Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (16)

Search Parameters:
Keywords = juvenile hybrid grouper

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 5425 KB  
Article
Black Soldier Fly Larvae Meal as a Sustainable Fishmeal Substitute for Juvenile Hybrid Grouper: Impacts on Growth, Immunity, and Gut Health
by Yan Chen, Wenfeng Li, Minyi Zhong, Jun Ma, Bing Chen, Junming Cao, Jiun-Yan Loh and Hai Huang
Fishes 2025, 10(7), 344; https://doi.org/10.3390/fishes10070344 - 11 Jul 2025
Viewed by 1128
Abstract
Background: Aquaculture increasingly seeks sustainable alternatives to fishmeal, a key protein source in fish diets. Black Soldier Fly Larvae (BSFL) meal is a promising substitute, but its effects on fish growth, immunity, and gut health need further investigation. This study aimed to evaluate [...] Read more.
Background: Aquaculture increasingly seeks sustainable alternatives to fishmeal, a key protein source in fish diets. Black Soldier Fly Larvae (BSFL) meal is a promising substitute, but its effects on fish growth, immunity, and gut health need further investigation. This study aimed to evaluate the impact of varying BSFL inclusion levels on juvenile hybrid grouper (Epinephelus fuscoguttatus ♀ × Epinephelus lanceolatus ♂), a widely farmed species in tropical aquaculture. Methods: Juvenile hybrid grouper were fed diets with four levels of BSFL substitution (0%, 10%, 30%, and 50%) over 56 days. Key metrics such as growth performance, immune function, antioxidant capacity, and gut transcriptome were analyzed. Results: Replacing fish meal with BSFL meal had no significant effect on the survival rate of hybrid grouper (p > 0.05) but significantly affected growth performance, immune function, and antioxidant capacity (p < 0.05). BSFL10 and BSFL30 groups showed good growth and elevated immune enzyme activity, with significantly higher HIS levels (p < 0.05); the Wf of the BSFL10 group was comparable to the control. However, excessive replacement (BSFL50) led to reduced growth (Wf significantly lower, p < 0.05) and increased oxidative stress, as indicated by higher CAT activity (p < 0.05). Transcriptomic analysis revealed upregulation of immune- and metabolism-related genes with increasing BSFL levels, with immune pathways notably activated in the BSFL50 group. Conclusions: BSFL meal is a promising alternative to fishmeal in juvenile hybrid grouper diets, with moderate inclusion (10–30%) being most beneficial. Excessive BSFL substitution (50%) may impair fish health, highlighting the need for careful formulation in aquaculture diets. Full article
(This article belongs to the Section Nutrition and Feeding)
Show Figures

Figure 1

19 pages, 4354 KB  
Article
Effects of Increased Feeding Rates on Oxidative Stress, Biochemical Indices and Growth of Juvenile Hybrid Grouper (Epinephelus fuscoguttatus ♀ × Epinephelus tukula ♂) Under Mild-Hyperoxia Conditions
by Zhiyi Wang, Yikai Zheng, Dengpan Dong, Xiefa Song and Meng Li
Fishes 2025, 10(5), 228; https://doi.org/10.3390/fishes10050228 - 15 May 2025
Viewed by 1868
Abstract
Evaluating the interaction between dissolved oxygen (DO) and feeding rates (FRs) in fish is crucial for the precise regulation of aquaculture water environments. This study established four treatment groups: the CK group (DO = 6 mg/L, FR = 2% of body weight), the [...] Read more.
Evaluating the interaction between dissolved oxygen (DO) and feeding rates (FRs) in fish is crucial for the precise regulation of aquaculture water environments. This study established four treatment groups: the CK group (DO = 6 mg/L, FR = 2% of body weight), the HFR group (DO = 6 mg/L, FR = 3.5% of body weight), the HDO group (DO = 9 mg/L, FR = 2% of body weight), and the MIX group (DO = 6 mg/L, FR = 3.5% of body weight). The combined effects of dissolved oxygen and feeding levels on oxidative stress, biochemical indicators, and growth in the hybrid grouper were evaluated. The results showed that mild hyperoxia significantly upregulates the expression of antioxidant enzyme genes (cat, cu/zn-sod, and gpx1a). Under conditions of mild hyperoxia, an increased feed rate can significantly downregulate the expression of cat and gpx1a. Additionally, serum levels of carnosine and cndp1 in muscle tissue are significantly elevated. Furthermore, a high FR mitigates the downregulation of glucose, triglycerides, and alanine aminotransferase (ALT) induced by mild hyperoxia while alleviating the upregulation of aspartate aminotransferase (AST). The combined effects of mild hyperoxia and high FR significantly enhance final body weight and specific growth rate (SGR), with notable interactions observed. Mild hyperoxia reduces serum levels of bile acids and glycocholic acid under high feeding conditions while significantly downregulating the expression of ghrb in both liver and brain tissues. In summary, high FRs alleviate oxidative stress and energy substrate deficiency in juvenile hybrid grouper under mild-hyperoxia environments. Moreover, the synergistic effect between mild hyperoxia and high FR promotes growth by improving bile acid enterohepatic circulation. This study provides a reference for the regulation of DO and feeding in modern industrial intensive mariculture. Full article
(This article belongs to the Section Physiology and Biochemistry)
Show Figures

