Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (27)

Search Parameters:
Keywords = jacket-type foundation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 6958 KiB  
Article
Effect of Combined Wave and Current Loading on the Hydrodynamic Characteristics of Double-Pile Structures in Offshore Wind Turbine Foundations
by Yongqing Lai, Li Cai, Xinyun Wu, Bin Wang, Yiyang Hu, Yuwei Liang, Haisheng Zhao and Wei Shi
Energies 2025, 18(10), 2573; https://doi.org/10.3390/en18102573 - 15 May 2025
Viewed by 430
Abstract
The multi-pile structure is a common and reliable foundation form used in offshore wind turbines (such as jacket-type structures, etc.), which can withstand hydrodynamic loads dominated by waves and water flow, providing a stable operating environment. However, the hydrodynamic responses between adjacent monopiles [...] Read more.
The multi-pile structure is a common and reliable foundation form used in offshore wind turbines (such as jacket-type structures, etc.), which can withstand hydrodynamic loads dominated by waves and water flow, providing a stable operating environment. However, the hydrodynamic responses between adjacent monopiles affected by combined wave and current loadings are seldom revealed. In this study, a generation module for wave–current combined loading is developed in waves2Foam by considering the wave theory coupled current effect. Subsequently, a numerical flume model of the double-pile structure is established in OpenFOAM based on computational fluid dynamics (CFD) and SST k-ω turbulence theory, and the hydrodynamic characteristics of the double-pile structure are investigated. It can be found that, under the combined wave–current loading, the maximum wave run-up at the leeward side of the upstream monopile is significantly reduced by about 24% on average compared with that of the individual monopile when the spacing is 1.25 and 1.75 times the wave length. At the free water surface height, the maximum discrepancy between the maximum surface pressure on the downstream monopile and the corresponding result of the individual monopile is significantly reduced from 37% to 19%. Compared to the case applying the wave loading condition, the wave–current loading reduces the influence of spacing on the wave run-up along the downstream monopile surface, the maximum surface pressure at specific positions on both upstream and downstream monopile, and the overall maximum horizontal force acting on the double-pile structure. Full article
(This article belongs to the Topic Wind, Wave and Tidal Energy Technologies in China)
Show Figures

Figure 1

17 pages, 7388 KiB  
Article
Comparative Study on Wave Elevations Downstream of Monopile- and Jacket-Mounted Offshore Wind Turbines
by Sharath Srinivasamurthy, Shigeo Yoshida and Shotaro Watanabe
J. Mar. Sci. Eng. 2025, 13(4), 661; https://doi.org/10.3390/jmse13040661 - 26 Mar 2025
Viewed by 480
Abstract
Offshore wind turbines, especially the fixed-bottom type, have been commercialized and installed in recent years. Generally, an offshore sub-structure such as a monopile or a jacket foundation is adopted to secure offshore wind turbines. There have been concerns raised by surfers regarding the [...] Read more.
Offshore wind turbines, especially the fixed-bottom type, have been commercialized and installed in recent years. Generally, an offshore sub-structure such as a monopile or a jacket foundation is adopted to secure offshore wind turbines. There have been concerns raised by surfers regarding the reduction in wave elevations downstream due to the installation of offshore sub-structures in the sea. This study is therefore dedicated to understanding the near-field and far-field wave effects of fixed-bottom foundations. To this end, 1.6% scale models of a (i) monopile foundation and (ii) jacket foundation were crafted, and near-field wave elevations downstream of the model were measured in a water tank under regular waves. A calculation method based on linear potential theory was implemented and validated with the experimental results. The calculated far-field wave elevations downstream of the monopile and jacket foundations were then analyzed for a range of wave periods and wave profiles were plotted at various distances from the foundations. It was found that the effect of monopile foundations on wave elevation was limited except around the edges of the foundation. Further, the wave elevation reduction was minimal at less than 1% at a distance of 750 m or more and less than 0.7% at a distance of more than 2000 m from the monopile foundation. The jacket foundations had no effect on the wave elevation downstream. Full article
(This article belongs to the Special Issue Innovative Development of Offshore Wind Technology)
Show Figures

