Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Keywords = japonica rice flour

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 1485 KiB  
Article
Polydextrose Reduces the Hardness of Cooked Chinese Sea Rice Through Intermolecular Interactions
by Chang Liu, Bing Dai, Xiaohong Luo, Hongdong Song and Xingjun Li
Gels 2025, 11(5), 353; https://doi.org/10.3390/gels11050353 - 11 May 2025
Viewed by 438
Abstract
Supposing that polydextrose molecules could improve the hard texture of cooked rice based on intermolecular interactions and forming a hydrogel-like network structure, this study added polydextrose (moisture content 1%) at 0%, 3%, 5%, 7%, and 10% concentrations to rice (cv. Super Qianhao, SQ) [...] Read more.
Supposing that polydextrose molecules could improve the hard texture of cooked rice based on intermolecular interactions and forming a hydrogel-like network structure, this study added polydextrose (moisture content 1%) at 0%, 3%, 5%, 7%, and 10% concentrations to rice (cv. Super Qianhao, SQ) milled from a 3-year-stored paddy and compared their cooking properties, their cooked rice texture, the pasting and thermal properties of their flours, the thermo-mechanical characteristics of their flour dough, and the microstructure of their cooked rice grains with a newly harvested japonica rice cv. Nanjing 5 (NJ5). With an increase in polydextrose addition, a General Linear Model (GLM) analysis showed that the cooking times of two japonica rice varieties was significantly (p < 0.05) reduced, and their gruel solid loss increased. Adding polydextrose significantly reduced the hardness, springiness, gumminess, and chewiness of cooked rice and increased the cohesiveness and resilience. By increasing polydextrose addition in rice flours, the peak, breakdown, and setback viscosities of pasting were significantly decreased, but the pasting temperature and peak time increased. Adding polydextrose reduced the gelatinization enthalpy and increased gelatinization peak temperature of the rice flour and significantly decreased the ageing of the retrograded rice flour paste stored at 4 °C when measured at 21 days. A Mixolab test showed that the stability time of the rice flour dough increased, and the protein weakening, gelatinization peak torque, and starch breakdown, as well as the starch setback and the speeds of heating, gelatinization, and enzymatic degradation all decreased. The addition of 5–10% polydextrose significantly reduced the amorphous and crystalline regions of starch and relative percent of β-sheet in cooked rice grains, with an increase in the relative percent of α-helix, random coil, and β-turn. Observing the microstructure, we confirmed that polydextrose addition facilitated the formation of a soft and evenly swollen honeycomb structure of the cooked rice. These results suggest that polydextrose might decrease the cooked rice hardness and improve the eating quality of sea rice through intermolecular interactions. Full article
(This article belongs to the Special Issue Recent Advances in Food Gels (2nd Edition))
Show Figures

Figure 1

17 pages, 3587 KiB  
Article
Effects of Extrusion Treatment on the Physicochemical and Baking Quality of Japonica Rice Batters and Rice Breads
by Wenxia He, Jingni Tang, Yang Chen, Guanhui Liu, Zhenni Li, Jie Tu and Yixuan Li
Gels 2025, 11(2), 86; https://doi.org/10.3390/gels11020086 - 22 Jan 2025
Viewed by 1060
Abstract
Gluten-free rice bread made from japonica rice finds challenge in achieving a good shape and structure, presenting a significant obstacle in the baking industry. This study aims to improve the quality of rice bread with japonica rice flour by hot extrusion treatment (without [...] Read more.
Gluten-free rice bread made from japonica rice finds challenge in achieving a good shape and structure, presenting a significant obstacle in the baking industry. This study aims to improve the quality of rice bread with japonica rice flour by hot extrusion treatment (without additives). The effects of extrusion on the amylose content, gelatinization degree, hydration capacity, short-range molecular ordering, and microstructure of japonica rice flour were investigated. The results show that the amylose content of the extruded flour increased by 12.43% and the gelatinization degree of it increased by 13.23 times, showing disrupted starch granules, numerous pores, and a better hydration capacity. The addition of extruded flour improved the overall viscoelasticity of the batter. Compared to the control group, the specific volume and porosity of the optimized rice bread were increased by 19.46% and 61.92%, respectively. The gas cell density was increased by 4.63 times, and the average gas cell area of rice bread was reduced by 47.14%. The correlations among the raw material properties of rice flour, the batter properties, and the quality of rice bread products were revealed by principal component analysis. This study demonstrates that the addition of moderate amounts of extruded japonica rice flour could improve the quality of rice bread products. Full article
(This article belongs to the Special Issue State-of-the-Art Gel Research in China)
Show Figures