Figure 1

18 pages, 2261 KB  
Article
Dietary Tryptophan Requirement of Juvenile Hybrid Grouper (Epinephelus fuscoguttatus× E. lanceolatus♂)
by Jiaxian Chen, Xiaohui Dong, Qihui Yang, Shuyan Chi, Shuang Zhang, Beiping Tan and Junming Deng
Animals 2025, 15(1), 104; https://doi.org/10.3390/ani15010104 - 5 Jan 2025
Cited by 1 | Viewed by 1113
Abstract
A 10-week feeding study was conducted to examine the effects of dietary tryptophan (Trp) levels on the growth performance and protein metabolism of hybrid grouper (Epinephelus fuscoguttatus♀ × E. lanceolatus♂) with the aim of determining the optimal Trp requirement. Six [...] Read more.
A 10-week feeding study was conducted to examine the effects of dietary tryptophan (Trp) levels on the growth performance and protein metabolism of hybrid grouper (Epinephelus fuscoguttatus♀ × E. lanceolatus♂) with the aim of determining the optimal Trp requirement. Six isonitrogenous and isolipidic experimental diets were formulated, containing varying levels of Trp (0.26%, 0.32%, 0.42%, 0.46%, 0.58%, and 0.62% of diet). Each diet was administered to 90 hybrid groupers with an initial average weight of 10.52 ± 0.02 g. Dietary levels of 0.32–0.62% Trp generally promoted growth performance and feed utilization in hybrid grouper, with the 0.46% Trp level demonstrating the highest weight gain and protein efficiency ratio. Furthermore, fish fed with 0.46% Trp exhibited higher activities of intestinal lipase and amylase compared to other groups. Furthermore, the activities of Trp metabolism-related enzymes in the liver were markedly elevated by this Trp level, including indoleamine 2,3-dioxygenase, 5-hydroxytryptophan decarboxylase, and tryptophan-2,3-dioxygenase. Additionally, a dietary level of 0.46% Trp resulted in a substantial increase in the activities of protein metabolism-related enzymes such as adenosine monophosphate deaminase and glutamate dehydrogenase in the liver. Dietary levels of 0.32–0.46% Trp activated the hepatic mammalian target of rapamycin pathway, while a dietary 0.46% Trp level inhibited the hepatic amino acid response signaling pathway. In summary, suitable dietary Trp levels enhanced intestinal digestive enzyme activities, facilitated both protein synthesis and catabolism, and ultimately improved growth performance in hybrid grouper. Analysis using a second-order regression curve of weight gain and protein efficiency ratio indicated that the optimal dietary Trp requirement for hybrid grouper ranged from 0.41–0.46% of diet (0.82–0.92% of dietary protein). Full article
(This article belongs to the Section Animal Nutrition)
Show Figures

Figure 1

24 pages, 8721 KB  
Article
Impacts of Black Soldier Fly (Hermetia illucens) Larval Meal on Intestinal Histopathology and Microbiome Responses in Hybrid Grouper (Epinephelus fuscoguttatus ♀ × E. lanceolatus ♂): A Comprehensive Analysis
by Yan Chen, Jun Ma, Yoong-Soon Yong, Yonggan Chen, Bing Chen, Junming Cao, Kai Peng, Guaxia Wang, Hai Huang and Jiun-Yan Loh
Animals 2024, 14(24), 3596; https://doi.org/10.3390/ani14243596 - 12 Dec 2024
Cited by 4 | Viewed by 2322
Abstract
This study examined the diversity and responses of intestinal microbiota in hybrid grouper (Epinephelus fuscoguttatus ♀ × E. lanceolatus ♂) fed diets with varying levels of fishmeal replaced by black soldier fly larvae (BSFL). The 10% BSFL substitution (BSFL10) group showed the [...] Read more.
This study examined the diversity and responses of intestinal microbiota in hybrid grouper (Epinephelus fuscoguttatus ♀ × E. lanceolatus ♂) fed diets with varying levels of fishmeal replaced by black soldier fly larvae (BSFL). The 10% BSFL substitution (BSFL10) group showed the highest levels of trypsin and amylase. Substituting fishmeal with 30% and 50% BSFL weakened the intestinal wall, resulting in vacuoles, sparse striatal boundaries, and fewer villi. Microbiota diversity, measured through Shannon’s index, was higher in the BSFL10 and BSFL50 groups than in the control. 16S rRNA amplicon data revealed the dominance of Firmicutes, Proteobacteria, Bacteroidetes, Spirochaetota, and Verrucomicrobia phyla. The BSFL-replacement groups showed an increase in Proteobacteria, Bacteroidetes, and Spirochaetota compared to the control, but fewer Firmicutes. PICRUSt analysis indicated significant alterations in microbial function, particularly enhanced protein, carbohydrate, lipid, and energy metabolisms in the BSFL-fed group. Substituting 10% fishmeal with BSFL enhanced nutrient metabolism and gut microbiota in juvenile hybrid grouper. Further research is needed to explore factors affecting the efficacy of insect feed as a sustainable aquaculture diet. Full article
Show Figures

