Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = irreversible Diesel cycle

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 3309 KB  
Article
Thermodynamic Analysis of Marine Diesel Engine Exhaust Heat-Driven Organic and Inorganic Rankine Cycle Onboard Ships
by Cuneyt Ezgi and Haydar Kepekci
Appl. Sci. 2024, 14(16), 7300; https://doi.org/10.3390/app14167300 - 19 Aug 2024
Cited by 1 | Viewed by 2729
Abstract
Due to increasing emissions and global warming, in parallel with the increasing world population and energy needs, IMO has introduced severe rules for ships. Energy efficiency on ships can be achieved using the organic and inorganic Rankine cycle (RC) driven by exhaust heat [...] Read more.
Due to increasing emissions and global warming, in parallel with the increasing world population and energy needs, IMO has introduced severe rules for ships. Energy efficiency on ships can be achieved using the organic and inorganic Rankine cycle (RC) driven by exhaust heat from marine diesel engines. In this study, toluene, R600, isopentane, and n-hexane as dry fluids; R717 and R718 as wet fluids; and R123, R142b, R600a, R245fa, and R141b as isentropic fluids are selected as the working fluid because they are commonly used refrigerants, with favorable thermal properties, zero ODP, low GWP and are good contenders for this application. The cycle and exergy efficiencies, net power, and irreversibility of marine diesel engine exhaust-driven simple RC and RC with a recuperator are calculated. For dry fluids, the most efficient fluid at low turbine inlet temperatures is n-hexane at 39.75%, while at high turbine inlet temperatures, it is toluene at 41.20%. For isentropic fluids, the most efficient fluid at low turbine inlet temperatures is R123 with 23%, while at high turbine inlet temperatures it is R141b with 23%. As an inorganic fluid, R718 is one of the most suitable working fluids at high turbine inlet temperatures of 300 °C onboard ships with a safety group classification of A1, ODP of 0, and GWP100 of 0, with a cycle efficiency of 33%. This study contributes to significant improvements in fuel efficiency and reductions in greenhouse gas emissions, leading to more sustainable and cost-effective maritime operations. Full article
(This article belongs to the Special Issue Advances in Applied Marine Sciences and Engineering—2nd Edition)
Show Figures

Figure 1

32 pages, 2619 KB  
Article
Exergoeconomic Analysis of a Mechanical Compression Refrigeration Unit Run by an ORC
by Daniel Taban, Valentin Apostol, Lavinia Grosu, Mugur C. Balan, Horatiu Pop, Catalina Dobre and Alexandru Dobrovicescu
Entropy 2023, 25(11), 1531; https://doi.org/10.3390/e25111531 - 10 Nov 2023
Cited by 5 | Viewed by 2199
Abstract
To improve the efficiency of a diesel internal combustion engine (ICE), the waste heat carried out by the combustion gases can be recovered with an organic Rankine cycle (ORC) that further drives a vapor compression refrigeration cycle (VCRC). This work offers an exergoeconomic [...] Read more.
To improve the efficiency of a diesel internal combustion engine (ICE), the waste heat carried out by the combustion gases can be recovered with an organic Rankine cycle (ORC) that further drives a vapor compression refrigeration cycle (VCRC). This work offers an exergoeconomic optimization methodology of the VCRC-ORC group. The exergetic analysis highlights the changes that can be made to the system structure to reduce the exergy destruction associated with internal irreversibilities. Thus, the preheating of the ORC fluid with the help of an internal heat exchanger leads to a decrease in the share of exergy destruction in the ORC boiler by 4.19% and, finally, to an increase in the global exergetic yield by 2.03% and, implicitly, in the COP of the ORC-VCRC installation. Exergoeconomic correlations are built for each individual piece of equipment. The mathematical model for calculating the monetary costs for each flow of substance and energy in the system is presented. Following the evolution of the exergoeconomic performance parameters, the optimization strategy is developed to reduce the exergy consumption in the system by choosing larger or higher-performance equipment. When reducing the temperature differences in the system heat exchangers (ORC boiler, condenser, and VCRC evaporator), the unitary cost of the refrigeration drops by 44%. The increase in the isentropic efficiency of the ORC expander and VCRC compressor further reduces the unitary cost of refrigeration by another 15%. Following the optimization procedure, the cost of the cooling unit drops by half. The cost of diesel fuel has a major influence on the unit cost of cooling. A doubling of the cost of diesel fuel leads to an 80% increase in the cost of the cold unit. The original merit of the work is to present a detailed and comprehensive model of optimization based on exergoeconomic principles that can serve as an example for any thermal system optimization. Full article
(This article belongs to the Special Issue Thermodynamic Optimization of Industrial Energy Systems)
Show Figures

