Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (11)

Search Parameters:
Keywords = keratin wound dressing

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 3417 KiB  
Review
Natural Protein Films from Textile Waste for Wound Healing and Wound Dressing Applications
by Livia Ottaviano, Sara Buoso, Roberto Zamboni, Giovanna Sotgiu and Tamara Posati
J. Funct. Biomater. 2025, 16(1), 20; https://doi.org/10.3390/jfb16010020 - 10 Jan 2025
Cited by 3 | Viewed by 2127
Abstract
In recent years, several studies have focused on the development of sustainable, biocompatible, and biodegradable films with potential applications in wound healing and wound dressing systems. Natural macromolecules, particularly proteins, have emerged as attractive alternatives to synthetic polymers due to their biocompatibility, biodegradability, [...] Read more.
In recent years, several studies have focused on the development of sustainable, biocompatible, and biodegradable films with potential applications in wound healing and wound dressing systems. Natural macromolecules, particularly proteins, have emerged as attractive alternatives to synthetic polymers due to their biocompatibility, biodegradability, low immunogenicity, and adaptability. Among these proteins, keratin, extracted from waste wool, and fibroin, derived from Bombyx mori cocoons, exhibit exceptional properties such as mechanical strength, cell adhesion capabilities, and suitability for various fabrication methods. These proteins can also be functionalized with antimicrobial, antioxidant, and anti-inflammatory compounds, making them highly versatile for biomedical applications. This review highlights the promising potential of keratin- and fibroin-based films as innovative platforms for wound healing, emphasizing their advantages and the prospects they offer in creating next-generation wound dressing devices. Full article
(This article belongs to the Special Issue Natural Product-Based Biomaterials for Advanced Wound Dressings)
Show Figures

Figure 1

16 pages, 2278 KiB  
Article
Electrospun Poly-ε-Caprolactone Nanofibers Incorporating Keratin Hydrolysates as Innovative Antioxidant Scaffolds
by Naiara Jacinta Clerici, Aline Aniele Vencato, Rafael Helm Júnior, Daniel Joner Daroit and Adriano Brandelli
Pharmaceuticals 2024, 17(8), 1016; https://doi.org/10.3390/ph17081016 - 1 Aug 2024
Cited by 6 | Viewed by 1864
Abstract
This manuscript describes the development and characterization of electrospun nanofibers incorporating bioactive hydrolysates obtained from the microbial bioconversion of feathers, a highly available agro-industrial byproduct. The electrospun nanofibers were characterized using different instrumental methods, and their antioxidant properties and toxicological potential were evaluated. [...] Read more.
This manuscript describes the development and characterization of electrospun nanofibers incorporating bioactive hydrolysates obtained from the microbial bioconversion of feathers, a highly available agro-industrial byproduct. The electrospun nanofibers were characterized using different instrumental methods, and their antioxidant properties and toxicological potential were evaluated. Keratin hydrolysates (KHs) produced by Bacillus velezensis P45 were incorporated at 1, 2.5, and 5% (w/w) into poly-ε-caprolactone (PCL; 10 and 15%, w/v solutions) before electrospinning. The obtained nanofibers were between 296 and 363 nm in diameter, showing a string-like morphology and adequate structural continuity. Thermogravimetric analysis showed three weight loss events, with 5% of the mass lost up to 330 °C and 90% from 350 to 450 °C. Infrared spectroscopy showed typical peaks of PCL and amide bands corresponding to keratin peptides. The biological activity was preserved after electrospinning and the hemolytic activity was below 1% as expected for biocompatible materials. In addition, the antioxidant capacity released from the nanofibers was confirmed by DPPH and ABTS radical scavenging activities. The DPPH scavenging activity observed for the nanofibers was greater than 30% after 24 h of incubation, ranging from 845 to 1080 µM TEAC (Trolox equivalent antioxidant capacity). The antioxidant activity for the ABTS radical assay was 44.19, 49.61, and 56.21% (corresponding to 972.0, 1153.3, and 1228.7 µM TEAC) for nanofibers made using 15% PCL with 1, 2.5, and 5% KH, respectively. These nanostructures may represent interesting antioxidant biocompatible materials for various pharmaceutical applications, including wound dressings, topical drug delivery, cosmetics, and packaging. Full article
(This article belongs to the Special Issue Recent Advances in Natural Product Based Nanostructured Systems)
Show Figures

