Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (50)

Search Parameters:
Keywords = iron-cobalt alloy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 6320 KiB  
Article
Enhanced Microwave Absorption Performance of Amorphous Co100−xFex Nanoparticles
by Zhen Wang, Chao An, Fenglong Wang, Hongsheng Liang, Zhaoyang Hou, Hao Shen and Hongjing Wu
Nanomaterials 2025, 15(14), 1091; https://doi.org/10.3390/nano15141091 - 14 Jul 2025
Viewed by 256
Abstract
Metallic magnetic materials are extensively used to mitigate electromagnetic interference due to their high Curie temperatures and permeability. However, their high permittivity often hinders impedance-matching effectiveness, limiting their utility. In this study, amorphous cobalt–iron (Co100−xFex) alloy nanoparticles with relatively [...] Read more.
Metallic magnetic materials are extensively used to mitigate electromagnetic interference due to their high Curie temperatures and permeability. However, their high permittivity often hinders impedance-matching effectiveness, limiting their utility. In this study, amorphous cobalt–iron (Co100−xFex) alloy nanoparticles with relatively low permittivity were synthesized using a simple aqueous reduction method at room temperature. The effect of atomic ratio variation on the microwave absorption properties of these nanoparticles was investigated across 2–18 GHz. The amorphous Co100−xFex nanoparticles exhibited excellent electromagnetic wave absorption performance, achieving an effective absorption bandwidth of 5.6 GHz, a matching thickness of 2.60 mm, and a reflection loss of −42 dB. Full article
(This article belongs to the Special Issue Harvesting Electromagnetic Fields with Nanomaterials)
Show Figures

Figure 1

15 pages, 6746 KiB  
Article
Selective Complexation and Leaching of Cobalt Using Histidine in an Alkaline Medium
by Mengying Li, Qingliang Wang, Weiduo Guo, Xu Zhao, Yaolong Zhang, Xiankun Zhou, Zhiwu Lei and Yahui Zhang
Processes 2025, 13(4), 1039; https://doi.org/10.3390/pr13041039 - 31 Mar 2025
Viewed by 534
Abstract
Considering the issues of significant ammonia volatilization loss and toxic gas emission associated with the conventional ammonia leaching method used in the resource utilization of cobalt-rich alloy slag, a novel approach involving selective complexation leaching of cobalt in an alkaline histidine solution has [...] Read more.
Considering the issues of significant ammonia volatilization loss and toxic gas emission associated with the conventional ammonia leaching method used in the resource utilization of cobalt-rich alloy slag, a novel approach involving selective complexation leaching of cobalt in an alkaline histidine solution has been proposed. Under conditions of 35 °C temperature, a molar ratio of histidine to cobalt of 1.5, pH of 8, a leaching period of 12 h, and a stirring speed of 300 rpm, the cobalt leaching rate from cobalt-rich alloy slag exceeds 95%. In contrast, the leaching rates for impurity metals such as iron, lead, and copper remain below 3%, demonstrating outstanding leaching selectivity. Leaching kinetics calculations indicate that the rate-controlling step is chemical reaction control, with an apparent activation energy of 64.32 kJ/mol. Through the use of FTIR and XPS characterization techniques, it has been confirmed that histidine molecules form a stable complex with cobalt ions via the dual coordination of the carboxyl (COO) and amino (-NH2) groups. This distinctive bifunctional synergistic coordination mechanism markedly enhances leaching selectivity and reaction efficiency. Full article
(This article belongs to the Section Separation Processes)
Show Figures