Figure 1

12 pages, 15725 KB  
Article
Effect of Amorphous Halomonas-PHB on Growth, Body Composition, Immune-Related Gene Expression and Vibrio anguillarum Resistance of Hybrid Grouper (Epinephelus fuscoguttatus ♀ × E. lanceolatu ♂) Juveniles
by Wei Xie, Haoran Ma, Meirong Gao, Dongdong Du, Liangsen Liu and Liying Sui
Animals 2024, 14(18), 2649; https://doi.org/10.3390/ani14182649 - 12 Sep 2024
Cited by 2 | Viewed by 1619
Abstract
Poly-β-hydroxybutyrate (PHB) is a bacterial metabolite produced by bacteria such as Halomonas sp. that serves as a carbon and energy storage compound for bacteria under nutrient-limited conditions. Two experiments were conducted to investigate the effects of dietary supplementation with Halomonas-PHB on hybrid [...] Read more.
Poly-β-hydroxybutyrate (PHB) is a bacterial metabolite produced by bacteria such as Halomonas sp. that serves as a carbon and energy storage compound for bacteria under nutrient-limited conditions. Two experiments were conducted to investigate the effects of dietary supplementation with Halomonas-PHB on hybrid grouper (Epinephelus fuscoguttatus ♀ × E. lanceolatu ♂). In experiment I, juvenile groupers were fed basal diets supplemented with 3% Halomonas-PHB (3% HM-PHB) containing 1.4% PHB and 3% Halomonas (3% HM) without PHB, as well as a control diet, for seven weeks. The results showed no significant difference in survival rate, weight gain, and crude fat content between the 3% HM-PHB group and the control group; however, the crude protein of the 3% HM-PHB group was significantly lower than that of the control group. Furthermore, supplementation with 3% HM-PHB increased the fatty acids content in fish muscles, including long-chain unsaturated fatty acids C18:1n9, EPA, and DHA. In experiment II, groupers were fed a basal diet supplemented with 6.5% Halomonas-PHB (6.5% HM-PHB) containing 3% PHB and 6.5% Halomonas (6.5% HM) containing no PHB, as well as a basal diet (Control). After seven weeks of rearing, the fish were challenged with Vibrio anguillarum for 48 h. Although no significant difference in survival rate and growth was observed among different groups, the dietary supplement of 6.5% Halomonas-PHB improved the survival rate of V. anguillarum challenged grouper and significantly increased the gene expressions of catalase (CAT) and superoxide dismutase (SOD) in blood, interleukin 1 (IL1) and interleukin 10 (IL10) in the liver, spleen, head kidney, and blood (p < 0.05). In conclusion, dietary supplementation of Halomonas-PHB had no significantly positive effect on fish growth performance but increased the content of fatty acids, including long-chain unsaturated fatty acids C18:1n9, EPA, and DHA in fish muscle; it also improved the V. anguillarum resistance, possibly through increasing immune-related gene expression in different tissues and organs. Our findings offer compelling evidence that Halomonas-PHB can be utilized as a feed additive in intensive grouper farming to enhance the groupers’ resistance to Vibrio. Full article
Show Figures

Figure 1

15 pages, 1782 KB  
Article
Effects of High-Lipid Dietary Protein Ratio on Growth, Antioxidant Parameters, Histological Structure, and Expression of Antioxidant- and Immune-Related Genes of Hybrid Grouper
by Weibin Huang, Hao Liu, Shipei Yang, Menglong Zhou, Shuang Zhang, Beiping Tan, Yuanzhi Yang, Haitao Zhang, Ruitao Xie and Xiaohui Dong
Animals 2023, 13(23), 3710; https://doi.org/10.3390/ani13233710 - 30 Nov 2023
Cited by 9 | Viewed by 2090
Abstract
The hybrid grouper (♀ Epinephelus fuscoguttatus × ♂ E. lanceolatus) is a new species of grouper crossed from giant grouper (E. lanceolatus) as the male parent and brown-marbled grouper (E. fuscoguttatus) as the female parent. We hypothesized [...] Read more.
The hybrid grouper (♀ Epinephelus fuscoguttatus × ♂ E. lanceolatus) is a new species of grouper crossed from giant grouper (E. lanceolatus) as the male parent and brown-marbled grouper (E. fuscoguttatus) as the female parent. We hypothesized that optimal levels of dietary protein may benefit liver function. High-lipid diets are energetic feeds that conserve protein and reduce costs, and are a hot topic in aquaculture today. Therefore, the objective of the research is to investigated the effects of dietary protein level in high-lipid diets on serum and liver biochemistry, liver histology, and liver immune and antioxidant indexes and gene mRNA expression of the juvenile hybrid grouper (♀ Epinephelus fuscoguttatus × ♂ E. lanceolatus). Six iso-lipidic (161 g/kg) diets were formulated containing graded levels of protein (510 as control, 480,450, 420, 390 and 360 g/kg). Each treatment consisted of three replicates and 30 fish (6.70 ± 0.02 g) in one replicate. After an 8-week feeding experiment, the results indicated the following: (1) With the decreasing of dietary protein level, the specific growth rate (SGR) of groupers increased gradually and then decreased; SGRs of the 390 and 360 g/kg groups were significantly lower than other groups (p < 0.05). (2) In terms of serum and liver, the activity of antioxidant enzymes such as catalase (CAT) and superoxide dismutase (SOD), and the total antioxidant capacity (T-AOC) content, and the activity of immune enzymes such as lysozyme (LYS) and immunoglobulin (IgM) was significantly increased under the appropriate protein level. (3) Based on liver histology, we know that high or low dietary protein levels cause liver damage. (4) Dietary protein levels can significantly affect the mRNA expression levels of an anti-inflammatory factor gene (tgfβ), pro-inflammatory factor genes (il6, il8), heat shock proteins, and antioxidant and immune genes (hsp70 and hsp90, gpx, nrf2, keap1). It is concluded that the appropriate protein level can promote the growth performance of groupers, improve antioxidant activity and immune enzyme activity in serum and liver, and enhance the expression of immune genes. Full article
(This article belongs to the Section Animal Nutrition)
Show Figures

