Additionally, molecular modelling and docking studies were conducted to predict the three-dimensional ILTI/enzyme molecular complexes at the atomic level. Therefore, the results demonstrate that ILTI functions as a protease inhibitor in this species, presenting itself as a promising larvicidal tool in the control of Ae. aegypti. Full article
(This article belongs to the Section Natural Products/Herbal Medicines)
Show Figures

Graphical abstract

15 pages, 6146 KiB  
Article
Comparative Transcriptome Analysis Reveals Expression of Defense Pathways and Specific Protease Inhibitor Genes in Solanum lycopersicum in Response to Feeding by Tuta absoluta
by Yan Zhou, Yongyi Pan, Jia Liu, Wenjia Yang and Guangmao Shen
Insects 2025, 16(2), 166; https://doi.org/10.3390/insects16020166 - 5 Feb 2025
Viewed by 835
Abstract
Understanding plant-insect interactions can help control the harm of herbivorous pests. According to transcriptome data, transcripts of Solanum lycopersicum responding to feeding by Tuta absoluta were screened for important endopeptidase inhibitors. These genes were annotated as serine-type endopeptidase inhibitors from the potato inhibitor [...] Read more.
Understanding plant-insect interactions can help control the harm of herbivorous pests. According to transcriptome data, transcripts of Solanum lycopersicum responding to feeding by Tuta absoluta were screened for important endopeptidase inhibitors. These genes were annotated as serine-type endopeptidase inhibitors from the potato inhibitor I family, potato type II proteinase inhibitor family, and soybean trypsin inhibitor (Kunitz) family. Based on the analysis of expression patterns, Solyc09g084480.2, Solyc03g020080.2, Solyc03g098760.1, and Solyc01g009020.1 were identified as key genes in the defense system of S. lycopersicum. The major endopeptidase genes such as Tabs008250, Tabs007396, and Tabs005701 in the larval stages of T. absoluta were also detected as potential targets of the plant endopeptidase inhibitors. The interaction mode between these endopeptidase and endopeptidase inhibitors was predicted based on the protein structure construction. This study aims to reveal the molecular response of S. lycopersicum to feeding by T. absoluta with high throughput sequencing and bioinformatics analysis. Full article
(This article belongs to the Section Insect Molecular Biology and Genomics)
Show Figures

Figure 1

17 pages, 4628 KiB  
Article
Sea Anemone Kunitz Peptide HCIQ2c1 Reduces Histamine-, Lipopolysaccharide-, and Carrageenan-Induced Inflammation via the Suppression of Pro-Inflammatory Mediators
by Aleksandra N. Kvetkina, Anna A. Klimovich, Yulia V. Deriavko, Evgeniy A. Pislyagin, Ekaterina S. Menchinskaya, Evgenia P. Bystritskaya, Marina P. Isaeva, Ekaterina N. Lyukmanova, Zakhar O. Shenkarev, Dmitriy L. Aminin and Elena V. Leychenko
Int. J. Mol. Sci. 2025, 26(1), 431; https://doi.org/10.3390/ijms26010431 - 6 Jan 2025
Cited by 1 | Viewed by 2698
Abstract
Inflammation is a physiological response of the immune system to infectious agents or tissue injury, which involves a cascade of vascular and cellular events and the activation of biochemical pathways depending on the type of harmful agent and the stimulus generated. The Kunitz [...] Read more.
Inflammation is a physiological response of the immune system to infectious agents or tissue injury, which involves a cascade of vascular and cellular events and the activation of biochemical pathways depending on the type of harmful agent and the stimulus generated. The Kunitz peptide HCIQ2c1 of sea anemone Heteractis magnifica is a strong protease inhibitor and exhibits neuroprotective and analgesic activities. In this study, we investigated the anti-inflammatory potential of HCIQ2c1 in histamine- and lipopolysaccharide (LPS)-activated RAW 264.7 macrophages as well as in LPS-induced systemic inflammation and carrageenan-induced paw edema models in CD-1 mice. We found that 10 μM HCIQ2c1 dramatically decreases histamine-induced intracellular Ca2+ release and LPS-induced reactive oxygen species (ROS) production in RAW 264.7 macrophages. Moreover, HCIQ2c1 significantly inhibited the production of LPS-induced tumor necrosis factor α (TNF-α), inducible NO-synthase (iNOS), and 5-lipoxygenase (5-LO) but slightly influenced the IL-1β and cyclooxygenase-2 (COX-2) expression level in macrophages. Furthermore, intravenous administration by HCIQ2c1 at 0.1 mg/kg dose reduced LPS-induced TNF-α, IL-1β, COX-2, and iNOS gene expression in CD-1 mice. The subplantar administration of HCIQ2c1 at 0.1 mg/kg dose to mice significantly reduced carrageenan-induced paw edema by a factor of two, which is comparable to the effect of diclofenac at 1 mg/kg dose. Thus, peptide HCIQ2c1 has a strong anti-inflammatory potential by the attenuation of systemic and local inflammatory effects through the inhibition of intracellular Ca2+ release, the production of ROS and pro-inflammatory cytokines, and enzymes involved in arachidonic acid metabolism. Full article
(This article belongs to the Special Issue The Structures and Biologic Activity of Marine Natural Products)
Show Figures