Figure 1

17 pages, 8532 KiB  
Article
Comparative Analysis of the Microstructure and Tribological Behaviors of Ni-, Fe-, and Co-Based Plasma Cladding Coatings
by Tiantian He, Jie Tian, Zeyuan Liu, Gaoang Song, Sanming Du and Yongzhen Zhang
Metals 2025, 15(4), 344; https://doi.org/10.3390/met15040344 - 21 Mar 2025
Viewed by 363
Abstract
Nickel-, iron-, and cobalt-based alloy coatings were fabricated on the surface of U75V steel utilizing plasma cladding technology. This study investigates the microstructure, mechanical properties, and tribological performance of the coatings. The findings reveal that the microstructure of the coatings predominantly consists of [...] Read more.
Nickel-, iron-, and cobalt-based alloy coatings were fabricated on the surface of U75V steel utilizing plasma cladding technology. This study investigates the microstructure, mechanical properties, and tribological performance of the coatings. The findings reveal that the microstructure of the coatings predominantly consists of dendritic and eutectic structures. The surface microstructure exhibited a dense, continuous, and uniform morphology. Following the cladding process, the samples were characterized by residual compressive stress. In comparison to the substrate, the hardness of the Ni-, Fe-, and Co-based coatings increased by 141%, 101%, and 44%, respectively; the wear rates of these coatings decreased by 36.6%, 22.1%, and 11.7%, respectively. The wear mechanisms of the Ni- and Fe-based coatings were predominantly adhesive wear; however, the extent of adhesive wear of the Fe-based coating was more obvious than that of the Ni-based coating. By contrast, the Co-based coating exhibited abrasive wear, which was the most severe among the three types of coatings. Additionally, the Ni-based coating demonstrated the lowest friction coefficient and wear rate, thereby exhibiting superior wear resistance compared to the other two coatings. Full article
Show Figures

Figure 1

32 pages, 2445 KiB  
Review
Toxicity, Irritation, and Allergy of Metal Implants: Historical Perspective and Modern Solutions
by Grzegorz Szczęsny, Mateusz Kopec and Zbigniew L. Kowalewski
Coatings 2025, 15(3), 361; https://doi.org/10.3390/coatings15030361 - 20 Mar 2025
Cited by 5 | Viewed by 4539
Abstract
The widespread adoption of metal implants in orthopaedics and dentistry has revolutionized medical treatments, but concerns remain regarding their biocompatibility, toxicity, and immunogenicity. This study conducts a comprehensive literature review of traditional biomaterials used in orthopaedic surgery and traumatology, with a particular focus [...] Read more.
The widespread adoption of metal implants in orthopaedics and dentistry has revolutionized medical treatments, but concerns remain regarding their biocompatibility, toxicity, and immunogenicity. This study conducts a comprehensive literature review of traditional biomaterials used in orthopaedic surgery and traumatology, with a particular focus on their historical development and biological interactions. Research articles were gathered from PubMed and Web of Science databases using keyword combinations such as “toxicity, irritation, allergy, biomaterials, corrosion, implants, orthopaedic surgery, biocompatible materials, steel, alloys, material properties, applications, implantology, and surface modification”. An initial pool of 400 articles was screened by independent reviewers based on predefined inclusion and exclusion criteria, resulting in 160 relevant articles covering research from 1950 to 2025. This paper explores the electrochemical processes of metals like iron, titanium, aluminium, cobalt, molybdenum, nickel, and chromium post-implantation, which cause ion release and wear debris formation. These metal ions interact with biological molecules, triggering localized irritation, inflammatory responses, and immune-mediated hypersensitivity. Unlike existing reviews, this paper highlights how metal–protein interactions can form antigenic complexes, contributing to delayed hypersensitivity and complications such as peri-implant osteolysis and implant failure. While titanium is traditionally considered bioinert, emerging evidence suggests that under certain conditions, even inert metals can induce adverse biological effects. Furthermore, this review emphasizes the role of oxidative stress, illustrating how metal ion release and systemic toxicity contribute to long-term health risks. It also uncovers the underappreciated genotoxic and cytotoxic effects of metal ions on cellular metabolism, shedding light on potential long-term repercussions. By integrating a rigorous methodological approach with an in-depth exploration of metal-induced biological responses, this paper offers a more nuanced perspective on the complex interplay between metal implants and human biology, advancing the discourse on implant safety and material innovation. Full article
(This article belongs to the Collection Review Papers Collection for Bioactive Coatings)
Show Figures