Graphical abstract

13 pages, 3258 KiB  
Article
Characterization of a Major Quantitative Trait Locus for the Whiteness of Rice Grain Using Chromosome Segment Substitution Lines
by Lulu Chen, Yujia Leng, Caiyun Zhang, Xixu Li, Zhihui Ye, Yan Lu, Lichun Huang, Qing Liu, Jiping Gao, Changquan Zhang and Qiaoquan Liu
Plants 2024, 13(24), 3588; https://doi.org/10.3390/plants13243588 - 23 Dec 2024
Cited by 1 | Viewed by 739
Abstract
The whiteness of rice grains (WRG) is a key indicator of appearance quality, directly impacting its commercial value. The trait is quantitative, influenced by multiple factors, and no specific genes have been cloned to date. In this study, we first examined the correlation [...] Read more.
The whiteness of rice grains (WRG) is a key indicator of appearance quality, directly impacting its commercial value. The trait is quantitative, influenced by multiple factors, and no specific genes have been cloned to date. In this study, we first examined the correlation between the whiteness of polished rice, cooked rice, and rice flour, finding that the whiteness of rice flour significantly correlated with both polished and cooked rice. Thus, the whiteness of rice flour was chosen as the indicator of WRG in our QTL analysis. Using a set of chromosome segment substitution lines (CSSL) with japonica rice Koshihikari as the recipient and indica rice Nona Bokra as the donor, we analyzed QTLs for WRG across two growth environments and identified six WRG QTLs. Notably, qWRG9 on chromosome 9 displayed stable genetic effects in both environments. Through chromosomal segment overlapping mapping, qWRG9 was narrowed to a 1.2 Mb region. Additionally, a BC4F2 segregating population confirmed that low WRG was a dominant trait governed by the major QTL qWRG9, with a segregation ratio of low to high WRG approximating 3:1, consistent with Mendelian inheritance. Further grain quality analysis on the BC4F2 population revealed that rice grains carrying the Indica-type qWRG9 allele not only exhibited lower WRG but also had significantly higher protein content. These findings support the fine mapping of the candidate gene and provide an important QTL for improving rice grain quality through genetic improvement. Full article
(This article belongs to the Special Issue Crop Genetic Mechanisms and Breeding Improvement)
Show Figures

Figure 1

16 pages, 1864 KiB  
Article
Quantitative Analysis of High-Price Rice Adulteration Based on Near-Infrared Spectroscopy Combined with Chemometrics
by Mengting Chen, Jiahui Song, Haiyan He, Yue Yu, Ruoni Wang, Yue Huang and Zhanming Li
Foods 2024, 13(20), 3241; https://doi.org/10.3390/foods13203241 - 11 Oct 2024
Cited by 2 | Viewed by 1893
Abstract
Near-infrared spectroscopy (NIRS) holds significant promise in detecting food adulteration due to its non-destructive, simple, and user-friendly properties. This study employed NIRS in conjunction with chemometrics to estimate the content of low-price rice flours (Nanjing, Songjing, Jiangxi silk, Yunhui) blended with high-price rice [...] Read more.
Near-infrared spectroscopy (NIRS) holds significant promise in detecting food adulteration due to its non-destructive, simple, and user-friendly properties. This study employed NIRS in conjunction with chemometrics to estimate the content of low-price rice flours (Nanjing, Songjing, Jiangxi silk, Yunhui) blended with high-price rice (Wuchang and Thai fragrant). Partial least squares regression (PLSR), support vector regression (SVR), and back-propagation neural network (BPNN) models were deployed to analyze the spectral data of adulterated samples and assess the degree of contamination. Various preprocessing techniques, parameter optimization strategies, and wavelength selection methods were employed to enhance model accuracy. With correlation coefficients exceeding 87%, the BPNN models exhibited high accuracy in estimating adulteration levels in high-price rice. The SPXY-SG-BPNN, SPXY-MMN-BPNN, KS-SNV-BPNN, and SPXY-SG-BPNN models showcased exceptional performance in discerning mixed Wuchang japonica, Thai fragrant indica, and Thai fragrant Yunhui rice. As shown above, NIRS demonstrated its potential as a rapid, non-destructive method for detecting low-price rice in premium rice blends. Future studies should be performed to concentrate on enhancing the models’ versatility and practical applicability. Full article
Show Figures