Figure 1

13 pages, 9161 KiB  
Article
Improvement in XIa Selectivity of Snake Venom Peptide Analogue BF9-N17K Using P2′ Amino Acid Replacements
by Li Ding, Zhiping Zhai, Tianxiang Qin, Yuexi Lin, Zhicheng Shuang, Fang Sun, Chenhu Qin, Hongyi Luo, Wen Zhu, Xiangdong Ye, Zongyun Chen and Xudong Luo
Toxins 2025, 17(1), 23; https://doi.org/10.3390/toxins17010023 - 5 Jan 2025
Viewed by 996
Abstract
Coagulation factor XIa is a new serine-protease family drug target for next-generation anticoagulants. With the snake venom Kunitz-type peptide BF9 as the scaffold, we obtained a highly active XIa inhibitor BF9-N17K in our previous work, but it also inhibited the hemostatic target plasmin. [...] Read more.
Coagulation factor XIa is a new serine-protease family drug target for next-generation anticoagulants. With the snake venom Kunitz-type peptide BF9 as the scaffold, we obtained a highly active XIa inhibitor BF9-N17K in our previous work, but it also inhibited the hemostatic target plasmin. Here, in order to enhance the selectivity of BF9-N17K toward XIa, four mutants, BF9-N17K-L19A, BF9-N17K-L19S, BF9-N17K-L19D, and BF9-N17K-L19K, were further designed using the P2′ amino acid classification scanning strategy. The anticoagulation assay showed that the four P2′ single-point mutants still had apparent inhibitory anticoagulation activity that selectively inhibited the human intrinsic coagulation pathway and had no influence on the extrinsic coagulation pathway or common coagulation pathway, which indicated that the single-point mutants had minimal effects on the anticoagulation activity of BF9-N17K. Interestingly, the enzyme inhibitor assay experiments showed that the XIa and plasmin inhibitory activities were significantly changed by the P2′ amino acid replacements. The XIa inhibitory activity of BF9-N17K-L19D was apparently enhanced, with an IC50 of 19.28 ± 2.53 nM, and its plasmin inhibitory was significantly weakened, with an IC50 of 459.33 ± 337.40 nM. BF9-N17K-L19K was the opposite to BF9-N17K-L19D, which had enhanced plasmin inhibitory activity and reduced XIa inhibitory activity. For BF9-N17K-L19A and BF9-N17K-L19S, no apparent changes were found in the serine protease inhibitory activity, and they had similar XIa and plasmin inhibitory activities to the template peptide BF9-N17K. These results suggested that the characteristics of the charge of the P2′ site might be associated with the drug selectivity between the anticoagulant target XIa and hemostatic target plasmin. In addition, according to the molecular diversity and sequence conservation, a common motif GR/PCR/KA/SXIP-XYGGC is proposed in the XIa-inhibitory Kunitz-type peptides, which might provide a new clue for further peptide engineering. In conclusion, through P2′ amino acid classification scanning with the snake venom Kunitz-type peptide scaffold, a new potent and selective XIa inhibitor, BF9-N17K-L19D, was discovered, which provides a new XIa-targeting lead drug template for the treatment of thrombotic-related diseases. Full article
(This article belongs to the Special Issue Animals Venom in Drug Discovery: A Valuable Therapeutic Tool)
Show Figures