Figure 1

26 pages, 9400 KiB  
Article
Scour near Offshore Monopiles, Jacket-Type and Caisson-Type Structures
by Leo C. van Rijn, Nathanael Geleynse, Luitze Perk and Doke Schoonhoven
J. Mar. Sci. Eng. 2025, 13(2), 266; https://doi.org/10.3390/jmse13020266 - 30 Jan 2025
Viewed by 994
Abstract
Scour near various offshore structures (monopile, caisson foundation and jacket structure) was studied by performing laboratory flume tests and numerical solutions with a semi-empirical model (SEDSCOUR) and a sophisticated 2DV model (SUSTIM2DV). The laboratory test results show that the maximum free scour depth [...] Read more.
Scour near various offshore structures (monopile, caisson foundation and jacket structure) was studied by performing laboratory flume tests and numerical solutions with a semi-empirical model (SEDSCOUR) and a sophisticated 2DV model (SUSTIM2DV). The laboratory test results show that the maximum free scour depth around a monopile without bed protection is slightly higher than the pile diameter. The maximum scour consisting of pile scour and global scour around an open jacket structure standing on four piles is much lower than the scour near the other structures (monopile and caisson). The maximum scour depth along a circular caisson foundation is found to be related to the base diameter of the structure. The main cause of the scour near these types of structures is the increase in the velocity along the flanks of the structure. Six cases have been used for validation: two laboratory cases (A and B) and four field cases (C, D, E and F). The measured scour values of the new physical model tests with the monopile and the open jacket structure presented in this paper are in reasonably good agreement with other laboratory and field scour data from the literature. The semi-empirical SEDSCOUR model proposed in this paper can be used for the reliable prediction of free scour and global scour near monopiles and jacket structures in a sandy bed (even with a small percentage of mud, up to 30%). The maximum scour depth along a large-scale caisson structure is more difficult to predict because the scour depth depends on the precise geometry and dimensions of the structure and the prevailing flow and sediment conditions. A detailed 2DV model with a fine horizontal grid (2 m) along a stream tube following the contour of the caisson is explored for scour predictions. The 2DV model simulates the flow and sediment transport at 50 to 100 points over the depth along the stream tube and can be run on a time-scale of 1 year. Full article
(This article belongs to the Section Coastal Engineering)
Show Figures

Figure 1

21 pages, 9648 KiB  
Article
A Numerical Model for the Scour Effect on the Bearing Capacity of an Offshore Wind Turbine with a Five-Bucket Jacket Foundation
by Hang Zhu, Jijian Lian, Yaohua Guo and Haijun Wang
J. Mar. Sci. Eng. 2024, 12(5), 753; https://doi.org/10.3390/jmse12050753 - 30 Apr 2024
Cited by 6 | Viewed by 1885
Abstract
As offshore wind farms move into deeper waters and the capacity of offshore wind turbines (OWTs) increases, a new type of OWT foundation needs to be developed. In this study, a new type of five-bucket jacket foundation (FBJF) was proposed based on the [...] Read more.
As offshore wind farms move into deeper waters and the capacity of offshore wind turbines (OWTs) increases, a new type of OWT foundation needs to be developed. In this study, a new type of five-bucket jacket foundation (FBJF) was proposed based on the broad application of a multi-bucket jacket foundation (MBJF) in offshore wind farms. The soil around the OWT foundation is subject to scour due to the complex marine environment. To investigate the effects of scouring on the FBJF, a series of local-scour simplified finite-element models of the FBJF were established using ABAQUS, and the effects of scouring depth and the extent on the bearing capacity of the FBJF with the monotonic load were analyzed. Then, the failure envelopes of the FBJF under combined loading were obtained using the fixed-displacement ratio method, and the effects of various scour conditions on the failure envelopes were compared. The results indicate that the failure envelope profile contracts inward, and the bearing capacity decreases with the increasing scouring depth and extent. Furthermore, the failure envelopes of the FBJF under different vertical loads were calculated, and the FV-FH-FM failure envelopes of the FBJF were obtained through interpolation. Finally, the effects of different scour conditions on the FV-FH-FM failure envelopes of the FBJF were analyzed. The results show that the FV-FH-FM failure envelopes of the FBJF have similar profiles and follow the same trend under different scour conditions. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

