Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (29)

Search Parameters:
Keywords = k-potent matrix

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 2537 KiB  
Article
Molecular Insights into the Interaction of Cathepsin D and Iron in Chronic Wound Healing: Exploring Therapeutic Potential and Mechanisms
by María Rodríguez-Moreno and Isabel Legaz
Biomedicines 2025, 13(3), 544; https://doi.org/10.3390/biomedicines13030544 - 21 Feb 2025
Viewed by 833
Abstract
Background: Chronic wounds, such as diabetic ulcers, often fail to progress through healing due to persistent inflammation, infections, and extracellular matrix (ECM) imbalances. Cathepsin D, an aspartate protease active in acidic environments, plays a pivotal role in wound healing by mediating inflammatory responses, [...] Read more.
Background: Chronic wounds, such as diabetic ulcers, often fail to progress through healing due to persistent inflammation, infections, and extracellular matrix (ECM) imbalances. Cathepsin D, an aspartate protease active in acidic environments, plays a pivotal role in wound healing by mediating inflammatory responses, ECM remodeling, and macrophage phenotype transitions. Its dysregulation, however, can impair healing, highlighting the need for targeted modulation of its activity. The aim of this study was to investigate the molecular interaction between Fe2+ and cathepsin D’s catalytic core and ionic zipper under physiological and acidic conditions to identify strategies to enhance tissue repair and accelerate the healing of chronic wounds. Methods: The molecular structure of active cathepsin D was obtained from the Protein Data Bank (PDB) and analyzed using UCSF Chimera. Molecular interactions between cathepsin D and ferrous ions (Fe2+) were studied, focusing on key residues (D33 and D231) and ionic zipper residues (E5, E180, and D187). Results: Our results showed that the active form of cathepsin D, a 96 kDa dimer, consisted of heterodimers with distinct amino acid chains, where residues D33 and D231 formed the active site, and E5, E180, and D187 constituted the ionic zipper. A functional pocket containing the conserved residues D33 and D231, essential for proteolytic activity, was identified. At physiological pH (~7.5), D33 exhibited the most potent interactions with Fe2+, with interaction energies of −7 × 1017 J at oxygen atoms of the carboxylate group (OD1) and α-carbon (CA) atoms, whereas D231 showed slightly lower energies of −6 × 1017 J at γ-carbon atom (CG) and CA atoms. At acidic pH (~4), E5 was the primary interacting residue, with the shortest distance to Fe2+ (2.69 Å), and showed stable interactions across several atoms, emphasizing its role in metal binding. Conclusions: pH conditions strongly influence the interaction of cathepsin D with Fe2. At physiological pH, residues D33 and D231 demonstrate robust and energetically efficient binding with Fe2+. At the same time, under acidic conditions, E5 emerges as the primary residue involved, potentially affecting the ionic zipper of cathepsin D. These insights provide a molecular foundation for targeting specific residues to modulate cathepsin D activity, presenting promising opportunities for therapeutic strategies aimed at improving chronic wound healing. Full article
(This article belongs to the Special Issue Wound Healing: From Mechanisms to Therapeutic Approaches)
Show Figures

Figure 1

16 pages, 1172 KiB  
Article
Effects of In Vitro Fermented Pleurotus eryngii on Intestinal Barrier Integrity and Immunomodulation in a Lipopolysaccharide-Induced Colonic Model
by Evangelia N. Kerezoudi, Georgia Saxami, Georgios I. Zervakis, Vasiliki Pletsa, Robert J. Brummer, Adamantini Kyriacou and Ignacio Rangel
Biomedicines 2025, 13(2), 430; https://doi.org/10.3390/biomedicines13020430 - 11 Feb 2025
Cited by 1 | Viewed by 1239
Abstract
Background: This study investigates the impact of fermentation supernatants (FSs) from Pleurotus eryngii whole mushrooms (PEWS), as well as its subcomponents, digested (PEWSD) and extracted (PEWSE) forms, on intestinal barrier function and immune modulation in lipopolysaccharide (LPS) -stimulated Caco-2 cells. Methods: [...] Read more.
Background: This study investigates the impact of fermentation supernatants (FSs) from Pleurotus eryngii whole mushrooms (PEWS), as well as its subcomponents, digested (PEWSD) and extracted (PEWSE) forms, on intestinal barrier function and immune modulation in lipopolysaccharide (LPS) -stimulated Caco-2 cells. Methods: Gene expression of tight junction (TJs) genes, cytokines, and key immune/metabolic receptors was assessed via qRT-PCR, while cytokine protein levels were measured using ELISA to explore post-transcriptional regulation. Results: LPS challenge significantly downregulated TJs zonula occludens-1 (ZO-1,) occludin, and claudin-1, compromising epithelial integrity. Treatment with FS-PEWS notably restored ZO-1 and occludin expression, outperforming FS-PEWSD and FS-PEWSE, which only partially mitigated the LPS-induced damage. FS-PEWS further demonstrated potent immunomodulatory effects, upregulating anti-inflammatory IL-10 and pro-inflammatory cytokines such as IL-8 and TNF-α. The activation of key receptors like TLR-2 and mTOR suggests that FS-PEWS modulates critical immune and metabolic pathways, such as NF-kB signaling, to maintain immune homeostasis. Although mRNA expression of pro-inflammatory cytokines was altered, no corresponding protein release was detected, suggesting potential post-transcriptional regulation. Conclusions: FS-PEWS preserves intestinal barrier integrity and modulates immune responses, particularly in low-grade inflammation, highlighting the whole food matrix’s role in enhancing its bioactivity and functional food potential. Full article
Show Figures