Figure 1

20 pages, 3458 KB  
Article
Effects of Dietary Alpha-Lipoic Acid on Growth Performance, Serum Biochemical Indexes, Liver Antioxidant Capacity and Transcriptome of Juvenile Hybrid Grouper (Epinephelus fuscoguttatus♀ × Epinephelus polyphekadion♂)
by Guanghai Ou, Ruitao Xie, Jiansheng Huang, Jianpeng Huang, Zhenwei Wen, Yu Li, Xintao Jiang, Qian Ma and Gang Chen
Animals 2023, 13(5), 887; https://doi.org/10.3390/ani13050887 - 28 Feb 2023
Cited by 12 | Viewed by 3787
Abstract
We aimed to investigate the effects of dietary alpha-lipoic acid (α-LA) on the growth performance, serum biochemical indexes, liver morphology, antioxidant capacity, and transcriptome of juvenile hybrid groupers (Epinephelus fuscoguttatus♀ × Epinephelus polyphekadion♂). Four experimental diets supplemented with 0 (SL0), [...] Read more.
We aimed to investigate the effects of dietary alpha-lipoic acid (α-LA) on the growth performance, serum biochemical indexes, liver morphology, antioxidant capacity, and transcriptome of juvenile hybrid groupers (Epinephelus fuscoguttatus♀ × Epinephelus polyphekadion♂). Four experimental diets supplemented with 0 (SL0), 0.4 (L1), 0.6 (L2), and 1.2 (L3) g/kg α-LA were formulated and fed to three replicates of juvenile hybrid grouper (24.06 ± 0.15 g) for 56 d. The results indicated that dietary 0.4 and 0.6 g/kg α-LA significantly decreased the weight gain rate in juvenile hybrid groupers. Compared with SL0, the content of total protein in the serum of L1, L2, and L3 increased significantly, and alanine aminotransferase decreased significantly. The content of albumin in the serum of L3 increased significantly, and triglyceride, total cholesterol, and aspartate aminotransferase decreased significantly. In addition, the hepatocyte morphology in L1, L2, and L3 all showed varying degrees of improvement, and the activities of glutathione peroxidase and superoxide dismutase in the liver of L2 and L3 were significantly increased. A total of 42 differentially expressed genes were screened in the transcriptome data. KEGG showed that a total of 12 pathways were significantly enriched, including the pathway related to immune function and glucose homeostasis. The expression of genes (ifnk, prl4a1, prl3b1, and ctsl) related to immune were significantly up-regulated, and the expressions of gapdh and eno1 genes related to glucose homeostasis were significantly down-regulated and up-regulated, respectively. In summary, dietary supplementation of 0.4 and 0.6 g/kg α-LA inhibited the growth performance of juvenile hybrid groupers. A total of 1.2 g/kg α-LA could reduce the blood lipid level, improve hepatocyte damage, and increase the hepatic antioxidant enzyme activity. Dietary α-LA significantly affected the pathway related to immune function and glucose homeostasis. Full article
Show Figures