Figure 1

22 pages, 9563 KiB  
Article
Identification of Kunitz-Type Inhibitor Gene Family of Populus yunnanensis Reveals a Stress Tolerance Function in Inverted Cuttings
by Haiyang Guo, Shaojie Ma, Xiaolin Zhang, Rong Xu, Cai Wang, Shihai Zhang, Lihong Zhao, Dan Li and Dan Zong
Int. J. Mol. Sci. 2025, 26(1), 188; https://doi.org/10.3390/ijms26010188 - 29 Dec 2024
Viewed by 956
Abstract
Plant protease inhibitors are a ubiquitous feature of plant species and exert a substantial influence on plant stress responses. However, the KTI (Kunitz trypsin inhibitor) family responding to abiotic stress has not been fully characterized in Populus yunnanensis. In this study, we [...] Read more.
Plant protease inhibitors are a ubiquitous feature of plant species and exert a substantial influence on plant stress responses. However, the KTI (Kunitz trypsin inhibitor) family responding to abiotic stress has not been fully characterized in Populus yunnanensis. In this study, we conducted a genome-wide study of the KTI family and analyzed their gene structure, gene duplication, conserved motifs, cis-acting elements, and response to stress treatment. A total of 29 KTIs were identified in the P. yunnanensis genome. Based on phylogenetic analysis, the PyKTIs were divided into four groups (1,2, 3, and 4). Promoter sequence analysis showed that the PyKTIs contain many cis-acting elements related to light, plant growth, hormone, and stress responses, indicating that PyKTIs are widely involved in various biological regulatory processes. RNA sequencing and real-time quantitative polymerase chain reaction analysis showed that KTI genes were differentially expressed under the inverted cutting stress of P. yunnanensis. Transcriptome analysis of P. yunnanensis leaves revealed that PyKTI16, PyKTI18, and PyKTI19 were highly upregulated after inverted cutting. Through the GEO query of Populus transcriptome data, KTI genes played a positive defense role in MeJa, drought, time series, and pathogen stress. This study provided comprehensive information for the KTI family in P. yunnanensis, which should be helpful for the functional characterization of P. yunnanensis KTI genes in the future. Full article
(This article belongs to the Special Issue Plant Physiology and Molecular Nutrition)
Show Figures

Figure 1

30 pages, 5277 KiB  
Article
Sea Anemone Kunitz Peptide HCIQ2c1: Structure, Modulation of TRPA1 Channel, and Suppression of Nociceptive Reaction In Vivo
by Aleksandra N. Kvetkina, Sergey D. Oreshkov, Pavel A. Mironov, Maxim M. Zaigraev, Anna A. Klimovich, Yulia V. Deriavko, Aleksandr S. Menshov, Dmitrii S. Kulbatskii, Yulia A. Logashina, Yaroslav A. Andreev, Anton O. Chugunov, Mikhail P. Kirpichnikov, Ekaterina N. Lyukmanova, Elena V. Leychenko and Zakhar O. Shenkarev
Mar. Drugs 2024, 22(12), 542; https://doi.org/10.3390/md22120542 - 2 Dec 2024
Cited by 1 | Viewed by 1773
Abstract
TRPA1 is a homotetrameric non-selective calcium-permeable channel. It contributes to chemical and temperature sensitivity, acute pain sensation, and development of inflammation. HCIQ2c1 is a peptide from the sea anemone Heteractis magnifica that inhibits serine proteases. Here, we showed that HCIQ2c1 significantly reduces AITC- [...] Read more.
TRPA1 is a homotetrameric non-selective calcium-permeable channel. It contributes to chemical and temperature sensitivity, acute pain sensation, and development of inflammation. HCIQ2c1 is a peptide from the sea anemone Heteractis magnifica that inhibits serine proteases. Here, we showed that HCIQ2c1 significantly reduces AITC- and capsaicin-induced pain and inflammation in mice. Electrophysiology recordings in Xenopus oocytes expressing rat TRPA1 channel revealed that HCIQ2c1 binds to open TRPA1 and prevents its transition to closed and inhibitor-insensitive ‘hyperactivated’ states. NMR study of the 15N-labeled recombinant HCIQ2c1 analog described a classical Kunitz-type structure and revealed two dynamic hot-spots (loops responsible for protease binding and regions near the N- and C-termini) that exhibit simultaneous mobility on two timescales (ps–ns and μs–ms). In modelled HCIQ2c1/TRPA1 complex, the peptide interacts simultaneously with one voltage-sensing-like domain and two pore domain fragments from different channel’s subunits, and with lipid molecules. The model explains stabilization of the channel in the open conformation and the restriction of ‘hyperactivation’, which are probably responsible for the observed analgetic activity. HCIQ2c1 is the third peptide ligand of TRPA1 from sea anemones and the first Kunitz-type ligand of this channel. HCIQ2c1 is a prototype of efficient analgesic and anti-inflammatory drugs. Full article
(This article belongs to the Special Issue Toxins as Marine-Based Drug Discovery, 2nd Edition)
Show Figures