Figure 1

17 pages, 4287 KiB  
Article
The Influences of Microwave Irradiation and Heat Treatment on the Dynamic Tensile Response of Granite
by Shu Wang, Lei Bao, Pujing Yao, Jingxuan Xi, Ting Zhang, Yueqing Guo, Xinshuang Wu and Yitong Sun
Eng 2025, 6(1), 3; https://doi.org/10.3390/eng6010003 - 26 Dec 2024
Cited by 1 | Viewed by 722
Abstract
The paramount significance of temperature’s influence on rock engineering endeavors underscores its profound capacity to alter the physical and mechanical attributes of rocks. Among the most crucial techniques utilized to thermally induce damage and diminish the tensile resilience of rock materials are microwave [...] Read more.
The paramount significance of temperature’s influence on rock engineering endeavors underscores its profound capacity to alter the physical and mechanical attributes of rocks. Among the most crucial techniques utilized to thermally induce damage and diminish the tensile resilience of rock materials are microwave irradiation and heat treatment. This research examines and compares the effects of these two modalities on the dynamic tensile characteristics of Fangshan granite (FG), including their implications under conditions of overload and dependencies on loading rate, utilizing the sophisticated Split Hopkinson Pressure Bar (SHPB) apparatus. In particular, the dynamic real tensile strength (RST) of Brazilian disc (BD) specimens was meticulously gauged and contrasted after subjecting them to microwave irradiation at a potent 6 kW for varying durations (1.5, 3.0, and 4.5 min) and heat treatment across distinct temperature thresholds (178 °C, 345 °C, and 473 °C). To enhance the precision of the measurements, an overload correction was implemented by affixing a strain gauge in close proximity to the core of the BD specimen. The conventional dynamic tensile strength exhibited a reduction of approximately 20 to 30% with the prolongation of microwave radiation time. Furthermore, an additional decrease in tensile strength was observed with the elevation of heat treatment temperatures, reaching a maximum reduction of up to 40%. This phenomenon can be attributed to the proliferation and expansion of microcracks within the rock matrix. It was noteworthy that the RTS, corrected for overloading effects, exhibited a comparable trend to the dynamic traditional tensile strength (TTS). Both were significantly correlated with the loading rate, with the dynamic tensile strength demonstrating an average decrease of approximately 25% when the loading rate was increased. Interpolation and fitting analyses were employed to investigate the effects of microwave radiation duration, heat treatment temperature, and loading rate on the dynamic tensile strength of FG samples. Furthermore, it was established that the overload ratio increased in conjunction with an increase in microwave radiation duration, heat treatment temperature, and loading rate, reaching a maximum value of 1.5. Full article
(This article belongs to the Section Chemical, Civil and Environmental Engineering)
Show Figures