Figure 1

18 pages, 6466 KB  
Article
Performance Optimizations with Single-, Bi-, Tri-, and Quadru-Objective for Irreversible Diesel Cycle
by Shuangshuang Shi, Lingen Chen, Yanlin Ge and Huijun Feng
Entropy 2021, 23(7), 826; https://doi.org/10.3390/e23070826 - 28 Jun 2021
Cited by 33 | Viewed by 3890
Abstract
Applying finite time thermodynamics theory and the non-dominated sorting genetic algorithm-II (NSGA-II), thermodynamic analysis and multi-objective optimization of an irreversible Diesel cycle are performed. Through numerical calculations, the impact of the cycle temperature ratio on the power density of the cycle is analyzed. [...] Read more.
Applying finite time thermodynamics theory and the non-dominated sorting genetic algorithm-II (NSGA-II), thermodynamic analysis and multi-objective optimization of an irreversible Diesel cycle are performed. Through numerical calculations, the impact of the cycle temperature ratio on the power density of the cycle is analyzed. The characteristic relationships among the cycle power density versus the compression ratio and thermal efficiency are obtained with three different loss issues. The thermal efficiency, the maximum specific volume (the size of the total volume of the cylinder), and the maximum pressure ratio are compared under the maximum power output and the maximum power density criteria. Using NSGA-II, single-, bi-, tri-, and quadru-objective optimizations are performed for an irreversible Diesel cycle by introducing dimensionless power output, thermal efficiency, dimensionless ecological function, and dimensionless power density as objectives, respectively. The optimal design plan is obtained by using three solution methods, that is, the linear programming technique for multidimensional analysis of preference (LINMAP), the technique for order preferences by similarity to ideal solution (TOPSIS), and Shannon entropy, to compare the results under different objective function combinations. The comparison results indicate that the deviation index of multi-objective optimization is small. When taking the dimensionless power output, dimensionless ecological function, and dimensionless power density as the objective function to perform tri-objective optimization, the LINMAP solution is used to obtain the minimum deviation index. The deviation index at this time is 0.1333, and the design scheme is closer to the ideal scheme. Full article
(This article belongs to the Special Issue Carnot Cycle and Heat Engine Fundamentals and Applications II)
Show Figures

Figure 1

25 pages, 10242 KB  
Article
Open Dual Cycle with Composition Change and Limited Pressure for Prediction of Miller Engines Performance and Its Turbine Temperature
by Antonio Lecuona, José I. Nogueira and Antonio Famiglietti
Energies 2021, 14(10), 2870; https://doi.org/10.3390/en14102870 - 16 May 2021
Cited by 2 | Viewed by 4592
Abstract
An improved thermodynamic open Dual cycle is proposed to simulate the working of internal combustion engines. It covers both spark ignition and Diesel types through a sequential heat release. This study proposes a procedure that includes (i) the composition change caused by internal [...] Read more.
An improved thermodynamic open Dual cycle is proposed to simulate the working of internal combustion engines. It covers both spark ignition and Diesel types through a sequential heat release. This study proposes a procedure that includes (i) the composition change caused by internal combustion, (ii) the temperature excursions, (iii) the combustion efficiency, (iv) heat and pressure losses, and (v) the intake valve timing, following well-established methodologies. The result leads to simple analytical expressions, valid for portable models, optimization studies, engine transformations, and teaching. The proposed simplified model also provides the working gas properties and the amount of trapped mass in the cylinder resulting from the exhaust and intake processes. This allows us to yield explicit equations for cycle work and efficiency, as well as exhaust temperature for turbocharging. The model covers Atkinson and Miller cycles as particular cases and can include irreversibilities in compression, expansion, intake, and exhaust. Results are consistent with the real influence of the fuel-air ratio, overcoming limitations of standard air cycles without the complex calculation of fuel-air cycles. It includes Exhaust Gas Recirculation, EGR, external irreversibilities, and contemporary high-efficiency and low-polluting technologies. Correlations for heat ratio γ are given, including renewable fuels. Full article
Show Figures