Figure 1

17 pages, 12437 KB  
Article
Effects of Five Prebiotics on Growth, Antioxidant Capacity, Non-Specific Immunity, Stress Resistance, and Disease Resistance of Juvenile Hybrid Grouper (Epinephelus fuscoguttatus ♀ × Epinephelus lanceolatus ♂)
by Li Zhu, Shaoqun Wang, Yan Cai, Huizhong Shi, Yongcan Zhou, Dongdong Zhang, Weiliang Guo and Shifeng Wang
Animals 2023, 13(4), 754; https://doi.org/10.3390/ani13040754 - 19 Feb 2023
Cited by 18 | Viewed by 3617
Abstract
To explore the short-term health benefits of five prebiotics on hybrid grouper (Epinephelus fuscoguttatus ♀ × Epinephelus lanceolatus ♂), six experimental groups fed with different diets (basal diet, diet control (CON); basal diet + 0.2% fructooligosaccharide (FOS), diet FOS; basal diet + [...] Read more.
To explore the short-term health benefits of five prebiotics on hybrid grouper (Epinephelus fuscoguttatus ♀ × Epinephelus lanceolatus ♂), six experimental groups fed with different diets (basal diet, diet control (CON); basal diet + 0.2% fructooligosaccharide (FOS), diet FOS; basal diet + 0.5% chitosan, diet chitosan (CTS); basal diet + 0.2% mannan–oligosaccharide (MOS), diet MOS; basal diet + 0.1% β-glucan (GLU), Diet GLU; basal diet + 0.05% xylooligosaccharide (XOS), diet XOS) were set up, and a 4-week feeding trial was conducted. MOS and XOS significantly improved the growth of hybrid grouper compared to the CON group (p < 0.05). Antioxidant enzyme assay showed that the activity of glutathione peroxidase (GPx) was significantly enhanced in the MOS group, and the content of malondialdehyde (MDA) in the XOS group was significantly lower than in the CON group (p < 0.05). The catalase (CAT) activities were significantly enhanced in all prebiotic-supplemented groups compared with the CON group (p < 0.05). Non-specific immunity assay showed that the activities of alkaline phosphatase (AKP) and lysozyme (LZM) were significantly increased in all prebiotic-supplemented groups compared with the CON group (p < 0.05). The total protein content in the XOS group was significantly increased (p < 0.05), and the albumin (ALB) activity in the MOS group was more significantly increased than that in the CON group. Histological examination of the intestine revealed that muscle thickness was significantly increased in all prebiotic-supplemented groups compared to the CON group (p < 0.05). Villi length, villi width, muscle thickness all increased significantly in the MOS group (p < 0.05). In addition, the crowding stress and ammonia nitrogen stress experiments revealed that the survival rates of the MOS and XOS groups after stresses were significantly higher than those of the CON group (p < 0.05). Though MOS and XOS exhibited similar anti-stress effects, the antioxidant and non-specific immunity parameters they regulated were not the same, indicating that the specific mechanisms of MOS and XOS’s anti-stress effects were probably different. After being challenged with Vibrio harvey, MOS and GLU groups showed significantly higher post-challenge survival rates than the CON group (p < 0.05). These findings indicated that among the five prebiotics, MOS and XOS showed the best overall short-term beneficial effects and could be considered promising short-term feed additives to improve the stress resistance of juvenile hybrid grouper. Full article
(This article belongs to the Special Issue Second Edition of Feed Additives in Health and Immunity of Fish)
Show Figures

Figure 1

18 pages, 3827 KB  
Article
Dietary Histamine Impairs the Digestive Physiology Function and Muscle Quality of Hybrid Grouper (Epinephelus fuscoguttatus♀ × Epinephelus lanceolatus♂)
by Yumeng Zhang, Hang Zhou, Yu Liu, Lulu Zhu, Jiongting Fan, Huajing Huang, Wen Jiang, Junming Deng and Beiping Tan
Antioxidants 2023, 12(2), 502; https://doi.org/10.3390/antiox12020502 - 16 Feb 2023
Cited by 11 | Viewed by 2816
Abstract
An 8-week feeding experiment was conducted to investigate the effect of dietary histamine on growth performance, digestive physiology function and muscle quality in a hybrid grouper (Epinephelus fuscoguttatus♀ × Epinephelus lanceolatus♂). Seven isoproteic (50%) and isolipidic (11%) diets were prepared [...] Read more.
An 8-week feeding experiment was conducted to investigate the effect of dietary histamine on growth performance, digestive physiology function and muscle quality in a hybrid grouper (Epinephelus fuscoguttatus♀ × Epinephelus lanceolatus♂). Seven isoproteic (50%) and isolipidic (11%) diets were prepared with various histamine inclusion levels of 0, 30, 60, 120, 240, 480 and 960 mg/kg in diets (actual contents were 72.33, 99.56, 138.60, 225.35, 404.12, 662.12 and 1245.38 mg/kg), respectively. Each diet was randomly assigned to triplicates of 30 juveniles (average body weight 14.78 g) per tank in a flow-through mariculture system. The increase in the dietary histamine level up to 1245.38 mg/kg made no significant difference on the growth rate and feed utilization of the grouper. However, the increased histamine content linearly decreased the activities of digestive enzymes, while no differences were observed in groups with low levels of histamine (≤404.12 mg/kg). Similarly, high levels of histamine (≥404.12 mg/kg) significantly damaged the gastric and intestinal mucosa, disrupted the intestinal tight junction structure, and raised the serum diamine oxidase activity and endotoxin level. Meanwhile, high doses of histamine (≥662.12 mg/kg) significantly reduced the activities of antioxidant enzymes, upregulated the relative expression of Kelch-like ECH-associated protein 1, and hardened and yellowed the dorsal muscle of grouper. These results showed that dietary histamine was detrimental to the digestive physiology function and muscle quality of the grouper, although it did compromise its growth performance. Full article
(This article belongs to the Special Issue Oxidative Stress in Aquatic Organisms)
Show Figures