Figure 1

21 pages, 6419 KiB  
Article
Exiguolysin, a Novel Thermolysin (M4) Peptidase from Exiguobacterium oxidotolerans
by Brendan F. Gilmore, Tracy A. White, Alessandro Busetti, Matthew I. McAteer, Christine A. Maggs and Thomas P. Thompson
Microorganisms 2024, 12(11), 2311; https://doi.org/10.3390/microorganisms12112311 - 14 Nov 2024
Viewed by 1192
Abstract
This study details a comprehensive biochemical and structural characterization of exiguolysin, a novel thermolysin-like, caseinolytic peptidase secreted by a marine isolate of Exiguobacterium oxidotolerans strain BW26. Exiguolysin demonstrated optimal proteolytic activity at 37 °C and pH 3, retaining 85% activity at 50 °C, [...] Read more.
This study details a comprehensive biochemical and structural characterization of exiguolysin, a novel thermolysin-like, caseinolytic peptidase secreted by a marine isolate of Exiguobacterium oxidotolerans strain BW26. Exiguolysin demonstrated optimal proteolytic activity at 37 °C and pH 3, retaining 85% activity at 50 °C, highlighting its potential stability under broad reaction conditions. SDS-PAGE and LC-MS analysis identified the enzyme as a 32 kDa M4-family metalloprotease. Exiguolysin activity was inhibited by 1,10-phenanthroline, confirming its dependence on metal ions for activity. Zymographic analysis and substrate specificity assays revealed selective hydrolysis of matrix metalloproteinase (MMP) substrates but no activity against elastase substrates. Analysis of the predicted gene sequence and structural predictions using AlphaFold identified the presence and position of HEXXH and Glu-Xaa-Xaa-Xaa-Asp motifs, crucial for zinc binding and catalytic activity, characteristic of ‘Glu-zincins’ and members of the M4 peptidase family. High-throughput screening of a 20 × 20 N-alpha mercaptoamide dipeptide inhibitor library against exiguolysin identified SH-CH2-CO-Met-Tyr-NH2 as the most potent inhibitor, with a Ki of 1.95 μM. Notably, exiguolysin selectively inhibited thrombin-induced PAR-1 activation in PC-3 cells, potentially indicating a potential mechanism of virulence in modulating PAR-1 signalling during infection by disarming PARs. This is the first detailed characterization of a peptidase of the M4 (thermolysin) family in the genus Exiguobacterium which may have industrial application potential and relevance as a putative virulence factor. Full article
(This article belongs to the Special Issue New Insights into the Diversity and Characterization of Extremophiles)
Show Figures

Figure 1

19 pages, 11128 KiB  
Article
Role of DDR1 in Regulating MMPs in External Root Resorption
by Yuhan Wang, Bing Han, Hongyan Tian, Kaining Liu and Xiaoyan Wang
Int. J. Mol. Sci. 2024, 25(22), 12111; https://doi.org/10.3390/ijms252212111 - 11 Nov 2024
Cited by 1 | Viewed by 1233
Abstract
Human periodontal ligament cells (hPDLCs) express matrix metalloproteinases (MMPs), a group of enzymes responsible for the destruction of most extracellular matrix proteins in dental tissues, especially MMP-1, MMP-2, and MMP-13. Exploring the regulatory mechanism of MMPs is crucial for understanding external root resorption [...] Read more.
Human periodontal ligament cells (hPDLCs) express matrix metalloproteinases (MMPs), a group of enzymes responsible for the destruction of most extracellular matrix proteins in dental tissues, especially MMP-1, MMP-2, and MMP-13. Exploring the regulatory mechanism of MMPs is crucial for understanding external root resorption (ERR), one of the most severe complications, along with substantial loss of dental tissue, induced by trauma, pulpal infection, tooth bleaching, and orthodontic treatment, etc. Discoidin domain receptor 1 (DDR1), a cell surface receptor binding to collagen, has the potential to regulate the expression of MMP-1, MMP-2, and MMP-13, but the mechanism remains unclear. Thus, the present study aimed to investigate the connection and underlying mechanism between MMP-1, MMP-2, MMP-13, and DDR1 in hPDLCs. Our post-replantation ERR model revealed that Mmp-1, Mmp-2, Mmp-13, and Ddr1 all increased in the sites of ERR. hPDLCs with DDR1 knockdown exhibited a substantial reduction in MMP-1, MMP-2, and MMP-13 expression. To further confirm the underlying mechanism, we conducted further in vitro experiments, including RNA sequencing, RNA interference, RT-qPCR, Western blotting, and ELISA. Based on our results, MMP-1 was positively regulated by the Smad2/3 and MEK-ERK1/2 pathways and negatively regulated by the PI3K-Akt pathway through CCN2. MMP-2 and MMP-13 were positively regulated by the Smad2/3 pathway. MMP-13 was positively regulated by the MEK-ERK1/2 and PI3K/Akt signaling pathways. Collectively, DDR1 is a potent regulator of MMP-1, MMP-2, and MMP-13 expression through the Smad2/3, MEK-ERK1/2, and PI3K/Akt signaling pathways. Clarifying the significance and underlying mechanism by which DDR1 is involved in ERR might bring the chances to hinder the pathogenic process of ERR, hence reducing its incidence rate. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

