# Waste Heat Recovery from Diesel Engine Exhaust Using a Single-Screw Expander Organic Rankine Cycle System: Experimental Investigation of Exergy Destruction

^{1}

^{2}

^{3}

^{4}

^{5}

^{6}

^{7}

^{8}

^{*}

## Abstract

**:**

## 1. Introduction

_{2}, particulate matter, and other hydrocarbons, have rekindled interest in the development of energy-efficient and cleaner propulsion system for vehicles [1]. Moreover, reduction of the fuel consumption and the amount of greenhouse gases whilst increasing the mechanical performance of ICEs has been the focal point of research in the automotive sector [2]. In ICEs, only about 1/3 of the input fuel energy is converted into useful power [3]; the remainder, amounting to almost 40%, is wasted from the engine exhaust [4]. The harnessing of this enormous waste heat from ICEs can lead to higher efficiencies of the vehicle as well as reductions in global warming [5].

^{2}, and 2.62 MJ/m

^{3}, respectively.

## 2. System Description and Test Rig

#### 2.1. System Description

#### 2.2. Experimental Test Rig

## 3. Data Processing

_{Ex}is defined as the ratio of the product and fuel exergy. In an ORC system the output is turbine power (i.e., P

_{output}), while the input is P

_{pump}and $E{\dot{x}}_{exhaust}$. Therefore, ƞ

_{ex}is defined as in Equation (1):

## 4. Results and Discussion

## 5. Conclusions

- The exergy losses of the evaporator are almost 60 kW at different evaporation pressures; the corresponding exergy loss rate is from 69.1% to 65.1% and accounts for the most of the total exergy loss rate.
- The expander’s maximum shaft efficiency and exergetic efficiency are 49.8% and 38.4%, respectively. Increasing the performance of the expander can increase the power output, and then the system’s performance is increased also.
- The exergy losses and exergy loss rate of the pump and pipe are less than 0.5 kW and 1%, respectively, the effects of which on the system’s performance can be ignored.