Figure 1

17 pages, 4167 KiB  
Article
Study on Rice Origin and Quality Identification Based on Fluorescence Spectral Features
by Yixin Qiu, Yong Tan, Yingying Zhou, Zhipeng Li, Zhuang Miao, Changming Li, Xitian Mei, Chunyu Liu and Xing Teng
Agriculture 2024, 14(10), 1763; https://doi.org/10.3390/agriculture14101763 - 6 Oct 2024
Cited by 2 | Viewed by 1589
Abstract
The origin of agricultural products significantly influences their quality and safety. Fluorescence spectroscopy was used to analyse Japonica rice 830, grown in different areas of Jilin Province, by examining rice seed, brown rice, and rice flour from 12 origins. Fluorescence spectra were pre-processed [...] Read more.
The origin of agricultural products significantly influences their quality and safety. Fluorescence spectroscopy was used to analyse Japonica rice 830, grown in different areas of Jilin Province, by examining rice seed, brown rice, and rice flour from 12 origins. Fluorescence spectra were pre-processed through normalisation and smoothing to remove noise. These processed spectra were input into decision trees, support vector machines (SVMs), K-nearest neighbour (KNN), and neural network models for classification. The analysis revealed that the combined four models achieved an average classification accuracy of 98.05% with a computation time of 180 s, while the reduced-scale models improved accuracy to 98.36% and reduced computation time to 11.25 s. Additionally, prediction models using standard rice starch content values across different states achieved R² values over 0.8. This method provides a rapid, precise approach for assessing rice quality and origin, demonstrating significant potential for application in rice analysis. Full article
(This article belongs to the Section Artificial Intelligence and Digital Agriculture)
Show Figures

Figure 1

13 pages, 247 KiB  
Article
A Preliminary Study of the Impacts of Duckweed Coverage during Rice Growth on Grain Yield and Quality
by Jingsheng Luo, Shaowu Hu, Tong Li, Fuhao He, Chao Tian, Yu Han, Yulin Mao, Liquan Jing, Lianxin Yang and Yunxia Wang
Plants 2024, 13(1), 57; https://doi.org/10.3390/plants13010057 - 23 Dec 2023
Cited by 8 | Viewed by 2386
Abstract
The overuse and misuse of fertilizers have been causing duckweed outbreaks in irrigation ditches and paddy fields in many rice-growing areas. However, how duckweed coverage in a paddy field affects the rice yield and grain quality is under debate because duckweed may act [...] Read more.
The overuse and misuse of fertilizers have been causing duckweed outbreaks in irrigation ditches and paddy fields in many rice-growing areas. However, how duckweed coverage in a paddy field affects the rice yield and grain quality is under debate because duckweed may act as either a weed, competing with rice for mineral nutrients, or a “nutrient buffer”, providing significant ecological and economic benefits. To understand the effects of duckweed coverage throughout rice growth on the yield and quality of rice grains, an experiment with three Japonica rice cultivars was conducted with fertile lotus-pond bottom soil as a growth medium to provide sufficient mineral nutrients for both the duckweed and rice. Averaged across three rice cultivars, duckweed coverage decreased the panicle density but increased the spikelet density and grain weight, resulting in no significant change in the rice yield. Duckweed coverage had no impact on the processing and appearance quality in general, but significant duckweed-by-cultivar interactions were detected in the head rice percentage and grain chalkiness, indicating different sensitivities of different cultivars in response to the duckweed treatment. The decrease in breakdown and increase in setback values in the rapid visco analyzer (RVA) profile of rice flour suggested that duckweed coverage during rice growth worsened the cooking quality of the rice. However, no significant change in the palatability of the cooked rice was found. The most profound change induced by the duckweed was the nutritional quality; duckweed coverage increased the protein concentration but decreased the concentrations of Mg, Mn, Cu, and Zn in rice grains. This preliminary study suggested that duckweed coverage during rice growth has profound effects on the rice nutrient uptake and grain nutritional quality under the circumstances, and further research on the responses of the rice quality to the duckweed coverage in paddy fields in multiple locations and years is needed. Full article
(This article belongs to the Special Issue Advance in Impact of Agro-Technological Measures on Quality of Grain)
10 pages, 1635 KiB  
Article
Characterization of flo4-6, a Novel cyOsPPDKB Allele Conferring Floury Endosperm Characteristics Suitable for Dry-Milled Rice Flour Production
by Su-Kyung Ha, Hyun-Sook Lee, Seung Young Lee, Chang-Min Lee, Youngjun Mo and Ji-Ung Jeung
Agronomy 2023, 13(5), 1306; https://doi.org/10.3390/agronomy13051306 - 6 May 2023
Cited by 4 | Viewed by 1950
Abstract
Rice cultivars with floury endosperm provide a useful raw material for producing dry-milled rice flour, helping to enhance the processed rice food industry. To expand the genetic resources for breeding floury endosperm rice cultivars, we developed Samkwang(SA)-flo3 (SK-flo3), a floury endosperm mutant line [...] Read more.
Rice cultivars with floury endosperm provide a useful raw material for producing dry-milled rice flour, helping to enhance the processed rice food industry. To expand the genetic resources for breeding floury endosperm rice cultivars, we developed Samkwang(SA)-flo3 (SK-flo3), a floury endosperm mutant line derived from the chemical mutagenesis of Samkwang, an elite Korean japonica rice cultivar. Compared with Samkwang, SK-flo3 showed significantly lower grain hardness, which is suitable for producing dry-milled flour without the soaking and drying processes required in regular wet rice milling. The dry-milled flour of SK-flo3 exhibited excellent physicochemical properties with less damaged starch and finer flour particles relative to Samkwang. Genetic analyses revealed a G-to-A point mutation in exon 7 of cyOsPPDKB, substituting glycine with aspartic acid as a causative mutation for the floury endosperm of SK-flo3. We named this allele flo4-6 and developed a molecular marker to efficiently transfer it to commercial rice cultivars. Our results provide useful genetic resources and information for developing specialty rice cultivars for high-quality rice flour production with reduced milling costs. Full article
(This article belongs to the Special Issue Rice and Wheat Breeding: Conventional and Novel Approaches)
Show Figures