20 pages, 2215 KiB  
Article
The Role of αvβ3 Integrin in Lamina Cribrosa Cell Mechanotransduction in Glaucoma
by Mustapha Irnaten, Ellen Gaynor and Colm O’Brien
Cells 2024, 13(17), 1487; https://doi.org/10.3390/cells13171487 - 5 Sep 2024
Cited by 2 | Viewed by 1887
Abstract
Purpose: Glaucoma, one of the leading causes of irreversible blindness, is a common progressive optic neuropathy characterised by visual field defects and structural changes to the optic nerve head (ONH). There is extracellular matrix (ECM) accumulation and fibrosis of the lamina cribrosa (LC) [...] Read more.
Purpose: Glaucoma, one of the leading causes of irreversible blindness, is a common progressive optic neuropathy characterised by visual field defects and structural changes to the optic nerve head (ONH). There is extracellular matrix (ECM) accumulation and fibrosis of the lamina cribrosa (LC) in the ONH, and consequently increased tissue stiffness of the LC connective tissue. Integrins are cell surface proteins that provide the key molecular link connecting cells to the ECM and serve as bidirectional sensors transmitting signals between cells and their environment to promote cell adhesion, proliferation, and remodelling of the ECM. Here, we investigated the expression of αVβ3 integrin in glaucoma LC cell, and its effect on stiffness-induced ECM gene transcription and cellular proliferation rate in normal (NLC) and glaucoma (GLC) LC cells, by down-regulating αVβ3 integrin expression using cilengitide (a known potent αVβ3 and αVβ5 inhibitor) and β3 integrin siRNA knockdown. Methods: GLC cells were compared to age-matched controls NLC to determine differential expression levels of αVβ3 integrin, ECM genes (Col1A1, α-SMA, fibronectin, vitronectin), and proliferation rates. The effects of αVβ3 integrin blockade (with cilengitide) and silencing (with a pool of four predesigned αVβ3 integrin siRNAs) on ECM gene expression and proliferation rates were evaluated using both reverse transcription quantitative polymerase chain reaction (RT-qPCR) and Western blotting in the human NLC cells cultured on soft (4 kPa) and stiff (100 kPa) substrate and in GLC cells grown on standard plastic plates. Results: αVβ3 integrin gene and protein expression were enhanced (p < 0.05) in GLC cells as compared to NLC. Both cilengitide and siRNA significantly reduced αVβ3 expression in GLC. When NLC were grown in the stiff substrate, cilengitide and siRNA also significantly reduced the increased expression in αVβ3, ECM components, and proliferation rate. Conclusions: Here, we provide evidence of cilengitide- and siRNA-mediated silencing of αVβ3 integrin expression, and inhibition of ECM synthesis in LC cells. Therefore, αVβ3 integrin may be a promising target for the development of novel anti-fibrotic therapies for treating the LC cupping of the ONH in glaucoma. Full article
(This article belongs to the Special Issue Fibrosis in Chronic Inflammatory Diseases)
Show Figures

Figure 1

21 pages, 734 KiB  
Review
Vitamin K for Vascular Calcification in Kidney Patients: Still Alive and Kicking, but Still a Lot to Learn
by Ioannis Eleftherios Neofytou, Aikaterini Stamou, Antonia Demopoulos, Stefanos Roumeliotis, Pantelis Zebekakis, Vassilios Liakopoulos, Eleni Stamellou and Evangelia Dounousi
Nutrients 2024, 16(12), 1798; https://doi.org/10.3390/nu16121798 - 7 Jun 2024
Cited by 8 | Viewed by 3251
Abstract
Patients with chronic kidney disease (CKD) suffer disproportionately from a high burden of cardiovascular disease, which, despite recent scientific advances, remains partly understood. Vascular calcification (VC) is the result of an ongoing process of misplaced calcium in the inner and medial layers of [...] Read more.
Patients with chronic kidney disease (CKD) suffer disproportionately from a high burden of cardiovascular disease, which, despite recent scientific advances, remains partly understood. Vascular calcification (VC) is the result of an ongoing process of misplaced calcium in the inner and medial layers of the arteries, which has emerged as a critical contributor to cardiovascular events in CKD. Beyond its established role in blood clotting and bone health, vitamin K appears crucial in regulating VC via vitamin K-dependent proteins (VKDPs). Among these, the matrix Gla protein (MGP) serves as both a potent inhibitor of VC and a valuable biomarker (in its inactive form) for reflecting circulating vitamin K levels. CKD patients, especially in advanced stages, often present with vitamin K deficiency due to dietary restrictions, medications, and impaired intestinal absorption in the uremic environment. Epidemiological studies confirm a strong association between vitamin K levels, inactive MGP, and increased CVD risk across CKD stages. Based on the promising results of pre-clinical data, an increasing number of clinical trials have investigated the potential benefits of vitamin K supplementation to prevent, delay, or even reverse VC, but the results have remained inconsistent. Full article
(This article belongs to the Section Nutrition and Public Health)
Show Figures