Graphical abstract

18 pages, 2403 KB  
Article
Effects of Carbohydrase Supplementation on Growth Performance, Intestinal Digestive Enzymes and Flora, Glucose Metabolism Enzymes, and glut2 Gene Expression of Hybrid Grouper (Epinephelus fuscoguttatus♀ × E. lanceolatus♂) Fed Different CHO/L Ratio Diets
by Hongyu Liu, Ling Pan, Jianfei Shen, Beiping Tan, Xiaohui Dong, Qihui Yang, Shuyan Chi and Shuang Zhang
Metabolites 2023, 13(1), 98; https://doi.org/10.3390/metabo13010098 - 7 Jan 2023
Cited by 9 | Viewed by 2524
Abstract
An optimal carbohydrate-to-lipid (CHO: L) ratio facilitates fish growth and protein conservation, and carbohydrase promotes nutrient absorption. Therefore, an 8-week feeding trial was conducted to investigate the effects of carbohydrase supplementation on growth performance, intestinal digestive enzymes and flora, glucose metabolism enzymes and [...] Read more.
An optimal carbohydrate-to-lipid (CHO: L) ratio facilitates fish growth and protein conservation, and carbohydrase promotes nutrient absorption. Therefore, an 8-week feeding trial was conducted to investigate the effects of carbohydrase supplementation on growth performance, intestinal digestive enzymes and flora, glucose metabolism enzymes and glut2 gene expression in juvenile hybrid grouper (Epinephelus fuscoguttatus♀× Epinephelus lanceolatus♂) fed different CHO: L ratios diets. L, M, and H represent CHO:L ratios of 0.91, 1.92 and 3.91, respectively. LE, ME, and HE represent CHO:L ratios of 0.91, 1.92, 3.91, respectively, supplemented with the same ratio of carbohydrase. Results showed that weight gain rate (WGR) and specific growth rate (SGR) reached a maximum in group M and were significantly enhanced by carbohydrase (p < 0.05). Crude lipid content decreased significantly with an increase in the dietary CHO:L ratio (p < 0.05). Significant increases in the trypsin (TRY) and amylase (AMS) activities and significant decreases in the lipase (LPS) activity were observed with increasing dietary CHO:L ratio, and the former two were significantly promoted by carbohydrase (p < 0.05). The content of liver and muscle glycogen increased significantly with the increasing dietary CHO:L ratio but decreased significantly after carbohydrase supplementation (p < 0.05). The glucokinase (GK), pyruvate kinase (PK), Phosphate 6 fructokinase-1 (PFK-1) and phosphoenolpyruvate kinase (PEPCK) activities increased significantly with increasing dietary CHO:L ratio (p < 0.05). Glut2 mRNA expression decreased significantly in liver and increased significantly in intestine with increasing dietary CHO:L ratio (p < 0.05). By linear discriminant analysis (LDA), the abundance of Alistipe was significantly higher in Group ME than in Group M. These results suggested that hybrid grouper can only moderately utilize dietary carbohydrate and lipid in diet, and a certain amount of high glycemic lipids occurred when fed with high-carbohydrate diets. By the weight gain for basis, the supplementation of carbohydrase in Group H with amylase, glycosylase, and pullulanase in a 1:1:1 ratio effectively lowered glycemic lipids, promoted the growth of grouper, digestive enzymes activities and carbohydrate metabolic enzyme, and glut2 gene expression in intestine, effectively balancing the negative effects of high-carbohydrate diet and improving the utilization of carbohydrate. Full article
(This article belongs to the Special Issue Nutrient Metabolism and Intestinal Health Studies in Aquatic Animals)
Show Figures

Figure 1

16 pages, 2479 KB  
Article
Assessment of Conventional and Low Gossypol Cottonseed Meal as Alternative Protein Sources in Low-Fishmeal Diets of Hybrid Grouper (Epinephelus fuscoguttatus× Epinephelus lanceolatus): Growth, Feed Utilization, Gut Histology, and Immunity
by Misbah Irm, Bo Ye, Xiaoyi Wu, Lina Geng, Qinxiao Cai, Lu Zhang, Haoyun Zhai and Zhiyu Zhou
Animals 2022, 12(15), 1906; https://doi.org/10.3390/ani12151906 - 26 Jul 2022
Cited by 16 | Viewed by 2759
Abstract
A 9-week growth trial was carried out to assess the influence of replacing poultry by-product meal protein with conventional cottonseed meal protein (CCMP) or low gossypol cottonseed meal protein (LGCMP) on growth, feed utilization, gut micromorphology, and immunity of hybrid grouper (Epinephelus [...] Read more.
A 9-week growth trial was carried out to assess the influence of replacing poultry by-product meal protein with conventional cottonseed meal protein (CCMP) or low gossypol cottonseed meal protein (LGCMP) on growth, feed utilization, gut micromorphology, and immunity of hybrid grouper (Epinephelus fuscoguttatus× Epinephelus lanceolatus) juveniles fed low-fish meal (18.53%, dry matter) diets. Eleven experimental diets were prepared. The control diet (PBMP) contained 46.15% poultry by-product meal protein. Both conventional cottonseed meal protein (CCMP) and low-gossypol cottonseed meal protein (LGCMP) were used in replacement ratios of 20, 40, 60, 80, and 100% of poultry by-product meal protein (PBMP) from the control diet, forming ten experimental diets (CCMP20, CCMP40, CCMP60, CCMP80, CCMP100, LGCMP20, LGCMP40, LGCMP60, LGCMP80, and LGCMP100). Results demonstrated that weight-gain percentage (WG%) was not different between different sources of cottonseed meal (CCMP and LGCMP). However, values of WG% significantly differed among different replacement levels, with CCMP80 and LGCMP40 having significantly higher values compared to other treatments. Fish fed CCMP80 and LGCMP40 exhibited higher protein efficiency ratios (PERs) than fish fed other experimental diets. The regression analysis from a second-order or third-order polynomial model based on WG% showed that the optimal PBMP replacement levels by CCMP and LGCMP are 74% and 33%, respectively. The whole-body lipid contents remarkably decreased as dietary CCMP or LGCMP inclusion levels increased. The relative mRNA expression of insulin-like growth factor-1(IGF-1) in liver was higher in fish fed CCMP80 and LGCMP40 diets compared to fish fed other diets. Generally, in low-FM diets of hybrid grouper, CCMP and LGCMP could replace 74% and 33% of PBMP, respectively. Full article
(This article belongs to the Section Animal Nutrition)
Show Figures