Figure 1

15 pages, 3462 KB  
Article
Waste Heat Recovery from Diesel Engine Exhaust Using a Single-Screw Expander Organic Rankine Cycle System: Experimental Investigation of Exergy Destruction
by Yeqiang Zhang, Biao Lei, Zubair Masaud, Muhammad Imran, Yuting Wu, Jinping Liu, Xiaoding Qin and Hafiz Ali Muhammad
Energies 2020, 13(22), 5914; https://doi.org/10.3390/en13225914 - 12 Nov 2020
Cited by 7 | Viewed by 3509
Abstract
The organic Rankine cycle is a mature small-scale power generation technology for harnessing low- to mid-temperature heat sources. However, the low efficiency of the cycle still hinders its widespread implementation. To optimize the cycle’s performance, it is crucial to identify the source and [...] Read more.
The organic Rankine cycle is a mature small-scale power generation technology for harnessing low- to mid-temperature heat sources. However, the low efficiency of the cycle still hinders its widespread implementation. To optimize the cycle’s performance, it is crucial to identify the source and magnitude of losses within each component of the cycle. This study, thus, aims to investigate the irreversible losses and their effect on the performance of the system. A prototype organic Rankine cycle (ORC) with the exhaust of a diesel engine as the heat source was developed to experimentally investigate the system and ascertain the losses. The experiments were performed at steady-state conditions at different evaporation pressures from 1300 kPa to 1600 kPa. The exergy loss and exergetic efficiency of the individual component and the overall system was estimated from the experimentally measurement of the pressure, temperature, and mass flow rate. The results indicate that the exergy losses of the evaporator are almost 60 kW at different evaporation pressures and the exergy loss rate is from 69.1% to 65.1%, which accounted for most of the total exergy loss rate in the organic Rankine cycle system. Meanwhile, the highest shaft efficiency and exergetic efficiency of the screw expander are 49.8% and 38.4%, respectively, and the exergy losses and exergy loss rate of the pump and pipe are less than 0.5 kW and 1%. Due to the relatively higher exergy loss of the evaporator and the low efficiency of expander, the highest exergetic efficiency of the organic Rankine cycle system is about 10.8%. The study concludes that the maximum improvement potential lies in the evaporator, followed by the expander. Full article
(This article belongs to the Special Issue Low-Temperature Thermodynamic Power Cycles)
Show Figures

Graphical abstract

13 pages, 1568 KB  
Article
Performance of Universal Reciprocating Heat-Engine Cycle with Variable Specific Heats Ratio of Working Fluid
by Lingen Chen, Yanlin Ge, Chang Liu, Huijun Feng and Giulio Lorenzini
Entropy 2020, 22(4), 397; https://doi.org/10.3390/e22040397 - 31 Mar 2020
Cited by 17 | Viewed by 3437
Abstract
Considering the finite time characteristic, heat transfer loss, friction loss and internal irreversibility loss, an air standard reciprocating heat-engine cycle model is founded by using finite time thermodynamics. The cycle model, which consists of two endothermic processes, two exothermic processes and two adiabatic [...] Read more.
Considering the finite time characteristic, heat transfer loss, friction loss and internal irreversibility loss, an air standard reciprocating heat-engine cycle model is founded by using finite time thermodynamics. The cycle model, which consists of two endothermic processes, two exothermic processes and two adiabatic processes, is well generalized. The performance parameters, including the power output and efficiency (PAE), are obtained. The PAE versus compression ratio relations are obtained by numerical computation. The impacts of variable specific heats ratio (SHR) of working fluid (WF) on universal cycle performances are analyzed and various special cycles are also discussed. The results include the PAE performance characteristics of various special cycles (including Miller, Dual, Atkinson, Brayton, Diesel and Otto cycles) when the SHR of WF is constant and variable (including the SHR varied with linear function (LF) and nonlinear function (NLF) of WF temperature). The maximum power outputs and the corresponding optimal compression ratios, as well as the maximum efficiencies and the corresponding optimal compression ratios for various special cycles with three SHR models are compared. Full article
Show Figures