Figure 1

21 pages, 5193 KiB  
Article
Proteomic Profiling of Venoms from Bungarus suzhenae and B. bungaroides: Enzymatic Activities and Toxicity Assessment
by Chenying Yang, Li Ding, Qiyi He, Xiya Chen, Haiting Zhu, Feng Chen, Wanzhou Yang, Yuexin Pan, Zhiyuan Tai, Wenhao Zhang, Zeyuan Yu, Zening Chen and Xiaodong Yu
Toxins 2024, 16(11), 494; https://doi.org/10.3390/toxins16110494 - 16 Nov 2024
Viewed by 2164
Abstract
Kraits are venomous snakes of the genus Bungarus from the family Elapidae. Their venom typically demonstrates neurotoxicity; however, the toxicity is significantly influenced by the snake’s species and geographical origin. Among the Bungarus species, Bungarus suzhenae and B. bungaroides have been poorly [...] Read more.
Kraits are venomous snakes of the genus Bungarus from the family Elapidae. Their venom typically demonstrates neurotoxicity; however, the toxicity is significantly influenced by the snake’s species and geographical origin. Among the Bungarus species, Bungarus suzhenae and B. bungaroides have been poorly studied, with little to no information available regarding their venom composition. In this study, a proteomic approach was employed using LC-MS/MS to identify proteins from trypsin-digested peptides. The analysis revealed 102 venom-related proteins from 18 distinct functional protein families in the venom of B. suzhenae, with the primary components being three-finger toxins (3-FTx, 25.84%), phospholipase A2 (PLA2, 40.29%), L-amino acid oxidase (LAAO, 10.33%), Kunitz-type serine protease inhibitors (KUN, 9.48%), and snake venom metalloproteinases (SVMPs, 6.13%). In the venom of B. bungaroides, 99 proteins from 17 families were identified, with primary components being 3-FTx (33.87%), PLA2 (37.91%), LAAO (4.21%), and KUN (16.60%). Enzymatic activity assays confirmed the presence of key venom enzymes. Additionally, the LD50 values for B. suzhenae and B. bungaroides were 0.0133 μg/g and 0.752 μg/g, respectively, providing a reference for toxicity studies of these two species. This research elucidates the proteomic differences in the venoms of these two species, offering a foundation for developing antivenoms and clinical treatments for envenomation. Full article
(This article belongs to the Special Issue Transcriptomic and Proteomic Study on Animal Venom: Looking Forward)
Show Figures