Figure 1

22 pages, 9852 KiB  
Article
Donkey Gelatin and Keratin Nanofibers Loaded with Antioxidant Agents for Wound Healing Dressings
by Maria Râpă, Carmen Gaidau, Laura Mihaela Stefan, Andrada Lazea-Stoyanova, Mariana Daniela Berechet, Andreea Iosageanu, Ecaterina Matei, Virginija Jankauskaitė, Cristian Predescu, Virgilijus Valeika, Aistė Balčiūnaitienė and Snezana Cupara
Gels 2024, 10(6), 391; https://doi.org/10.3390/gels10060391 - 8 Jun 2024
Cited by 2 | Viewed by 2042
Abstract
Acute and chronic wounds present a significant healthcare challenge, requiring innovative solutions for effective treatment. The exploitation of natural by-products with advanced cell regeneration potential and plant-based materials, which possess bioactive properties, is an innovative topic in wound management. This study investigates the [...] Read more.
Acute and chronic wounds present a significant healthcare challenge, requiring innovative solutions for effective treatment. The exploitation of natural by-products with advanced cell regeneration potential and plant-based materials, which possess bioactive properties, is an innovative topic in wound management. This study investigates the potential of donkey gelatin and keratin for blending with natural bioactive extracts such as sumac, curcumin, and oak acorn to fabricate antioxidant and antimicrobial nanofibers with accelerated wound healing processes. The fabricated nanofibers possess good in vitro biocompatibility, except for the sumac-based donkey nanofibers, where cell viability significantly dropped to 56.25% (p < 0.05 compared to non-treated cells). The nanofiber dimensions showed structural similarities to human extracellular matrix components, providing an ideal microenvironment for tissue regeneration. The donkey nanofiber-based sumac and curcumin extracts presented a higher dissolution in the first 10 min (74% and 72%). Curcumin extract showed similar antimicrobial and antifungal performances to rivanol, while acorn and sumac extracts demonstrated similar values to each other. In vitro tests performed on murine fibroblast cells demonstrated high migration rates of 89% and 85% after 24 h in the case of acorn and curcumin nanofibers, respectively, underscoring the potential of these nanofibers as versatile platforms for advanced wound care applications. Full article
(This article belongs to the Special Issue Design and Development of Gelatin-Based Materials)
Show Figures

Graphical abstract

18 pages, 7010 KiB  
Article
Keratin/Copper Complex Electrospun Nanofibers for Antibacterial Treatments: Property Investigation and In Vitro Response
by Maria Laura Tummino, Iriczalli Cruz-Maya, Alessio Varesano, Claudia Vineis and Vincenzo Guarino
Materials 2024, 17(10), 2435; https://doi.org/10.3390/ma17102435 - 18 May 2024
Cited by 3 | Viewed by 2014
Abstract
The frontiers of antibacterial materials in the biomedical field are constantly evolving since infectious diseases are a continuous threat to human health. In this work, waste-wool-derived keratin electrospun nanofibers were blended with copper by an optimized impregnation procedure to fabricate antibacterial membranes with [...] Read more.
The frontiers of antibacterial materials in the biomedical field are constantly evolving since infectious diseases are a continuous threat to human health. In this work, waste-wool-derived keratin electrospun nanofibers were blended with copper by an optimized impregnation procedure to fabricate antibacterial membranes with intrinsic biological activity, excellent degradability and good cytocompatibility. The keratin/copper complex electrospun nanofibers were multi-analytically characterized and the main differences in their physical–chemical features were related to the crosslinking effect caused by Cu2+. Indeed, copper ions modified the thermal profiles, improving the thermal stability (evaluated by differential scanning calorimetry and thermogravimetry), and changed the infrared vibrational features (determined by infrared spectroscopy) and the chemical composition (studied by an X-ray energy-dispersive spectroscopy probe and optical emission spectrometry). The copper impregnation process also affected the morphology, leading to partial nanofiber swelling, as evidenced by scanning electron microscopy analyses. Then, the membranes were successfully tested as antibacterial materials against gram-negative bacteria, Escherichia coli. Regarding cytocompatibility, in vitro assays performed with L929 cells showed good levels of cell adhesion and proliferation (XTT assay), and no significant cytotoxic effect, in comparison to bare keratin nanofibers. Given these results, the material described in this work can be suitable for use as antibiotic-free fibers for skin wound dressing or membranes for guided tissue regeneration. Full article
(This article belongs to the Special Issue Nanoarchitectonics in Materials Science)
Show Figures