Figure 1

44 pages, 8848 KB  
Review
Progress in Finite Time Thermodynamic Studies for Internal Combustion Engine Cycles
by Yanlin Ge, Lingen Chen and Fengrui Sun
Entropy 2016, 18(4), 139; https://doi.org/10.3390/e18040139 - 15 Apr 2016
Cited by 171 | Viewed by 12671
Abstract
On the basis of introducing the origin and development of finite time thermodynamics (FTT), this paper reviews the progress in FTT optimization for internal combustion engine (ICE) cycles from the following four aspects: the studies on the optimum performances of air standard endoreversible [...] Read more.
On the basis of introducing the origin and development of finite time thermodynamics (FTT), this paper reviews the progress in FTT optimization for internal combustion engine (ICE) cycles from the following four aspects: the studies on the optimum performances of air standard endoreversible (with only the irreversibility of heat resistance) and irreversible ICE cycles, including Otto, Diesel, Atkinson, Brayton, Dual, Miller, Porous Medium and Universal cycles with constant specific heats, variable specific heats, and variable specific ratio of the conventional and quantum working fluids (WFs); the studies on the optimum piston motion (OPM) trajectories of ICE cycles, including Otto and Diesel cycles with Newtonian and other heat transfer laws; the studies on the performance limits of ICE cycles with non-uniform WF with Newtonian and other heat transfer laws; as well as the studies on the performance simulation of ICE cycles. In the studies, the optimization objectives include work, power, power density, efficiency, entropy generation rate, ecological function, and so on. The further direction for the studies is explored. Full article
(This article belongs to the Section Thermodynamics)
Show Figures

Figure 1

21 pages, 870 KB  
Article
Energy Analysis and Multi-Objective Optimization of an Internal Combustion Engine-Based CHP System for Heat Recovery
by Abdolsaeid Ganjehkaviri and Mohammad Nazri Mohd Jaafar
Entropy 2014, 16(11), 5633-5653; https://doi.org/10.3390/e16115633 - 27 Oct 2014
Cited by 17 | Viewed by 7614
Abstract
A comprehensive thermodynamic study is conducted of a diesel based Combined Heat and Power (CHP) system, based on a diesel engine and an Organic Rankine Cycle (ORC). Present research covers both energy and exergy analyses along with a multi-objective optimization. In order to [...] Read more.
A comprehensive thermodynamic study is conducted of a diesel based Combined Heat and Power (CHP) system, based on a diesel engine and an Organic Rankine Cycle (ORC). Present research covers both energy and exergy analyses along with a multi-objective optimization. In order to determine the irreversibilities in each component of the CHP system and assess the system performance, a complete parametric study is performed to investigate the effects of major design parameters and operating conditions on the system’s performance. The main contribution of the current research study is to conduct both exergy and multi-objective optimization of a system using different working fluid for low-grade heat recovery. In order to conduct the evolutionary based optimization, two objective functions are considered in the optimization; namely the system exergy efficiency, and the total cost rate of the system, which is a combination of the cost associated with environmental impact and the purchase cost of each component. Therefore, in the optimization approach, the overall cycle exergy efficiency is maximized satisfying several constraints while the total cost rate of the system is minimized. To provide a better understanding of the system under study, the Pareto frontier is shown for multi-objective optimization and also an equation is derived to fit the optimized point. In addition, a closed form relationship between exergy efficiency and total cost rate is derived. Full article
(This article belongs to the Special Issue Exergy: Analysis and Applications)
Show Figures

Back to TopTop