Figure 1

12 pages, 1828 KB  
Article
Effects of Nitrite Exposure on the Hematological Properties, Antioxidant and Stress Responses of Juvenile Hybrid Groupers, Epinephelus lanceolatus ♂ × Epinephelus fuscoguttatus
by Jun-Hwan Kim, Yue Jai Kang and Kyung Mi Lee
Antioxidants 2022, 11(3), 545; https://doi.org/10.3390/antiox11030545 - 14 Mar 2022
Cited by 21 | Viewed by 3468
Abstract
Nitrite concentrations can reach high levels in indoor aquaculture systems, thus it is vital to determine the nitrite tolerance of aquaculture fish species. Here, juvenile hybrid groupers (Epinephelus lanceolatus ♂ × Epinephelus fuscoguttatus ♀, Family: Serranidae) were exposed to waterborne nitrite at [...] Read more.
Nitrite concentrations can reach high levels in indoor aquaculture systems, thus it is vital to determine the nitrite tolerance of aquaculture fish species. Here, juvenile hybrid groupers (Epinephelus lanceolatus ♂ × Epinephelus fuscoguttatus ♀, Family: Serranidae) were exposed to waterborne nitrite at 0, 10, 20, 40, and 80 mg NO2/L for 2 weeks. Nitrite exposure caused significant reductions in hematocrit and hemoglobin levels, significant increases in plasma calcium and plasma ALP levels, but had no significant effects on magnesium and total protein levels. Of the antioxidant responses investigated, SOD activity increased significantly in the liver and gills, but GST activity and GSH levels were significantly inhibited by nitrite exposure. Stress indicators, such as plasma cortisol and HSP 70 levels, were significantly stimulated by nitrite exposure. In brief, nitrite exposure over 20 mg NO2/L had toxic effects and affected the hematological properties, antioxidant responses, and stress indicators of juvenile hybrid groupers. Full article
(This article belongs to the Topic Oxidative Stress and Inflammation)
Show Figures

Figure 1

16 pages, 4979 KB  
Article
Expression and Transcript Localization of star, sf-1, and dax-1 in the Early Brain of the Orange-Spotted Grouper Epinephelus coioides
by Ganesan Nagarajan, Adimoolam Aruna, Yousef Ahmed Alkhamis, Roshmon Thomas Mathew and Ching-Fong Chang
Int. J. Mol. Sci. 2022, 23(5), 2614; https://doi.org/10.3390/ijms23052614 - 27 Feb 2022
Cited by 4 | Viewed by 2516
Abstract
We investigated the developmental expression and localization of sf-1 and dax-1 transcripts in the brain of the juvenile orange-spotted grouper in response to steroidogenic enzyme gene at various developmental ages in relation to gonadal sex differentiation. The sf-1 transcripts were significantly higher from [...] Read more.
We investigated the developmental expression and localization of sf-1 and dax-1 transcripts in the brain of the juvenile orange-spotted grouper in response to steroidogenic enzyme gene at various developmental ages in relation to gonadal sex differentiation. The sf-1 transcripts were significantly higher from 110-dah (day after hatching) and gradually increased up to 150-dah. The dax-1 mRNA, on the other hand, showed a decreased expression during this period, in contrast to sf-1 expression. At the same time, the early brain had increased levels of steroidogenic gene (star). sf-1 and star hybridization signals were found to be increased in the ventromedial hypothalamus at 110-dah; however, dax-1 mRNA signals decreased in the early brain toward 150-dah. Furthermore, the exogenous estradiol upregulated star and sf-1 transcripts in the early brain of the grouper. These findings suggest that sf-1 and dax-1 may have an antagonistic expression pattern in the early brain during gonadal sex differentiation. Increased expression of steroidogenic gene together with sf-1 during gonadal differentiation strongly suggests that sf-1 may play an important role in the juvenile grouper brain steroidogenesis and brain development. Full article
(This article belongs to the Special Issue 25th Anniversary of IJMS: Advances in Biochemistry)
Show Figures