19 pages, 18901 KiB  
Article
The Construction Conditions of a Pre-Piling Template for Foundations of Offshore Structures
by Deokhee Won, Jihye Seo, Osoon Kwon, Hae-Young Park and Hyoun Kang
J. Mar. Sci. Eng. 2024, 12(1), 174; https://doi.org/10.3390/jmse12010174 - 16 Jan 2024
Cited by 1 | Viewed by 2457
Abstract
The foundations of offshore wind power can be classified as floating, tripod, jacket, monopile, or gravity-based, depending on the support type. In the case of tripod- and jacket-type supports, the structures require precise construction. There are two main methods for installing substructures: post- [...] Read more.
The foundations of offshore wind power can be classified as floating, tripod, jacket, monopile, or gravity-based, depending on the support type. In the case of tripod- and jacket-type supports, the structures require precise construction. There are two main methods for installing substructures: post- and pre-piling. The post-piling method involves moving the completed substructure to the site and fixing it to the seabed by inserting a pile into the leg pile and driving it, allowing it to be constructed without special off-shore equipment; however, the construction period is long. Contrarily, the precision of foundation installation can be improved by installing a pre-piling template, which is special equipment that serves as a basic structure, on the seabed in advance, and subsequently inserting substructures. This study presents a new type of underwater pre-piling template and method for achieving optimal construction environment conditions. Construction precision was analyzed based on the wave condition, current speed, winch speed, wave direction, and current direction while the under-water template was anchored to the seabed. It was found that the wave conditions, winch speed, and vessel type had a significant influence. The results obtained considering the Douglas sea scale show that precise construction could only be achieved within Grade 2 for general barge ships, while jack-up barge ships could be used even at Grade 3 or higher. The higher the winch speed, the more stable construction becomes possible, and jack-up barges show greater constructability than general barges. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

16 pages, 6101 KiB  
Article
Research on the Effect of Burial Depth on The Bearing Characteristics of Three Helical Piles Jacket Foundation for Offshore Wind Turbines
by Changyang Ouyang, Jianhua Luo, Tingyuan Wang and Puyang Zhang
J. Mar. Sci. Eng. 2023, 11(9), 1703; https://doi.org/10.3390/jmse11091703 - 29 Aug 2023
Cited by 3 | Viewed by 1373
Abstract
With global offshore wind power gradually moving to deep and distant waters, there is a clear trend towards larger-scale units, posing significant challenges for future offshore wind power foundations. In this paper, a helical pile jacket foundation type is proposed by combining the [...] Read more.
With global offshore wind power gradually moving to deep and distant waters, there is a clear trend towards larger-scale units, posing significant challenges for future offshore wind power foundations. In this paper, a helical pile jacket foundation type is proposed by combining the advantages of the current jacket foundation, which is suitable for deep and distant seas and offers high stiffness, with the excellent bearing performance of helical pile foundations. The influence of buried depth on the bearing characteristics of this foundation type is discussed through a physical model test. The results obtained from the study reveal the distinct bearing characteristics and damage modes exhibited by the foundation under deep and shallow burial conditions. These findings clearly indicate that the overall bearing characteristics and damage modes are superior in deep burial conditions compared to shallow burial conditions. Furthermore, it is observed that the damage and displacement of the foundation are more concentrated in localized areas when subjected to shallow burial. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

16 pages, 5382 KiB  
Article
Eddy Current Braking Force Analysis of a Water-Cooled Ironless Linear Permanent Magnet Synchronous Motor
by Mengyao Wang, Lu Zhang, Kai Yang, Junjie Xu and Chunyu Du
Energies 2023, 16(15), 5826; https://doi.org/10.3390/en16155826 - 6 Aug 2023
Viewed by 1570
Abstract
The ironless linear permanent magnet synchronous motor (ILPMSM) is highly compact, easy to control, and exhibits minimal thrust fluctuations, making it an ideal choice for direct loading applications requiring precise positioning accuracy in linear motor test rigs. To address the issue of temperature [...] Read more.
The ironless linear permanent magnet synchronous motor (ILPMSM) is highly compact, easy to control, and exhibits minimal thrust fluctuations, making it an ideal choice for direct loading applications requiring precise positioning accuracy in linear motor test rigs. To address the issue of temperature rise resulting from increased primary winding current and to simultaneously enhance thrust density while minimizing thrust fluctuations, this paper introduces a bilateral-type ILPMSM with a cooling water jacket integrated between the dual-layer windings of the primary movers. The primary winding of the motor adopts a dual-layer coreless structure where the upper and lower windings are closely spaced and cooled by a non-conductive metal cooling water jacket, while the dual-sided secondary employs a Halbach permanent magnet array. The motor’s overall braking force is a combination of the electromagnetic braking force generated by the energized windings and the eddy current braking force induced on the cooling water jacket. This paper specifically focuses on the analysis of the eddy current braking force. Initially, the motor’s geometry and working principle are presented. Subsequently, the equivalent magnetization intensity method is employed to determine the no-load air gap magnetic density resulting from the Halbach array. An analytical model is then developed to derive expressions for the eddy current density and braking force induced in the water-cooling jacket. The accuracy of the analytical method is validated through finite element analysis. Then, a comparative analysis of the braking forces in two primary cooling structures, namely the inter-cooled type and the two-side cooled type ILPMSM, is conducted. Moreover, the characteristics of the eddy current braking force are thoroughly examined concerning motor size parameters and operating conditions. This paper provides a solid theoretical foundation for the subsequent optimization design of the proposed motor. Full article
(This article belongs to the Special Issue Advanced Permanent-Magnet Machines for Electric Vehicles)
Show Figures