Graphical abstract

34 pages, 3346 KiB  
Review
Vitamin A, D, E, and K as Matrix Metalloproteinase-2/9 Regulators That Affect Expression and Enzymatic Activity
by Ha Vy Thi Vo, Yen Thi Nguyen, Namdoo Kim and Hyuck Jin Lee
Int. J. Mol. Sci. 2023, 24(23), 17038; https://doi.org/10.3390/ijms242317038 - 1 Dec 2023
Cited by 13 | Viewed by 5165
Abstract
Fat-soluble vitamins (vitamin A, D, E, and K) assume a pivotal role in maintaining human homeostasis by virtue of their enzymatic functions. The daily inclusion of these vitamins is imperative to the upkeep of various physiological processes including vision, bone health, immunity, and [...] Read more.
Fat-soluble vitamins (vitamin A, D, E, and K) assume a pivotal role in maintaining human homeostasis by virtue of their enzymatic functions. The daily inclusion of these vitamins is imperative to the upkeep of various physiological processes including vision, bone health, immunity, and protection against oxidative stress. Current research highlights fat-soluble vitamins as potential therapeutics for human diseases, especially cancer. Fat-soluble vitamins exert their therapeutic effects through multiple pathways, including regulation of matrix metalloproteinases’ (MMPs) expression and enzymatic activity. As MMPs have been reported to be involved in the pathology of various diseases, such as cancers, cardiovascular diseases, and neurological disorders, regulating the expression and/or activity of MMPs could be considered as a potent therapeutic strategy. Here, we summarize the properties of fat-soluble vitamins and their potential as promising candidates capable of effectively modulating MMPs through multiple pathways to treat human diseases. Full article
Show Figures

Graphical abstract

21 pages, 2843 KiB  
Article
ACP-BC: A Model for Accurate Identification of Anticancer Peptides Based on Fusion Features of Bidirectional Long Short-Term Memory and Chemically Derived Information
by Mingwei Sun, Haoyuan Hu, Wei Pang and You Zhou
Int. J. Mol. Sci. 2023, 24(20), 15447; https://doi.org/10.3390/ijms242015447 - 22 Oct 2023
Cited by 17 | Viewed by 2358
Abstract
Anticancer peptides (ACPs) have been proven to possess potent anticancer activities. Although computational methods have emerged for rapid ACPs identification, their accuracy still needs improvement. In this study, we propose a model called ACP-BC, a three-channel end-to-end model that utilizes various combinations of [...] Read more.
Anticancer peptides (ACPs) have been proven to possess potent anticancer activities. Although computational methods have emerged for rapid ACPs identification, their accuracy still needs improvement. In this study, we propose a model called ACP-BC, a three-channel end-to-end model that utilizes various combinations of data augmentation techniques. In the first channel, features are extracted from the raw sequence using a bidirectional long short-term memory network. In the second channel, the entire sequence is converted into a chemical molecular formula, which is further simplified using Simplified Molecular Input Line Entry System notation to obtain deep abstract features through a bidirectional encoder representation transformer (BERT). In the third channel, we manually selected four effective features according to dipeptide composition, binary profile feature, k-mer sparse matrix, and pseudo amino acid composition. Notably, the application of chemical BERT in predicting ACPs is novel and successfully integrated into our model. To validate the performance of our model, we selected two benchmark datasets, ACPs740 and ACPs240. ACP-BC achieved prediction accuracy with 87% and 90% on these two datasets, respectively, representing improvements of 1.3% and 7% compared to existing state-of-the-art methods on these datasets. Therefore, systematic comparative experiments have shown that the ACP-BC can effectively identify anticancer peptides. Full article
(This article belongs to the Special Issue New Insights in Translational Bioinformatics)
Show Figures