Figure 1

15 pages, 4360 KiB  
Article
Characterization of Kunitz-Domain Anticoagulation Peptides Derived from Acinetobacter baumannii Exotoxin Protein F6W77
by Fang Sun, Xiaolin Deng, Huanhuan Gao, Li Ding, Wen Zhu, Hongyi Luo, Xiangdong Ye, Xudong Luo, Zongyun Chen and Chenhu Qin
Toxins 2024, 16(10), 450; https://doi.org/10.3390/toxins16100450 - 21 Oct 2024
Cited by 1 | Viewed by 1643
Abstract
Recent studies have revealed that the coagulation system plays a role in mammalian innate defense by entrapping bacteria in clots and generating antibacterial peptides. So, it is very important for the survival of bacteria to defend against the host coagulation system, which suggests [...] Read more.
Recent studies have revealed that the coagulation system plays a role in mammalian innate defense by entrapping bacteria in clots and generating antibacterial peptides. So, it is very important for the survival of bacteria to defend against the host coagulation system, which suggests that bacterial exotoxins might be a new source of anticoagulants. In this study, we analyzed the genomic sequences of Acinetobacter baumannii and a new bacterial exotoxin protein, F6W77, with five Kunitz-domains, KABP1-5, was identified. Each Kunitz-type domain features a classical six-cysteine framework reticulated by three conserved disulfide bridges, which was obviously similar to animal Kunitz-domain peptides but different from plant Kunitz-domain peptides. Anticoagulation function evaluation showed that towards the intrinsic coagulation pathway, KABP1 and KABP5 had apparently inhibitory activity, KABP4 had weak inhibitory activity, and KBAP2 and KABP3 had no effect even at a high concentration of 20 μg/mL. All five Kunitz-domain peptides, KABP1-5, had no inhibitory activity towards the extrinsic coagulation pathway. Enzyme-inhibitor experiments showed that the high-activity anticoagulant peptide KABP1 had apparently inhibitory activity towards two key coagulation factors, Xa and XIa, which was further confirmed by pull-down experiments that showed that KABP1 can bind to coagulation factors Xa and XIa directly. Structure-function relationship analyses of five Kunitz-type domain peptides showed that the arginine of the P1 site of three new bacterial anticoagulants, KABP1, KABP4 and KABP5, might be the key residue for their anticoagulation activity. In conclusion, with bioinformatics analyses, peptide recombination, and functional evaluation, we firstly found bacterial-exotoxin-derived Kunitz-type serine protease inhibitors with selectively inhibiting activity towards intrinsic coagulation pathways, and highlighted a new interaction between pathogenic bacteria and the human coagulation system. Full article
(This article belongs to the Section Bacterial Toxins)
Show Figures

Figure 1

20 pages, 3270 KiB  
Article
Chemical Synthesis and Structure–Activity Relationship Studies of the Coagulation Factor Xa Inhibitor Tick Anticoagulant Peptide from the Hematophagous Parasite Ornithodoros moubata
by Vincenzo De Filippis, Laura Acquasaliente, Andrea Pierangelini and Oriano Marin
Biomimetics 2024, 9(8), 485; https://doi.org/10.3390/biomimetics9080485 - 12 Aug 2024
Viewed by 1779
Abstract
Tick Anticoagulant Peptide (TAP), a 60-amino acid protein from the soft tick Ornithodoros moubata, inhibits activated coagulation factor X (fXa) with almost absolute specificity. Despite TAP and Bovine Pancreatic Trypsin Inhibitor (BPTI) (i.e., the prototype of the Kunitz-type protease inhibitors) sharing a [...] Read more.
Tick Anticoagulant Peptide (TAP), a 60-amino acid protein from the soft tick Ornithodoros moubata, inhibits activated coagulation factor X (fXa) with almost absolute specificity. Despite TAP and Bovine Pancreatic Trypsin Inhibitor (BPTI) (i.e., the prototype of the Kunitz-type protease inhibitors) sharing a similar 3D fold and disulphide bond topology, they have remarkably different amino acid sequence (only ~24% sequence identity), thermal stability, folding pathways, protease specificity, and even mechanism of protease inhibition. Here, fully active and correctly folded TAP was produced in reasonably high yields (~20%) by solid-phase peptide chemical synthesis and thoroughly characterised with respect to its chemical identity, disulphide pairing, folding kinetics, conformational dynamics, and fXa inhibition. The versatility of the chemical synthesis was exploited to perform structure–activity relationship studies on TAP by incorporating non-coded amino acids at positions 1 and 3 of the inhibitor. Using Hydrogen–Deuterium Exchange Mass Spectrometry, we found that TAP has a remarkably higher conformational flexibility compared to BPTI, and propose that these different dynamics could impact the different folding pathway and inhibition mechanisms of TAP and BPTI. Hence, the TAP/BPTI pair represents a nice example of divergent evolution, while the relative facility of TAP synthesis could represent a good starting point to design novel synthetic analogues with improved pharmacological profiles. Full article
(This article belongs to the Special Issue Biomimetic Approaches in Healthcare—Innovations Inspired by Nature)
Show Figures