Figure 1

22 pages, 5652 KiB  
Article
The Anti-Overturning Response of Tripod Bucket Foundation for Offshore Wind Turbines
by Rongsheng Zhang, Hanqiu Liu, Cailiang Zhang, Yong Chen, Zhenya Tian, Shaotao Fan and Ronghua Zhu
J. Mar. Sci. Eng. 2023, 11(4), 796; https://doi.org/10.3390/jmse11040796 - 7 Apr 2023
Cited by 2 | Viewed by 2824
Abstract
The tripod bucket jacket foundation is proven to be a practicable solution for offshore wind turbines (OWTs) to withstand huge environmental loads in deep water. This paper presents model tests for a scaled tripod bucket jacket foundation with reference to a prototype applied [...] Read more.
The tripod bucket jacket foundation is proven to be a practicable solution for offshore wind turbines (OWTs) to withstand huge environmental loads in deep water. This paper presents model tests for a scaled tripod bucket jacket foundation with reference to a prototype applied in China to obtain its lateral load bearing behavior in medium-dense sands. Extended finite element analyses were conducted by ABAQUS to compare anti-overturning responses for the tripod bucket foundation in both sand and soft clay, and the influences of loading direction and aspect ratio were also taken into account. The results showed that the failure modes of the laterally loaded tripod bucket foundation are the pull-out of the windward bucket in sand and the settlement of the leeward bucket in soft clay, respectively. Thus, the unfavorable loading direction of the foundation changes with soil type. It is also shown that the bearing capacity for the foundation in soft clay will be enhanced more effectively as the bucket diameter increases. Instead of the rotational soil resistance resulting from the rotation of the bucket, the vertical soil resistance governs the anti-overturning bearing capacity of a tripod bucket foundation. As the tilt created by the overturning moment rises, the rotational stiffness of the foundation dramatically declines. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

10 pages, 1578 KiB  
Article
Liquid Loading of Horizontal Gas Wells in Changbei Gas Field
by Zhimin Huang, Wenbin Cai, Huiren Zhang and Xiangyang Mo
Processes 2023, 11(1), 134; https://doi.org/10.3390/pr11010134 - 2 Jan 2023
Cited by 2 | Viewed by 2918
Abstract
The Changbei gas field, which initially exhibited high gas-production performance, is dominated by large-displacement horizontal wells. With the decrease in reservoir pressure, the liquid loading in the gas well is currently severe, and production has been rapidly decreasing. Thus, recognizing the gas-well liquid [...] Read more.
The Changbei gas field, which initially exhibited high gas-production performance, is dominated by large-displacement horizontal wells. With the decrease in reservoir pressure, the liquid loading in the gas well is currently severe, and production has been rapidly decreasing. Thus, recognizing the gas-well liquid loading to maintain stable gas-well production is necessary. A method was established to identify the water source of the liquid loading in the Changbei gas field. First, formation water and condensate water were identified based on the mineralization of the recovered water and the mass concentration of Cl and K+ + Na+, and then the condensate content of the water produced in the gas well was qualitatively evaluated. The water–gas ratio curve for the gas well was plotted to determine whether the produced water was edge-bottom water, pore water, or condensate. Then a method was established to distinguish the start time of liquid loading in the gas well using a curve depicting a decrease in production; the method was also used to estimate the depth of the gas well where liquid loading occurs, according to the bottomhole pressure. First, based on the available production data, the Arps decline model was applied to fit the production curve for the entire production phase; the resulting curve was compared with the actual production curve of the gas well, and the two curves diverged when fluid accumulation began in the gas well. Finally, the liquid-loading depth of the gas well was estimated based on the bottomhole pressure. This method can be used to determine the fluid accumulation and calculate the liquid-loading depth of gas wells with unconnected oil jackets. The analysis revealed that in the Changbei gas field, condensate was the type of water primarily produced in 35 gas wells, accounting for 62.5% of the total number of gas wells. Edge-bottom water was the type of water primarily produced in 16 gas wells, accounting for 28.6% of the total number of gas wells. In the remainder of the gas wells, pore water was the water primarily produced; the calculations of accumulation time and accumulation volume of typical gas wells in the block revealed that some gas wells started to accumulate liquid after 45–50 months, and the amount of accumulation could reach several tens of meters, while others were in good production condition. The method established in this paper could enhance our understanding of liquid loading in gas wells in the Changbei gas field and lay a foundation for the development of gas-well deliquification techniques. Full article
Show Figures