Figure 1

22 pages, 4062 KiB  
Article
Conversion of Animal-Derived Protein By-Products into a New Dual-Layer Nanofiber Biomaterial by Electrospinning Process
by Carmen Gaidău, Maria Râpă, Laura Mihaela Stefan, Ecaterina Matei, Andrei Constantin Berbecaru, Cristian Predescu and Liliana Mititelu-Tartau
Fibers 2023, 11(10), 87; https://doi.org/10.3390/fib11100087 - 14 Oct 2023
Cited by 6 | Viewed by 2914
Abstract
The aim of this study was to design a dual-layer wound dressing as a new fibrous biomaterial based on the valorization of animal-derived proteins. The first layer was fabricated by the deposition of poly(ethylene oxide) (PEO) loaded with keratin hydrolysate (KH) via a [...] Read more.
The aim of this study was to design a dual-layer wound dressing as a new fibrous biomaterial based on the valorization of animal-derived proteins. The first layer was fabricated by the deposition of poly(ethylene oxide) (PEO) loaded with keratin hydrolysate (KH) via a mono-electrospinning process onto a poly(lactic acid) (PLA) film, which was used as a support. The second layer consisted of encapsulating a bovine collagen hydrolysate (CH) into poly(vinyl pyrrolidone) (PVP) through a coaxial electrospinning process, which was added onto the previous layer. This assemblage was characterized by electronic microscopy for morphology and the controlled release of KH. In vitro biocompatibility was evaluated on the L929 (NCTC) murine fibroblasts using quantitative MTT assay and qualitative cell morphological examination after Giemsa staining. Additionally, in vivo biocompatibility methods were used to assess the impact of the biomaterial on white Swiss mice, including the evaluation of hematological, biochemical, and immunological profiles, as well as its impact on oxidative stress. The results revealed a nanofibrous structure for each layer, and the assembled product demonstrated antioxidant activity, controlled release of KH, a high degree of in vitro biocompatibility, negligible hematological and biochemical changes, and minimal impact of certain specific oxidative stress parameters compared to the use of patches with textile support. Full article
(This article belongs to the Special Issue Nanofibers: Biomedical Applications)
Show Figures

Graphical abstract

20 pages, 1494 KiB  
Review
Keratin Biomaterials in Skin Wound Healing, an Old Player in Modern Medicine: A Mini Review
by Marek Konop, Mateusz Rybka and Adrian Drapała
Pharmaceutics 2021, 13(12), 2029; https://doi.org/10.3390/pharmaceutics13122029 - 28 Nov 2021
Cited by 62 | Viewed by 6462
Abstract
Impaired wound healing is a major medical problem. To solve it, researchers around the world have turned their attention to the use of tissue-engineered products to aid in skin regeneration in case of acute and chronic wounds. One of the primary goals of [...] Read more.
Impaired wound healing is a major medical problem. To solve it, researchers around the world have turned their attention to the use of tissue-engineered products to aid in skin regeneration in case of acute and chronic wounds. One of the primary goals of tissue engineering and regenerative medicine is to develop a matrix or scaffold system that mimics the structure and function of native tissue. Keratin biomaterials derived from wool, hair, and bristle have been the subjects of active research in the context of tissue regeneration for over a decade. Keratin derivatives, which can be either soluble or insoluble, are utilized as wound dressings since keratins are dynamically up-regulated and needed in skin wound healing. Tissue biocompatibility, biodegradability, mechanical durability, and natural abundance are only a few of the keratin biomaterials’ properties, making them excellent wound dressing materials to treat acute and chronic wounds. Several experimental and pre-clinical studies described the beneficial effects of the keratin-based wound dressing in faster wound healing. This review focuses exclusively on the biomedical application of a different type of keratin biomaterials as a wound dressing in pre-clinical and clinical conditions. Full article
(This article belongs to the Special Issue Biomaterials in Skin Wound Healing and Tissue Regenerations)
Show Figures