Figure 1

15 pages, 4214 KiB  
Article
Substrate Stiffness of Bone Microenvironment Controls Functions of Pre-Osteoblasts and Fibroblasts In Vitro
by Shenghan Gao, Bo Chen, Min Gao, Yue Xu, Xueyi Yang, Chun Yang and Shaoxia Pan
Biomimetics 2023, 8(4), 344; https://doi.org/10.3390/biomimetics8040344 - 4 Aug 2023
Cited by 9 | Viewed by 2325
Abstract
The formation of bone in a bone defect is accomplished by osteoblasts, while the over activation of fibroblasts promotes fibrosis. However, it is not clear how the extracellular matrix stiffness of the bone-regeneration microenvironment affects the function of osteoblasts and fibroblasts. This study [...] Read more.
The formation of bone in a bone defect is accomplished by osteoblasts, while the over activation of fibroblasts promotes fibrosis. However, it is not clear how the extracellular matrix stiffness of the bone-regeneration microenvironment affects the function of osteoblasts and fibroblasts. This study aim to investigate the effect of bone-regeneration microenvironment stiffness on cell adhesion, cell proliferation, cell differentiation, synthesizing matrix ability and its potential mechanisms in mechanotransduction, in pre-osteoblasts and fibroblasts. Polyacrylamide substrates mimicking the matrix stiffness of different stages of the bone-healing process (15 kPa, mimic granulation tissue; 35 kPa, mimic osteoid; 150 kPa, mimic calcified bone matrix) were prepared. Mouse pre-osteoblasts MC3T3-E1 and mouse fibroblasts NIH3T3 were plated on three types of substrates, respectively. There were significant differences in the adhesion of pre-osteoblasts and fibroblasts on different polyacrylamide substrates. Runx2 expression increased with increasing substrate stiffness in pre-osteoblasts, while no statistical differences were found in the Acta2 expression in fibroblasts on three substrates. OPN expression in pre-osteoblasts, as well as Fn1 and Col1a1 expression in fibroblasts, decreased with increasing stiffness. The difference between the cell traction force generated by pre-osteoblasts and fibroblasts on substrates was also found. Our results indicated that substrate stiffness is a potent regulator of pre-osteoblasts and fibroblasts with the ability of promoting osteogenic differentiation of pre-osteoblasts, while having no effect on myofibroblast differentiation of fibroblasts. Full article
(This article belongs to the Special Issue Bioengineering of Biomimetic Microenvironments for Tissue Engineering)
Show Figures

Figure 1

13 pages, 2154 KiB  
Article
Ketonization of Ginsenoside C-K by Novel Recombinant 3-β-Hydroxysteroid Dehydrogenases and Effect on Human Fibroblast Cells
by Yan Jin, Dandan Wang, Wan-Taek Im, Muhammad Zubair Siddiqi and Deok-Chun Yang
Molecules 2023, 28(9), 3792; https://doi.org/10.3390/molecules28093792 - 28 Apr 2023
Cited by 3 | Viewed by 1928
Abstract
Background and objective: The ginsenoside compound K (C-K) (which is a de-glycosylated derivative of major ginsenosides) is effective in the treatment of cancer, diabetes, inflammation, allergy, angiogenesis, aging, and has neuroprotective, and hepatoprotective than other minor ginsenosides. Thus, a lot of studies have [...] Read more.
Background and objective: The ginsenoside compound K (C-K) (which is a de-glycosylated derivative of major ginsenosides) is effective in the treatment of cancer, diabetes, inflammation, allergy, angiogenesis, aging, and has neuroprotective, and hepatoprotective than other minor ginsenosides. Thus, a lot of studies have been focused on the conversion of major ginsenosides to minor ginsenosides using glycoside hydrolases but there is no study yet published for the bioconversion of minor ginsenosides into another high pharmacological active compound. Therefore, the objective of this study to identify a new gene (besides the glycoside hydrolases) for the conversion of minor ginsenosides C-K into another highly pharmacological active compound. Methods and Results: Lactobacillus brevis which was isolated from Kimchi has showed the ginsenoside C-K altering capabilities. From this strain, a novel potent decarboxylation gene, named HSDLb1, was isolated and expressed in Escherichia coli BL21 (DE3) using the pMAL-c5X vector system. Recombinant HSDLb1 was also characterized. The HSDLb1 consists of 774 bp (258 amino acids residues) with a predicted molecular mass of 28.64 kDa. The optimum enzyme activity was recorded at pH 6.0–8.0 and temperature 30 °C. Recombinant HSDLb1 effectively transformed the ginsenoside C-K to 12-β-hydroxydammar-3-one-20(S)-O-β-D-glucopyranoside (3-oxo-C-K). The experimental data proved that recombinant HSDLb1 strongly ketonized the hydroxyl (-O-H) group at C-3 of C-K via the following pathway: C-K → 3-oxo-C-K. In vitro study, 3-oxo-C-K showed higher solubility than C-K, and no cytotoxicity to fibroblast cells. In addition, 3-oxo-C-K induced the inhibitory activity of ultraviolet A (UVA) against matrix metalloproteinase-1 (MMP-1) and promoted procollagen type I synthesis. Based on these expectations, we hypothesized that 3-oxo-C-K can be used in cosmetic products to block UV radiations and anti-ageing agent. Furthermore, we expect that 3-oxo-C-K will show higher efficacy than C-K for the treatment of cancer, ageing and other related diseases, for which more studies are needed. Full article
Show Figures