Figure 1

11 pages, 1753 KiB  
Article
The Role of Amylose in Gel Forming of Rice Flour
by Jinmu Tian, Likang Qin, Xuefeng Zeng, Pingzhen Ge, Jin Fan and Yong Zhu
Foods 2023, 12(6), 1210; https://doi.org/10.3390/foods12061210 - 13 Mar 2023
Cited by 19 | Viewed by 5462
Abstract
In this study, Glutinous rice (GR), Japonica rice (JR), and Indica rice (IR), with amylose contents at 1.57 ± 0.18%, 15.88 ± 1.16%, and 26.14 ± 0.25%, respectively, were selected to reveal the role of amylose in the gel forming of rice flours. [...] Read more.
In this study, Glutinous rice (GR), Japonica rice (JR), and Indica rice (IR), with amylose contents at 1.57 ± 0.18%, 15.88 ± 1.16%, and 26.14 ± 0.25%, respectively, were selected to reveal the role of amylose in the gel forming of rice flours. The strength and elasticity of the associated gels were found in an ascendant order with the increase in amylose content. For the retrograded gels (at 4 °C for 7 days), the peak temperature (Trp) was positively related to the amylose content. In general, Trp of IR increased to 63.21 ± 0.13 °C, and the relative crystallinities of IR were in the top ranking at 10.67 ± 0.16%, followed by those of JR and GR. The relative amounts of short-range ordered structures to amorphous regions in JR and IR were also higher than that of GR, and the number of compact network structure were positively related to the amylose content. These results indicated that amylose can enhance the strength and elasticity of gels by facilitating the formation of crystalline, short-range ordered, and compact network structures. These results can provide a reference for the development of rice products. Full article
(This article belongs to the Section Grain)
Show Figures

Graphical abstract

14 pages, 5610 KiB  
Article
Study on the Pasting Properties of Indica and Japonica Waxy Rice
by Sicong Fang, Cheng Chen, Yuan Yao, John Nsor-Atindana, Fei Liu, Maoshen Chen and Fang Zhong
Foods 2022, 11(8), 1132; https://doi.org/10.3390/foods11081132 - 14 Apr 2022
Cited by 8 | Viewed by 3154
Abstract
In this study, the physicochemical properties of indica (IWR) and japonica (JWR) waxy rice were investigated to find the critical factor that differentiates the pasting behaviors among the two cultivars. The results showed that the peak viscosity of 5 IWR flours was in [...] Read more.
In this study, the physicochemical properties of indica (IWR) and japonica (JWR) waxy rice were investigated to find the critical factor that differentiates the pasting behaviors among the two cultivars. The results showed that the peak viscosity of 5 IWR flours was in the range of 1242 to 1371 cP, which was significantly higher than 4 JWR flours (667 to 904 cP). Correlation analysis indicated that all pasting parameters were not correlated (p < 0.05) with physicochemical properties of rice flours and the fine structure of isolated starches. The pasting profiles of IWRs were still significantly higher than those of JWRs after removing lipid, while there were no significant differences between the two cultivars after removing protein sequentially. Meanwhile, the addition of extracted protein from JWR to the isolated starch significantly decreased the viscosity compared to the addition of protein extracted from IWR. The protein composition results found that the IWR protein contained about 18% globulin and 64% glutelin, while the JWR protein contained 11% globulin and 73% glutelin. The addition of glutelin to isolated starch significantly decreased viscosity compared to the addition of globulin. Therefore, the differences in the content of globulin and glutelin might be the main reasons that differentiate the pasting behaviors of the two cultivars. Full article
(This article belongs to the Special Issue Starch Food: Latest Advances and Prospects)
Show Figures

Graphical abstract

Back to TopTop