Figure 1

18 pages, 14462 KiB  
Article
Overexpression of RpKTI2 from Robinia pseudoacacia Affects the Photosynthetic Physiology and Endogenous Hormones of Tobacco
by Jian Zhou, Pengxiang Die, Songyan Zhang, Xiaoya Han, Chenguang Wang and Peipei Wang
Plants 2024, 13(13), 1867; https://doi.org/10.3390/plants13131867 - 6 Jul 2024
Viewed by 1287
Abstract
Kunitz trypsin inhibitor genes play important roles in stress resistance. In this study, we investigated RpKTI2 cloned from Robinia pseudoacacia and its effect on tobacco. RpKTI2 was introduced into the tobacco cultivar NC89 using Agrobacterium-mediated transformation. Six RpKTI2-overexpressing lines were obtained. [...] Read more.
Kunitz trypsin inhibitor genes play important roles in stress resistance. In this study, we investigated RpKTI2 cloned from Robinia pseudoacacia and its effect on tobacco. RpKTI2 was introduced into the tobacco cultivar NC89 using Agrobacterium-mediated transformation. Six RpKTI2-overexpressing lines were obtained. Transgenic and wild-type tobacco plants were then compared for photosynthetic characteristics and endogenous hormone levels. Transgenic tobacco showed minor changes in chlorophyll content, fluorescence, and photosynthetic functions. However, the maximum photochemical efficiency (Fv/Fm) increased significantly while intercellular CO2 concentration (Ci) decreased significantly. Stomatal size and hormone content (indole-3-acetic acid, zeatin riboside, gibberellin, and indole-3-propionic acid) were reduced, while brassinosteroid content increased. Random forest regression revealed that RpKTI2 overexpression had the biggest impact on carotenoid content, initial fluorescence, Ci, stomatal area, and indole-3-acetic acid. Overall, RpKTI2 overexpression minimally affected chlorophyll synthesis and photosynthetic system characteristics but influenced stomatal development and likely enhanced the antioxidant capacity of tobacco. These findings provide a basis for future in-depth research on RpKTI2. Full article
(This article belongs to the Collection Feature Papers in Plant Physiology and Metabolism)
Show Figures

Figure 1

13 pages, 2354 KiB  
Article
Bowman–Birk Inhibitor Mutants of Soybean Generated by CRISPR-Cas9 Reveal Drastic Reductions in Trypsin and Chymotrypsin Inhibitor Activities
by Won-Seok Kim, Jason D. Gillman, Sunhyung Kim, Junqi Liu, Madhusudhana R. Janga, Robert M. Stupar and Hari B. Krishnan
Int. J. Mol. Sci. 2024, 25(11), 5578; https://doi.org/10.3390/ijms25115578 - 21 May 2024
Cited by 2 | Viewed by 2534
Abstract
Despite the high quality of soybean protein, raw soybeans and soybean meal cannot be directly included in animal feed mixtures due to the presence of Kunitz (KTi) and Bowman–Birk protease inhibitors (BBis), which reduces animal productivity. Heat treatment can substantially inactivate trypsin and [...] Read more.
Despite the high quality of soybean protein, raw soybeans and soybean meal cannot be directly included in animal feed mixtures due to the presence of Kunitz (KTi) and Bowman–Birk protease inhibitors (BBis), which reduces animal productivity. Heat treatment can substantially inactivate trypsin and chymotrypsin inhibitors (BBis), but such treatment is energy-intensive, adds expense, and negatively impacts the quality of seed proteins. As an alternative approach, we have employed CRISPR/Cas9 gene editing to create mutations in BBi genes to drastically lower the protease inhibitor content in soybean seed. Agrobacterium-mediated transformation was used to generate several stable transgenic soybean events. These independent CRISPR/Cas9 events were examined in comparison to wild-type plants using Sanger sequencing, proteomic analysis, trypsin/chymotrypsin inhibitor activity assays, and qRT-PCR. Collectively, our results demonstrate the creation of an allelic series of loss-of-function mutations affecting the major BBi gene in soybean. Mutations in two of the highly expressed seed-specific BBi genes lead to substantial reductions in both trypsin and chymotrypsin inhibitor activities. Full article
(This article belongs to the Special Issue Genetics and Novel Techniques for Soybean Pivotal Characters)
Show Figures