Graphical abstract

19 pages, 6341 KiB  
Article
Keratin Scaffolds Containing Casomorphin Stimulate Macrophage Infiltration and Accelerate Full-Thickness Cutaneous Wound Healing in Diabetic Mice
by Marek Konop, Anna K. Laskowska, Mateusz Rybka, Ewa Kłodzińska, Dorota Sulejczak, Robert A. Schwartz and Joanna Czuwara
Molecules 2021, 26(9), 2554; https://doi.org/10.3390/molecules26092554 - 27 Apr 2021
Cited by 21 | Viewed by 4863
Abstract
Impaired wound healing is a major medical challenge, especially in diabetics. Over the centuries, the main goal of tissue engineering and regenerative medicine has been to invent biomaterials that accelerate the wound healing process. In this context, keratin-derived biomaterial is a promising candidate [...] Read more.
Impaired wound healing is a major medical challenge, especially in diabetics. Over the centuries, the main goal of tissue engineering and regenerative medicine has been to invent biomaterials that accelerate the wound healing process. In this context, keratin-derived biomaterial is a promising candidate due to its biocompatibility and biodegradability. In this study, we evaluated an insoluble fraction of keratin containing casomorphin as a wound dressing in a full-thickness surgical skin wound model in mice (n = 20) with iatrogenically induced diabetes. Casomorphin, an opioid peptide with analgesic properties, was incorporated into keratin and shown to be slowly released from the dressing. An in vitro study showed that keratin-casomorphin dressing is biocompatible, non-toxic, and supports cell growth. In vivo experiments demonstrated that keratin-casomorphin dressing significantly (p < 0.05) accelerates the whole process of skin wound healing to the its final stage. Wounds covered with keratin-casomorphin dressing underwent reepithelization faster, ending up with a thicker epidermis than control wounds, as confirmed by histopathological and immunohistochemical examinations. This investigated dressing stimulated macrophages infiltration, which favors tissue remodeling and regeneration, unlike in the control wounds in which neutrophils predominated. Additionally, in dressed wounds, the number of microhemorrhages was significantly decreased (p < 0.05) as compared with control wounds. The dressing was naturally incorporated into regenerating tissue during the wound healing process. Applied keratin dressing favored reconstruction of more regular skin structure and assured better cosmetic outcome in terms of scar formation and appearance. Our results have shown that insoluble keratin wound dressing containing casomorphin supports skin wound healing in diabetic mice. Full article
Show Figures

Figure 1

17 pages, 49984 KiB  
Article
Evaluation of Keratin/Bacterial Cellulose Based Scaffolds as Potential Burned Wound Dressing
by Cezar Doru Radu, Liliana Verestiuc, Eugen Ulea, Florin Daniel Lipsa, Vasile Vulpe, Corneliu Munteanu, Laura Bulgariu, Sorin Pașca, Camelia Tamas, Bogdan Mihnea Ciuntu, Madalina Ciocan, Ionela Sîrbu, Elena Gavrilas, Ciprian Vasile Macarel and Bogdan Istrate
Appl. Sci. 2021, 11(5), 1995; https://doi.org/10.3390/app11051995 - 24 Feb 2021
Cited by 15 | Viewed by 3551
Abstract
The study presents the preparation and characterization of new scaffolds based on bacterial cellulose and keratin hydrogel which were seeded with adipose stem cells. The bacterial cellulose was obtained by developing an Acetobacter xylinum culture and was visualized using SEM (scanning electron microscopy) [...] Read more.
The study presents the preparation and characterization of new scaffolds based on bacterial cellulose and keratin hydrogel which were seeded with adipose stem cells. The bacterial cellulose was obtained by developing an Acetobacter xylinum culture and was visualized using SEM (scanning electron microscopy) and elementally determined through EDAX (dispersive X-ray analysis) tests. Keratin species (β–keratose and γ-keratose) was extracted by hydrolytic degradation from non-dyed human hair. SEM, EDAX and conductometric titration tests were performed for physical–chemical and morphological evaluation. Cytocompatibility tests performed in vitro confirmed the material non-toxic effect on cells. The scaffolds, with and without stem cells, were grafted on the burned wounds on the rabbit’s dorsal region and the grafts were monitored for 21 days after the application on the wounds. The clinical monitoring of the grafts and the histopathological examination demonstrated the regenerative potential of the bacterial cellulose–keratin scaffolds, under the test conditions. Full article
(This article belongs to the Section Applied Biosciences and Bioengineering)
Show Figures

Figure 1

14 pages, 5064 KiB  
Article
Photo-Crosslinked Keratin/Chitosan Membranes as Potential Wound Dressing Materials
by Che-Wei Lin, Yi-Kai Chen, Min Lu, Kuo-Long Lou and Jiashing Yu
Polymers 2018, 10(9), 987; https://doi.org/10.3390/polym10090987 - 4 Sep 2018
Cited by 35 | Viewed by 7513
Abstract
In this study, we combined two kinds of natural polymers, chitosan and keratin, to develop a portable composite membrane via UV irradiation. UV-crosslinking without an additional chemical agent makes the fabrication more ideal by reducing reactants and avoiding residual toxic chemicals. This novel [...] Read more.
In this study, we combined two kinds of natural polymers, chitosan and keratin, to develop a portable composite membrane via UV irradiation. UV-crosslinking without an additional chemical agent makes the fabrication more ideal by reducing reactants and avoiding residual toxic chemicals. This novel composite could perform synergistic functions benefitting from chitosan and keratin; including a strong mechanical strength, biodegradability, biocompatibility, better cell adhesion, and proliferation characteristics. Furthermore, compared with our previous research, this keratin-chitosan composite membrane was improved in that it was made to be portable, enabling it to be versatile and have various applications in vitro and in vivo. Based on these facts, this innovative composite membrane has high potential for serving as an outstanding candidate for wound healing or other biomedical applications. Full article
(This article belongs to the Collection Polysaccharides)
Show Figures