Figure 1

23 pages, 11337 KiB  
Article
GelMA, Click-Chemistry Gelatin and Bioprinted Polyethylene Glycol-Based Hydrogels as 3D Ex Vivo Drug Testing Platforms for Patient-Derived Breast Cancer Organoids
by Nathalie Bock, Farzaneh Forouz, Luke Hipwood, Julien Clegg, Penny Jeffery, Madeline Gough, Tirsa van Wyngaard, Christopher Pyke, Mark N. Adams, Laura J. Bray, Laura Croft, Erik W. Thompson, Thomas Kryza and Christoph Meinert
Pharmaceutics 2023, 15(1), 261; https://doi.org/10.3390/pharmaceutics15010261 - 12 Jan 2023
Cited by 31 | Viewed by 7574
Abstract
3D organoid model technologies have led to the development of innovative tools for cancer precision medicine. Yet, the gold standard culture system (Matrigel®) lacks the ability for extensive biophysical manipulation needed to model various cancer microenvironments and has inherent batch-to-batch variability. [...] Read more.
3D organoid model technologies have led to the development of innovative tools for cancer precision medicine. Yet, the gold standard culture system (Matrigel®) lacks the ability for extensive biophysical manipulation needed to model various cancer microenvironments and has inherent batch-to-batch variability. Tunable hydrogel matrices provide enhanced capability for drug testing in breast cancer (BCa), by better mimicking key physicochemical characteristics of this disease’s extracellular matrix. Here, we encapsulated patient-derived breast cancer cells in bioprinted polyethylene glycol-derived hydrogels (PEG), functionalized with adhesion peptides (RGD, GFOGER and DYIGSR) and gelatin-derived hydrogels (gelatin methacryloyl; GelMA and thiolated-gelatin crosslinked with PEG-4MAL; GelSH). Within ranges of BCa stiffnesses (1–6 kPa), GelMA, GelSH and PEG-based hydrogels successfully supported the growth and organoid formation of HR+,−/HER2+,− primary cancer cells for at least 2–3 weeks, with superior organoid formation within the GelSH biomaterial (up to 268% growth after 15 days). BCa organoids responded to doxorubicin, EP31670 and paclitaxel treatments with increased IC50 concentrations on organoids compared to 2D cultures, and highest IC50 for organoids in GelSH. Cell viability after doxorubicin treatment (1 µM) remained >2-fold higher in the 3D gels compared to 2D and doxorubicin/paclitaxel (both 5 µM) were ~2.75–3-fold less potent in GelSH compared to PEG hydrogels. The data demonstrate the potential of hydrogel matrices as easy-to-use and effective preclinical tools for therapy assessment in patient-derived breast cancer organoids. Full article
(This article belongs to the Special Issue Hydrogels in Pharmaceutical and Biomedical Applications)
Show Figures

Figure 1

17 pages, 3967 KiB  
Article
Unkeito Suppresses RANKL-Mediated Osteoclastogenesis via the Blimp1–Bcl6 and NF-κB Signaling Pathways and Enhancing Osteoclast Apoptosis
by Ke Fang, Yuki Murakami, Seiji Kanda, Takaki Shimono, Anh Tuan Dang, Mitsuaki Ono and Toshimasa Nishiyama
Int. J. Mol. Sci. 2022, 23(14), 7814; https://doi.org/10.3390/ijms23147814 - 15 Jul 2022
Cited by 11 | Viewed by 3078
Abstract
Osteoporosis is a common bone disease, particularly in menopausal women. Herein, we screened four Kampo medicines (Unkeito (UKT), Kamishoyosan (KSS), Kamikihito (KKT), and Ninjinyoeito (NYT)), frequently used to treat menopausal syndromes, for their effects on receptor activator of nuclear factor-kappaB ligand (RANKL)-induced osteoclast [...] Read more.
Osteoporosis is a common bone disease, particularly in menopausal women. Herein, we screened four Kampo medicines (Unkeito (UKT), Kamishoyosan (KSS), Kamikihito (KKT), and Ninjinyoeito (NYT)), frequently used to treat menopausal syndromes, for their effects on receptor activator of nuclear factor-kappaB ligand (RANKL)-induced osteoclast differentiation in RAW 264 cells. Considering that UKT exhibited the most potent effect, we examined its effect on RANKL-induced osteoclastogenesis, the induction of osteoclast apoptosis, and the mechanisms underlying its effects. UKT inhibits RANKL-induced osteoclast differentiation in the early stage and decreases osteoclast-related genes, including tartrate-resistant acid phosphatase (Trap), dendritic cell-specific transmembrane protein (Dcstamp), matrix metalloproteinase-9 (Mmp9), and cathepsin K (Ctsk). Specifically, UKT inhibits the nuclear factor of activated T cells 1 (NFATc1), which is essential for osteoclastogenesis. UKT increases Bcl6, which antagonizes NFATc1 and Dc-stamp, thereby blocking the progression of osteoclasts to maturation. UKT also decreased nuclear translocation by downregulating the activity of p65/NF-κB. In addition, UKT enhances mononuclear osteoclast apoptosis via activation of caspase-3. Herein, we demonstrate that UKT suppresses RANKL-mediated osteoclastogenesis via the Blimp1–Bcl6 and NF-κB signaling pathways and enhances mononuclear osteoclast apoptosis. Furthermore, UKT prevents bone loss in OVX mice. Thus, UKT might be a potential therapeutic agent for postmenopausal osteoporosis. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