Figure 1

16 pages, 3236 KiB  
Article
Unveiling Novel Kunitz- and Waprin-Type Toxins in the Micrurus mipartitus Coral Snake Venom Gland: An In Silico Transcriptome Analysis
by Mónica Saldarriaga-Córdoba, Claudia Clavero-León, Paola Rey-Suarez, Vitelbina Nuñez-Rangel, Ruben Avendaño-Herrera, Stefany Solano-González and Juan F. Alzate
Toxins 2024, 16(5), 224; https://doi.org/10.3390/toxins16050224 - 11 May 2024
Cited by 3 | Viewed by 2212
Abstract
Kunitz-type peptide expression has been described in the venom of snakes of the Viperidae, Elapidae and Colubridae families. This work aimed to identify these peptides in the venom gland transcriptome of the coral snake Micrurus mipartitus. Transcriptomic analysis revealed a high diversity [...] Read more.
Kunitz-type peptide expression has been described in the venom of snakes of the Viperidae, Elapidae and Colubridae families. This work aimed to identify these peptides in the venom gland transcriptome of the coral snake Micrurus mipartitus. Transcriptomic analysis revealed a high diversity of venom-associated Kunitz serine protease inhibitor proteins (KSPIs). A total of eight copies of KSPIs were predicted and grouped into four distinctive types, including short KSPI, long KSPI, Kunitz–Waprin (Ku-WAP) proteins, and a multi-domain Kunitz-type protein. From these, one short KSPI showed high identity with Micrurus tener and Austrelaps superbus. The long KSPI group exhibited similarity within the Micrurus genus and showed homology with various elapid snakes and even with the colubrid Pantherophis guttatus. A third group suggested the presence of Kunitz domains in addition to a whey-acidic-protein-type four-disulfide core domain. Finally, the fourth group corresponded to a transcript copy with a putative 511 amino acid protein, formerly annotated as KSPI, which UniProt classified as SPINT1. In conclusion, this study showed the diversity of Kunitz-type proteins expressed in the venom gland transcriptome of M. mipartitus. Full article
(This article belongs to the Special Issue Transcriptomic and Proteomic Study on Animal Venom: Looking Forward)
Show Figures

Graphical abstract

23 pages, 2791 KiB  
Article
An Effective Modification Strategy to Build Multifunctional Peptides Based on a Trypsin Inhibitory Peptide of the Kunitz Family
by Ying Wang, Daning Shi, Wanchen Zou, Yangyang Jiang, Tao Wang, Xiaoling Chen, Chengbang Ma, Wei Li, Tianbao Chen, James F. Burrows, Lei Wang and Mei Zhou
Pharmaceutics 2024, 16(5), 597; https://doi.org/10.3390/pharmaceutics16050597 - 27 Apr 2024
Cited by 1 | Viewed by 2313
Abstract
Peptides with antimicrobial activity or protease inhibitory activity are potential candidates to supplement traditional antibiotics or cancer chemotherapies. However, the potential of many peptides are limited by drawbacks such as cytotoxicity or susceptibility to hydrolysis. Therefore, strategies to modify the structure of promising [...] Read more.
Peptides with antimicrobial activity or protease inhibitory activity are potential candidates to supplement traditional antibiotics or cancer chemotherapies. However, the potential of many peptides are limited by drawbacks such as cytotoxicity or susceptibility to hydrolysis. Therefore, strategies to modify the structure of promising peptides may represent an effective approach for developing more promising clinical candidates. In this study, the mature peptide OSTI−1949, a Kunitz-type inhibitor from Odorrana schmackeri, and four designed analogues were successfully synthesised. In contrast to the parent peptide, the analogues showed impressive multi-functionality including antimicrobial, anticancer, and trypsin inhibitory activities. In terms of safety, there were no obvious changes observed in the haemolytic activity at the highest tested concentration, and the analogue OSTI−2461 showed an increase in activity against cancer cell lines without cytotoxicity to normal cells (HaCaT). In summary, through structural modification of a natural Kunitz-type peptide, the biological activity of analogues was improved whilst retaining low cytotoxicity. The strategy of helicity enhancement by forming an artificial α-helix and ß-sheet structure provides a promising way to develop original bioactive peptides for clinical therapeutics. Full article
Show Figures

Figure 1

Back to TopTop