Figure 1

17 pages, 4221 KB  
Article
Molecular Characterization, Tissue Distribution and Differential Nutritional Regulation of Three n-3 LC-PUFA Biosynthesis-Related Genes in Hybrid Grouper (Epinephelus fuscoguttatus ♀ × Epinephelus lanceolatus ♂)
by Qingjun Wu, Zhi Zheng, Chuijin Wang, Yao Wang, Yuejia Sun and Yujie Gao
Animals 2022, 12(3), 234; https://doi.org/10.3390/ani12030234 - 19 Jan 2022
Cited by 4 | Viewed by 2326
Abstract
Elongases of very long-chain fatty acids (Elovls) and fatty acid desaturases (Fads) are crucial enzymes involved in the biosynthesis of long-chain polyunsaturated fatty acids (LC-PUFAs). In this paper, we report the molecular cloning and characterization of three genes from the marine teleost Epinephelus [...] Read more.
Elongases of very long-chain fatty acids (Elovls) and fatty acid desaturases (Fads) are crucial enzymes involved in the biosynthesis of long-chain polyunsaturated fatty acids (LC-PUFAs). In this paper, we report the molecular cloning and characterization of three genes from the marine teleost Epinephelus fuscoguttatus ♀ × Epinephelus lanceolatus ♂, and analyzed tissue distribution and their expression in response to dietary n-3 LC-PUFA levels after a 42-day feeding experiment. The elovl5, elovl8 and fads2 genes encoded 294, 263 and 445 amino acids, respectively, which exhibited all the characteristics of the Elovl and Fads family. Tissue distribution analysis revealed that elovl5, elovl8 and fads2 were widely transcribed in various tissues, with the highest level in the brain, as described in other carnivorous marine teleosts. The transcript levels of elovl5, elovl8 and fads2 in the liver were significantly affected by dietary n-3 LC-PUFA, and higher LC-PUFA levels repressed their expression. These results demonstrated, for the first time, the presence and nutritional modulation of elovl5, elovl8 and fads2 cDNA in the juvenile hybrid grouper. Further studies are needed to determine the functional characterization of these genes and explore the mechanism of these genes when regulated by dietary fatty lipid profiles in this species. Full article
(This article belongs to the Special Issue The Future of Aquaculture Research)
Show Figures

Figure 1

15 pages, 2892 KB  
Article
Laboratory and Field Assessments of Oral Vibrio Vaccine Indicate the Potential for Protection against Vibriosis in Cultured Marine Fishes
by Aslah Mohamad, Fathin-Amirah Mursidi, Mohd Zamri-Saad, Mohammad Noor Azmai Amal, Salleh Annas, Md Shirajum Monir, Mohd Loqman, Fahmie Hairudin, Nurhidayu Al-saari and Md Yasin Ina-Salwany
Animals 2022, 12(2), 133; https://doi.org/10.3390/ani12020133 - 7 Jan 2022
Cited by 21 | Viewed by 3947
Abstract
Vibriosis is one of the most common threats to farmed grouper; thus, substantial efforts are underway to control the disease. This study presents an oral vaccination against multiple Vibrio spp. in a marine fish with double booster immunisation. The Vibrio harveyi strain VH1 [...] Read more.
Vibriosis is one of the most common threats to farmed grouper; thus, substantial efforts are underway to control the disease. This study presents an oral vaccination against multiple Vibrio spp. in a marine fish with double booster immunisation. The Vibrio harveyi strain VH1 vaccine candidate was selected from infected groupers Epinephelus sp. in a local farm and was formalin inactivated and combined with commercial feed at a 10% ratio (v/w). A laboratory vaccination trial was conducted for seventy days. The induction of IgM antibody responses in the serum of Asian seabass Lates calcarifer immunised with the oral Vibrio harveyi strain VH1 was significantly (p < 0.05) increased as early as week one post-primary vaccination. Subsequent administration of the first and second booster for 5 consecutive days, starting on days 14 and 42, respectively, improved the specific antibody level and reached a highly significant (p < 0.05) value at days 35 and 49 before slightly decreasing from day 56 onwards. Antibody titres of the control unvaccinated group remained relatively stable and low throughout the experimental period. At the end of the 70-day vaccination trial, 23 days post final boost, an intraperitoneal challenge with a field strain of Vibrio harveyi, V. alginolyticus, and V. parahaemolyticus was carried out. Our challenge study showed that oral Vibrio harveyi strain VH1 vaccine candidate could induce significant protection, with an RPS of 70–80% against different Vibrio species. Thereafter, a field trial was conducted in a mariculture farm to study the effect of field vaccination using the oral Vibrio harveyi strain VH1 vaccine candidate. A total of 3000 hybrid grouper juveniles were divided into two groups in triplicate. Fish of Group 1 were not vaccinated, while Group 2 were vaccinated with the feed-based vaccine. Vaccinations were carried out on days 0, 14, and 42 via feeding the fish with the vaccine at 4% body weight for 5 consecutive days. At the end of the study period, the fish survival rate was 80% for the vaccinated group, significantly (p < 0.05) higher than the 65% seen in the control unvaccinated group. Furthermore, the vaccinated fish showed significantly (p < 0.05) better growth performances. Therefore, the oral Vibrio vaccine from the inactivated Vibrio harveyi strain VH1 is a potential versatile vaccine candidate that could stimulate good immune responses and confer high protection in both Asian seabass, Lates calcarifer, and farm hybrid grouper Epinephelus fuscoguttatus × Epinephelus lanceolatus. Full article
(This article belongs to the Topic Animal Diseases in Agricultural Production Systems)
Show Figures

Figure 1

Back to TopTop