17 pages, 782 KiB  
Review
Biological Role of Vitamin K—With Particular Emphasis on Cardiovascular and Renal Aspects
by Anna Stępień, Małgorzata Koziarska-Rościszewska, Jacek Rysz and Mariusz Stępień
Nutrients 2022, 14(2), 262; https://doi.org/10.3390/nu14020262 - 8 Jan 2022
Cited by 19 | Viewed by 6317
Abstract
Vitamin K (VK) plays many important functions in the body. The most important of them include the contribution in calcium homeostasis and anticoagulation. Vascular calcification (VC) is one of the most important mechanisms of renal pathology. The most potent inhibitor of this process—matrix [...] Read more.
Vitamin K (VK) plays many important functions in the body. The most important of them include the contribution in calcium homeostasis and anticoagulation. Vascular calcification (VC) is one of the most important mechanisms of renal pathology. The most potent inhibitor of this process—matrix Gla protein (MGP) is VK-dependent. Chronic kidney disease (CKD) patients, both non-dialysed and hemodialysed, often have VK deficiency. Elevated uncarboxylated matrix Gla protein (ucMGP) levels indirectly reflected VK deficiency and are associated with a higher risk of cardiovascular events in these patients. It has been suggested that VK intake may reduce the VC and related cardiovascular risk. Vitamin K intake has been suggested to reduce VC and the associated cardiovascular risk. The role and possibility of VK supplementation as well as the impact of anticoagulation therapy on VK deficiency in CKD patients is discussed. Full article
Show Figures

Figure 1

24 pages, 4490 KiB  
Article
Cathepsin K Regulates Intraocular Pressure by Modulating Extracellular Matrix Remodeling and Actin-Bundling in the Trabecular Meshwork Outflow Pathway
by Avinash Soundararajan, Sachin Anil Ghag, Sai Supriya Vuda, Ting Wang and Padmanabhan Paranji Pattabiraman
Cells 2021, 10(11), 2864; https://doi.org/10.3390/cells10112864 - 24 Oct 2021
Cited by 12 | Viewed by 4076
Abstract
The homeostasis of extracellular matrix (ECM) and actin dynamics in the trabecular meshwork (TM) outflow pathway plays a critical role in intraocular pressure (IOP) regulation. We studied the role of cathepsin K (CTSK), a lysosomal cysteine protease and a potent collagenase, on ECM [...] Read more.
The homeostasis of extracellular matrix (ECM) and actin dynamics in the trabecular meshwork (TM) outflow pathway plays a critical role in intraocular pressure (IOP) regulation. We studied the role of cathepsin K (CTSK), a lysosomal cysteine protease and a potent collagenase, on ECM modulation and actin cytoskeleton rearrangements in the TM outflow pathway and the regulation of IOP. Initially, we found that CTSK was negatively regulated by pathological stressors known to elevate IOP. Further, inactivating CTSK using balicatib, a pharmacological cell-permeable inhibitor of CTSK, resulted in IOP elevation due to increased levels and excessive deposition of ECM-like collagen-1A in the TM outflow pathway. The loss of CTSK activity resulted in actin-bundling via fascin and vinculin reorganization and by inhibiting actin depolymerization via phospho-cofilin. Contrarily, constitutive expression of CTSK decreased ECM and increased actin depolymerization by decreasing phospho-cofilin, negatively regulated the availability of active TGFβ2, and reduced the levels of alpha-smooth muscle actin (αSMA), indicating an antifibrotic action of CTSK. In conclusion, these observations, for the first time, demonstrate the significance of CTSK in IOP regulation by maintaining the ECM homeostasis and actin cytoskeleton-mediated contractile properties of the TM outflow pathway. Full article
(This article belongs to the Special Issue Autophagy Lysosomal Pathway in Ocular Physiology and Pathophysiology)
Show Figures

Figure 1

Back to TopTop