Figure 1

21 pages, 6077 KiB  
Article
Experimental and Finite Element-Based Investigation on Lateral Behaviors of a Novel Hybrid Monopile
by Jeongsoo Kim, Yeon-Ju Jeong, Joonsang Park, Ju-Hyung Lee, Taeyoung Kwak and Jae-Hyun Kim
Energies 2022, 15(23), 9095; https://doi.org/10.3390/en15239095 - 30 Nov 2022
Cited by 3 | Viewed by 2706
Abstract
A monopile is the most conventional structure foundation for offshore wind turbines (OWTs) in the world. However, the Korean offshore wind industry has mostly been using the jacket type of foundation. The main reason for the current situation in Korea is that most [...] Read more.
A monopile is the most conventional structure foundation for offshore wind turbines (OWTs) in the world. However, the Korean offshore wind industry has mostly been using the jacket type of foundation. The main reason for the current situation in Korea is that most of the marine soil consists of weak layers of sand and clay. Thus, the monopile foundation depth has to be deep enough to satisfy the intended serviceability design requirement of the monopile and the rotation limit at the seabed; a conventional monopile design concept alone might be insufficient in Korean offshore conditions, or otherwise could be very expensive, e.g., resulting in a rock socket installation at the tip of the monopile. The main objective of this paper is to introduce a novel hybrid monopile that is composed of a monopile and a supplemental support with three buckets, followed by assessing the lateral resistance of the hybrid system through physical experiments and finite element (FE) simulations. Namely, 1/64.5 small-scaled monopile and hybrid physical models with a monopile diameter of 7 m for a 5.5 MW OWT were loaded monotonically. The results show that the hybrid monopile improves the lateral bearing capacity regarding the initial lateral stiffness and ultimate load. The FE analyses of the corresponding physical models were also implemented to support the results from the physical model test. The numerical results, such as the structural member forces and soil deformation, were analyzed in detail. Additionally, a case study using FE analysis was conducted for the 5.5 MW OWT hybrid monopile support installed in a representative Korean weak soil area. The results show that the hybrid monopile foundation has a larger lateral resistance and stiffness than the monopile. Full article
Show Figures

Figure 1

18 pages, 2556 KiB  
Article
Conceptual Design of a Vibration Test System Based on a Wave Generator Channel for Lab-Scale Offshore Wind Turbine Jacket Foundations
by Ángel Encalada-Dávila, Lenín Pardo, Yolanda Vidal, Efraín Terán and Christian Tutivén
J. Mar. Sci. Eng. 2022, 10(9), 1247; https://doi.org/10.3390/jmse10091247 - 5 Sep 2022
Cited by 3 | Viewed by 3557
Abstract
Structural health monitoring (SHM) systems are designed to continually monitor the health of structures (e.g., civil, aeronautic) by using the information collected through a distributed sensor network. However, performing tests on real structures, such as wind turbines, implies high logistic and operational costs. [...] Read more.
Structural health monitoring (SHM) systems are designed to continually monitor the health of structures (e.g., civil, aeronautic) by using the information collected through a distributed sensor network. However, performing tests on real structures, such as wind turbines, implies high logistic and operational costs. Therefore, there is a need for a vibration test system to evaluate designs at smaller scales in a laboratory setting in order to collect data and devise predictive maintenance strategies. In this work, the proposed vibration test system is based on a lab-scale wind turbine jacket foundation related primarily to an offshore environment. The test system comprises a scaled wave generator channel, a desktop application (WTtest) to control the channel simulations, and a data acquisition system (DAQ) to collect the information from the sensors connected to the structure. Various equipment such as accelerometers, electrodynamic shaker, and DAQ device are selected as per the design methodology. Regarding the mechanical part, each component of the channel is designed to be like the wave absorber, the mechanical multiplier, the piston-type wavemaker, and the wave generator channel. For this purpose, the finite element method is used in static and fatigue analysis to evaluate the stresses and deformations; this helps determine whether the system will work safely. Moreover, the vibration test system applies to other jacket structures as well, giving it greater utility and applicability in different research fields. In sum, the proposed system is compact and has three well-defined components that work synchronously to develop the experimental simulations. Full article
(This article belongs to the Special Issue Coastal Engineering: Sustainability and New Technologies)
Show Figures