Graphical abstract

23 pages, 2685 KiB  
Article
A Neutrophil Proteomic Signature in Surgical Trauma Wounds
by Sander Bekeschus, Jan-Wilm Lackmann, Denis Gümbel, Matthias Napp, Anke Schmidt and Kristian Wende
Int. J. Mol. Sci. 2018, 19(3), 761; https://doi.org/10.3390/ijms19030761 - 7 Mar 2018
Cited by 25 | Viewed by 5686
Abstract
Non-healing wounds continue to be a clinical challenge for patients and medical staff. These wounds have a heterogeneous etiology, including diabetes and surgical trauma wounds. It is therefore important to decipher molecular signatures that reflect the macroscopic process of wound healing. To this [...] Read more.
Non-healing wounds continue to be a clinical challenge for patients and medical staff. These wounds have a heterogeneous etiology, including diabetes and surgical trauma wounds. It is therefore important to decipher molecular signatures that reflect the macroscopic process of wound healing. To this end, we collected wound sponge dressings routinely used in vacuum assisted therapy after surgical trauma to generate wound-derived protein profiles via global mass spectrometry. We confidently identified 311 proteins in exudates. Among them were expected targets belonging to the immunoglobulin superfamily, complement, and skin-derived proteins, such as keratins. Next to several S100 proteins, chaperones, heat shock proteins, and immune modulators, the exudates presented a number of redox proteins as well as a discrete neutrophil proteomic signature, including for example cathepsin G, elastase, myeloperoxidase, CD66c, and lipocalin 2. We mapped over 200 post-translational modifications (PTMs; cysteine/methionine oxidation, tyrosine nitration, cysteine trioxidation) to the proteomic profile, for example, in peroxiredoxin 1. Investigating manually collected exudates, we confirmed presence of neutrophils and their products, such as microparticles and fragments containing myeloperoxidase and DNA. These data confirmed known and identified less known wound proteins and their PTMs, which may serve as resource for future studies on human wound healing. Full article
(This article belongs to the Special Issue New Innovations in Wound Healing and Repair)
Show Figures

Graphical abstract

21 pages, 1277 KiB  
Article
Tilapia Piscidin 4 (TP4) Stimulates Cell Proliferation and Wound Closure in MRSA-Infected Wounds in Mice
by Hang-Ning Huang, Yi-Lin Chan, Chang-Jer Wu and Jyh-Yih Chen
Mar. Drugs 2015, 13(5), 2813-2833; https://doi.org/10.3390/md13052813 - 6 May 2015
Cited by 44 | Viewed by 9916
Abstract
Antimicrobial peptides (AMPs) are endogenous antibiotics that directly affect microorganisms, and also have a variety of receptor-mediated functions. One such AMP, Tilapia piscidin 4 (TP4), was isolated from Nile tilapia (Oreochromis niloticus); TP4 has antibacterial effects and regulates the innate immune [...] Read more.
Antimicrobial peptides (AMPs) are endogenous antibiotics that directly affect microorganisms, and also have a variety of receptor-mediated functions. One such AMP, Tilapia piscidin 4 (TP4), was isolated from Nile tilapia (Oreochromis niloticus); TP4 has antibacterial effects and regulates the innate immune system. The aim of the present study was to characterize the role of TP4 in the regulation of wound closure in mice and proliferation of a keratinocyte cell line (HaCaT) and fibroblast cell line (Hs-68). In vitro, TP4 stimulated cell proliferation and activated collagen I, collagen III, and keratinocyte growth factor (KGF) gene expression in Hs-68 cells, which induces keratin production by HaCaT cells. This effect was detectable at TP4 concentrations of 6.25 µg/mL in both cell lines. In vivo, TP4 was found to be highly effective at combating peritonitis and wound infection caused by MRSA in mouse models, without inducing adverse behavioral effects or liver or kidney toxicity. Taken together, our results indicate that TP4 enhances the survival rate of mice infected with the bacterial pathogen MRSA through both antimicrobial and wound closure activities mediated by epidermal growth factor (EGF), transforming growth factor (TGF), and vascular endothelial growth factor (VEGF). The peptide is likely involved in antibacterial processes and regulation of tissue homeostasis in infected wounds in mice. Overall, these results suggest that TP4 may be suitable for development as a novel topical agent for wound dressing. Full article
Show Figures

Figure 1

Back to TopTop