## Author Contributions

## Funding

## Conflicts of Interest

## Appendix A

#### Appendix A.1. Evaporator

#### Appendix A.2. Pipe

#### Appendix A.3. Expander

#### Appendix A.4. Condenser

#### Appendix A.5. Pump

## References

- Fatigati, F.; Bartolomeo, M.D.; Battista, D.D.; Cipollone, R. Experimental validation of a new modeling for the design optimization of a sliding vane rotary expander operating in an orc-based power unit. Energies
**2020**, 13, 4204. [Google Scholar] [CrossRef] - Bull, J.; Buick, J.M.; Radulovic, J. Heat Exchanger Sizing for Organic Rankine Cycle. Energies
**2020**, 13, 3615. [Google Scholar] [CrossRef] - Domingues, A.; Santos, H.; Costa, M. Analysis of vehicle exhaust waste heat recovery potential using a Rankine cycle. Energy
**2013**, 49, 71–85. [Google Scholar] [CrossRef] - Yu, C.; Chau, K.T. Thermoelectric automotive waste heat energy recovery using maximum power point tracking. Energy Convers. Manag.
**2009**, 50, 1506–1512. [Google Scholar] [CrossRef] - Wang, E.H.; Zhang, H.G.; Fan, B.Y.; Ouyang, M.G.; Zhao, Y.; Mu, Q.H. Study of working fluid selection of organic Rankine cycle (ORC) for engine waste heat recovery. Energy
**2011**, 36, 3406–3418. [Google Scholar] [CrossRef] - Wang, S.; Yuan, Z.A. Hot water split-flow dual-pressure strategy to improve system performance for Organic Rankine Cycle. Energies
**2020**, 13, 3345. [Google Scholar] [CrossRef] - Imran, M.; Haglind, F.; Lemort, V.; Meroni, A. Optimization of organic Rankine cycle power systems for waste heat recovery on heavy-duty vehicles considering the performance, cost, mass and volume of the system. Energy
**2019**, 180, 229–241. [Google Scholar] [CrossRef] - Horst, T.A.; Tegethoff, W.; Eilts, P.; Koehler, J. Prediction of dynamic Rankine Cycle waste heat recovery performance and fuel saving potential in passenger car applications considering interactions with vehicles’ energy management. Energy Convers. Manag.
**2014**, 78, 438–451. [Google Scholar] [CrossRef] - Zhang, Y.-Q.; Wu, Y.-T.; Xia, G.-D.; Ma, C.-F.; Ji, W.-N.; Liu, S.-W.; Yang, K.; Yang, F.-B. Development and experimental study on organic Rankine cycle system with single-screw expander for waste heat recovery from exhaust of diesel engine. Energy
**2014**, 77, 499–508. [Google Scholar] [CrossRef] - Shi, L.; Shu, G.; Tian, H.; Deng, S. A review of modified Organic Rankine cycles (ORCs) for internal combustion engine waste heat recovery (ICE-WHR). Renew. Sustain. Energy Rev.
**2018**, 92, 95–110. [Google Scholar] [CrossRef] - Zhang, W.; Wang, E.; Meng, F.; Zhang, F.; Zhao, C. Closed-loop PI control of an Organic Rankine Cycle for engine exhaust heat recovery. Energies
**2020**, 13, 3817. [Google Scholar] [CrossRef] - Bin Wan Ramli, W.R.; Pesyridis, A.; Gohil, D.; Alshammari, F. Organic Rankine Cycle Waste Heat Recovery for Passenger Hybrid Electric Vehicles. Energies
**2020**, 13, 4532. [Google Scholar] [CrossRef] - Bufi, E.A.; Camporeale, S.M.; Cinnella, P. Robust optimization of an Organic Rankine Cycle for heavy duty engine waste heat recovery. Energy Procedia
**2017**, 129, 66–73. [Google Scholar] [CrossRef] - Yang, F.; Cho, H.; Zhang, H.; Zhang, J.; Wu, Y. Artificial neural network (ANN) based prediction and optimization of an organic Rankine cycle (ORC) for diesel engine waste heat recovery. Energy Convers. Manag.
**2018**, 164, 15–26. [Google Scholar] [CrossRef] - Hajabdollahi, Z.; Hajabdollahi, F.; Tehrani, M.; Hajabdollahi, H. Thermo-economic environmental optimization of Organic Rankine Cycle for diesel waste heat recovery. Energy
**2013**, 63, 142–151. [Google Scholar] [CrossRef] - Yang, M.H.; Yeh, R.H. Thermodynamic and economic performances optimization of an organic Rankine cycle system utilizing exhaust gas of a large marine diesel engine. Appl. Energy
**2015**, 149, 1–12. [Google Scholar] [CrossRef] - Galindo, J.; Climent, H.; Dolz, V.; Royo-Pascual, L. Multi-objective optimization of a bottoming Organic Rankine Cycle (ORC) of gasoline engine using swash-plate expander. Energy Convers. Manag.
**2016**, 126, 1054–1065. [Google Scholar] [CrossRef] - Wronski, J.; Imran, M.; Skovrup, M.J.; Haglind, F. Experimental and numerical analysis of a reciprocating piston expander with variable valve timing for small-scale organic Rankine cycle power systems. Appl. Energy
**2019**, 247, 403–416. [Google Scholar] [CrossRef] - Imran, M.; Usman, M.; Park, B.-S.; Lee, D.-H. Volumetric expanders for low grade heat and waste heat recovery applications. Renew. Sustain. Energy Rev.
**2016**, 57, 1090–1109. [Google Scholar] [CrossRef] - Imran, M.; Usman, M. Mathematical modelling for positive displacement expanders. In Positive Displacement Machines; Academic Press: New York, NY, USA, 2019; pp. 293–343. [Google Scholar]
- Wang, W.; Wu, Y.-T.; Ma, C.-F.; Liu, L.-D.; Yu, L. Preliminary experimental study of single screw expander prototype. Appl. Therm. Eng.
**2011**, 31, 18–88. [Google Scholar] [CrossRef] - Lei, B.; Wang, W.; Wu, Y.-T.; Ma, C.-F.; Wang, J.-F.; Zhang, L.; Li, C.; Zhao, Y.-K.; Zhi, R.-P. Development and experimental study on a single screw expander integrated into an Organic Rankine Cycle. Energy
**2016**, 116, 43–52. [Google Scholar] [CrossRef] - Muhammad, H.A.; Lee, B.; Sultan, H.; Imran, M.; Baik, Y.-J. Advance thermodynamic analysis of a CO
_{2}compression system using heat-pump for CCS. In Proceedings of the ECOS 2020—33rd International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems, Osaka, Japan, 29 June–3 July 2020; Available online: https://publications.aston.ac.uk/id/eprint/41661/1/Conference_paper_2.pdf (accessed on 1 September 2020). - Lazzaretto, A.; Tsatsaronis, G. SPECO: A systematic and general methodology for calculating efficiencies and costs in thermal systems. Energy
**2006**, 31, 9–89. [Google Scholar] [CrossRef] - Ahamed, J.U.; Saidur, R.; Masjuki, H.H. A review on exergy analysis of vapor compression refrigeration system. Renew. Sustain. Energy Rev.
**2011**, 15, 1593–1600. [Google Scholar] [CrossRef]