Figure 1

13 pages, 3171 KiB  
Article
Reline Jacket: Efficient Reduction of Frost-Heave Uplift of Piles in Warming Permafrost
by Dmitriy Alyavdin, Vladimir Belyakov, Artemiy Levin, Andrey Alekseev, Erika Grechishcheva, Olga Kozlova and Roman Makhota
Geosciences 2022, 12(9), 313; https://doi.org/10.3390/geosciences12090313 - 23 Aug 2022
Cited by 5 | Viewed by 3037
Abstract
Air temperature in the Northern Hemisphere has been progressively warming in the recent decades, and the ground temperatures have increased correspondingly. The air temperature increasing due to the climate change induces degradation of permafrost and frost heaving activation. The frost heaving forces cause [...] Read more.
Air temperature in the Northern Hemisphere has been progressively warming in the recent decades, and the ground temperatures have increased correspondingly. The air temperature increasing due to the climate change induces degradation of permafrost and frost heaving activation. The frost heaving forces cause unevenly distributed damaging displacement of foundations and thus poses problems to the development of Arctic regions. Frost-heave uplift forces can be reduced by protecting piles with an OSPTReline (or Reline) polymer heat-shrinkable jacket. The interaction of heaving soil with a pile covered with the Reline jacket is modeled in laboratory to estimate the uplift force and the related shear strength of frozen soil along the soil-pile adfreeze surface at temperatures from −6 to −1 °C. The data are obtained for silty sand and silty clay soils and mortar (1:5 cement-sand mixture). The experiments show that frost-heave uplift forces on Reline-protected piles are 52% to 85% lower than on uncovered steel piles (steel grade 09G2S—analog to European steel grade S355JR), depending on soil type and temperature. Full article
(This article belongs to the Special Issue Permafrost and Gas Hydrate Response to Ground Temperature Rising)
Show Figures

Figure 1

20 pages, 3641 KiB  
Article
Siamese Neural Networks for Damage Detection and Diagnosis of Jacket-Type Offshore Wind Turbine Platforms
by Joseph Baquerizo, Christian Tutivén, Bryan Puruncajas, Yolanda Vidal and José Sampietro
Mathematics 2022, 10(7), 1131; https://doi.org/10.3390/math10071131 - 1 Apr 2022
Cited by 15 | Viewed by 4388
Abstract
Offshore wind energy is increasingly being realized at deeper ocean depths where jacket foundations are now the greatest choice for dealing with the hostile environment. The structural stability of these undersea constructions is critical. This paper states a methodology to detect and classify [...] Read more.
Offshore wind energy is increasingly being realized at deeper ocean depths where jacket foundations are now the greatest choice for dealing with the hostile environment. The structural stability of these undersea constructions is critical. This paper states a methodology to detect and classify damage in a jacket-type support structure for offshore wind turbines. Because of the existence of unknown external disturbances (wind and waves), standard structural health monitoring technologies, such as guided waves, cannot be used directly in this application. Therefore, using vibration-response-only accelerometer measurements, a methodology based on two in-cascade Siamese convolutional neural networks is proposed. The first Siamese network detects the damage (discerns whether the structure is healthy or damaged). Then, in case damage is detected, a second Siamese network determines the damage diagnosis (classifies the type of damage). The main results and claims of the proposed methodology are the following ones: (i) It is solely dependent on accelerometer sensor output vibration data, (ii) it detects damage and classifies the type of damage, (iii) it operates in all wind turbine regions of operation, (iv) it requires less data to train since it is built on Siamese convolutional neural networks, which can learn from very little data compared to standard machine/deep learning algorithms, (v) it is validated in a scaled-down experimental laboratory setup, and (vi) its feasibility is demonstrated as all computed metrics (accuracy, precision, recall, and F1 score) for the obtained results remain above 96%. Full article
Show Figures

Figure 1

22 pages, 29665 KiB  
Article
The Effect of Strengthening Methods on the Performance of Reinforced Concrete Columns against Vehicle Impact
by Abdulrahman Al Fuhaid, Kazi Md Abu Sohel and Md Arifuzzaman
Appl. Sci. 2022, 12(3), 1382; https://doi.org/10.3390/app12031382 - 27 Jan 2022
Cited by 8 | Viewed by 4296
Abstract
Columns at the ground floor and parking garages that could be hit by a car pose a significant risk to the structural stability of the building superstructures. Generally, these columns are not built to sustain the lateral impact force generated by car–column collision. [...] Read more.
Columns at the ground floor and parking garages that could be hit by a car pose a significant risk to the structural stability of the building superstructures. Generally, these columns are not built to sustain the lateral impact force generated by car–column collision. In this study, the performance of axially loaded retrofitted reinforced concrete (RC) columns against car impact is evaluated using finite element (FE) simulation. The FE model of the RC column with axial load was validated with experimental results. For the car-crushing simulations, two SUV car models with a mass of about 2250 kg, which had been experimentally validated, were used to simulate the car–column collision. The results of the FE analysis revealed that once the impact speed exceeds 30 km/h, the horizontal impact force has a significant effect on the column joint at the foundation. The impact force increases linearly as the impact velocity of the car increases up to 20 km/h. When car impact velocities are more than 20 km/h, the generated impact force increases in power to the car-crashing velocity. Both types of cars have almost the same effect on the generation of impact force and the lateral displacement of the column. It is found that the generated impact forces are higher than the recommended design values of Eurocode 1. To protect the column from car impact damage, two types of column-strengthening systems were investigated. One form of strengthening system involves retrofitting the lower half of the column with an aramid fiber-reinforced polymer (AFRP) warp, while the other involves putting a reinforced concrete jacket of up to 1.3 m in the height of the column. Based on the comparative study, design recommendations are suggested to protect the RC column from accidental car-crashing damage. Full article
(This article belongs to the Special Issue Advanced Structure Materials and Processing)
Show Figures

Figure 1

18 pages, 5999 KiB  
Article
Laboratory Study of Integrated Wet-Towing of a Triple-Bucket Jacket Foundation for Far-Offshore Applications
by Chaojun Yan, Haijun Wang, Yaohua Guo, Zhen Wang and Xiao Liu
J. Mar. Sci. Eng. 2021, 9(11), 1152; https://doi.org/10.3390/jmse9111152 - 20 Oct 2021
Cited by 9 | Viewed by 2991
Abstract
As a form of clean and low-carbon green energy, offshore wind power occupies an important position in the global energy structure. With the rapid development of the wind power industry, wind power projects gradually develop from offshore to far-offshore sea areas. The multi-bucket [...] Read more.
As a form of clean and low-carbon green energy, offshore wind power occupies an important position in the global energy structure. With the rapid development of the wind power industry, wind power projects gradually develop from offshore to far-offshore sea areas. The multi-bucket jacket foundation is a considerable foundation type for far off-shore projects, but high installation costs involving ship transportation with parted components and field installation has significantly hindered its wide application. In this study, based on a 6.7-MW triple-bucket jacket foundation (TBJF) project of a deep-sea wind farm in China, a new integrated wet-towing method of “jacket + triple-bucket foundation” composite structure was proposed, which is suitable for far long-distance transportation of far-offshore applications. The static-model test of both self-stability and wet-towing stability was conducted. Based on the test and the numerical results, the natural period of the foundation for different draft depths in hydrostatic water and the stability for different eccentric loads were first evaluated. Then, the effects of different wet-towing modes and sea conditions on the stability of the TBJF were investigated. Finally, the optimal wet-towing mode and applicable sea conditions for the TBJF structure were proposed. Full article
(This article belongs to the Topic Marine Renewable Energy)
Show Figures

Figure 1

Back to TopTop