**Figure 1.**Photo of a single-screw expander. Reprinted with permission. Elsevier, 2020 [9].

**Figure 2.**Organic Rankine cycle (ORC) system diagram. Reprinted with permission. Elsevier, 2020 [9].

**Figure 3.**ORC system prototype. 1. Tank; 2. Pump; 3. Check valve; 4. Evaporator; 5. Diesel engine; 6. Expander; 7. Eddy current dynamometer.

Parameters | Values |
---|---|

ORC working fluid | R123 |

Compressor and turbine isentropic efficiency | 0.80 |

Heat source temperature | 485 °C |

Maximum heat available | 248 kW |

ORC evaporation pressure | 1300—1600 kPa |

Condensing temperature | 48.7 ∼ 55.4 °C |

Reference state (T_{o} and P_{o}) | 35 °C/101 kPa |

Component | Characteristics |
---|---|

Expander | Single-screw expander with CP type |

Diameter of screw and gaterotor: 155 × 10^{−3} m | |

Center distance: 124 × 10^{−3} m | |

Grave number of screws: 6 | |

Tooth number of gaterotor: 11 | |

Evaporator | Shell and tube heat exchanger with spiral titanium tube and baffles |

Overall dimensions: Φ 500 × 10^{−3} m × 1500 × 10^{−3} m | |

Heat exchange area: 12 m^{2} | |

Heat input capacity: 152 kW | |

Condenser | Aluminum multi-channel parallel type condenser with 2 tube sides |

Overall dimensions: (980 × 10^{−3} m) × (980 × 10^{−3} m) × (1255 × 10^{−3} m) | |

Heat transfer area in air side: 90 m^{2} | |

Heat rejection capacity: 150 kW | |

Pump | GRUNDFOS multi-stage centrifugal pump: CR5-32 |

Designed volume flow: 2.98 m^{3}/h | |

Designed head: 205 m |

Parameters | Instrument | Accuracy | Full Scale |
---|---|---|---|

Temperature | PT100 | ±0.5 °C | −80 ∼ 300 °C |

N-type | ±1.5 °C | 0 ∼ 800 °C | |

Pressure | SMP131 | ±0.5% | 0 ∼ 2 MPa |

Mass flow rate | Rotameter of H250 | ±1.0% | 25 ∼ 100 L/min |

Oil consumption meter of FC2210 | ±0.4% | 0.1 ∼ 2 kg/min | |

Thermal gas mass flow meter of 20N150 | ±1% | 0 ∼ 2400 kg/h | |

Torque | GW40 eddy current dynamometer | ±0.2% | 0 ∼ 160 N × m |

Rotational speed | GW40 eddy current dynamometer | ±1 rpm | 0 ∼ 10,000 rpm |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Zhang, Y.; Lei, B.; Masaud, Z.; Imran, M.; Wu, Y.; Liu, J.; Qin, X.; Muhammad, H.A.
Waste Heat Recovery from Diesel Engine Exhaust Using a Single-Screw Expander Organic Rankine Cycle System: Experimental Investigation of Exergy Destruction. *Energies* **2020**, *13*, 5914.
https://doi.org/10.3390/en13225914

**AMA Style**

Zhang Y, Lei B, Masaud Z, Imran M, Wu Y, Liu J, Qin X, Muhammad HA.
Waste Heat Recovery from Diesel Engine Exhaust Using a Single-Screw Expander Organic Rankine Cycle System: Experimental Investigation of Exergy Destruction. *Energies*. 2020; 13(22):5914.
https://doi.org/10.3390/en13225914

**Chicago/Turabian Style**

Zhang, Yeqiang, Biao Lei, Zubair Masaud, Muhammad Imran, Yuting Wu, Jinping Liu, Xiaoding Qin, and Hafiz Ali Muhammad.
2020. "Waste Heat Recovery from Diesel Engine Exhaust Using a Single-Screw Expander Organic Rankine Cycle System: Experimental Investigation of Exergy Destruction" *Energies* 13, no. 22: 5914.
https://doi.org/10.3390/en13225914