Figure 1

16 pages, 7409 KiB  
Article
Microstructure and Reciprocating Sliding Wear Resistance Evaluation on SiMo Ductile Iron Low Alloyed with Cobalt
by Eduardo Colin-García, Alejandro Cruz-Ramírez, Marisa Moreno-Ríos, Ricardo Gerardo Sánchez-Alvarado, José Antonio Romero-Serrano, Juan Cancio Jiménez-Lugos, Armando Irvin Martínez-Pérez and Edgar Ernesto Vera-Cárdenas
Crystals 2025, 15(3), 278; https://doi.org/10.3390/cryst15030278 - 18 Mar 2025
Viewed by 514
Abstract
High silicon and molybdenum (SiMo) ductile irons present a metallic matrix composed principally of ferrite with little volume fraction of pearlite and carbides. In this work, two SiMo ductile irons with similar levels of silicon, 0.3% Mo (DI-0.3Mo) and 0.6% Mo with 0.8% [...] Read more.
High silicon and molybdenum (SiMo) ductile irons present a metallic matrix composed principally of ferrite with little volume fraction of pearlite and carbides. In this work, two SiMo ductile irons with similar levels of silicon, 0.3% Mo (DI-0.3Mo) and 0.6% Mo with 0.8% Co (DI-0.6Mo-0.8Co), were evaluated to determine the effect of molybdenum and cobalt on the microstructure, hardness, and wear performance at room temperature. The microstructural characterization of the ductile irons was performed using light microscopy and SEM-EDS. At the same time, mechanical characterization was carried out using Rockwell C hardness, and wear was evaluated using reciprocating ball-on-flat sliding wear tests. The result showed that DI-0.6Mo-0.8Co obtained the higher nodule count (247 nod/mm2), nodularity (86.69%), volume fraction of ferrite (78.15%), and molybdenum carbides (2.1%), while DI-0.3Mo presented a higher volume fraction of pearlite (12.8%) and free graphite (13.88%). The higher value of Rockwell C hardness with 21.29 HRC was obtained in DI-0.6Mo-0.8Co due to a higher amount of molybdenum carbides. The wear resistance shows that the DI-0.6Mo-0.8Co sample presented the highest wear resistance due to an adequate balance between a ferritic matrix reinforced by the molybdenum and cobalt addition and a high carbide content. Full article
(This article belongs to the Special Issue Microstructural Characterization and Property Analysis of Alloys)
Show Figures

Figure 1

28 pages, 10020 KiB  
Review
Properties, Advantages, and Prospects of Using Cobalt-Free Composites Based on Tungsten Carbide in Industry
by Sherzod Kurbanbekov, Yernat Kozhakhmetov, Mazhyn Skakov, Bekbolat Seitov, Madina Aidarova and Yerkezhan Tabiyeva
Materials 2025, 18(1), 129; https://doi.org/10.3390/ma18010129 - 31 Dec 2024
Cited by 1 | Viewed by 1686
Abstract
This paper reviews recent advances in the synthesis of cobalt-free high-strength tungsten carbide (WC) composites as sustainable alternatives to conventional WC-Co composites. Due to the high cost of cobalt, limited supply, and environmental concerns, researchers are exploring nickel, iron, ceramic binders, and nanocomposites [...] Read more.
This paper reviews recent advances in the synthesis of cobalt-free high-strength tungsten carbide (WC) composites as sustainable alternatives to conventional WC-Co composites. Due to the high cost of cobalt, limited supply, and environmental concerns, researchers are exploring nickel, iron, ceramic binders, and nanocomposites to obtain similar or superior mechanical properties. Various synthesis methods such as powder metallurgy, encapsulation, 3D printing, and spark plasma sintering (SPS) are discussed, with SPS standing out for its effectiveness in densifying and preventing WC grain growth. The results show that cobalt-free composites exhibit high strength, wear and corrosion resistance, and harsh environment stability, making them viable competitors for WC-Co materials. The use of nickel and iron with SPS is shown to enable the development of environmentally friendly, cost-effective materials. It is emphasized that microstructural control and phase management during sintering are critical to improve a material’s properties. The application potential of these composites covers mechanical engineering, metallurgy, oil and gas, and aerospace, emphasizing their broad industrial relevance. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

15 pages, 9904 KiB  
Article
Novel Alternative Ni-Based Binder Systems for Hardmetals
by Mathias von Spalden, Johannes Pötschke and Alexander Michaelis
Crystals 2024, 14(12), 1013; https://doi.org/10.3390/cryst14121013 - 22 Nov 2024
Cited by 2 | Viewed by 967
Abstract
WC-Ni hardmetals, especially with the addition of Cr, are the first choice for wear parts in a corrosive environment. Despite Ni being studied as a metallic binder matrix in hardmetals for as long as Co, the mechanical properties achieved have consistently fallen behind [...] Read more.
WC-Ni hardmetals, especially with the addition of Cr, are the first choice for wear parts in a corrosive environment. Despite Ni being studied as a metallic binder matrix in hardmetals for as long as Co, the mechanical properties achieved have consistently fallen behind those of their cobalt-containing counterparts. Due to the rapidly increasing demand for Co, its substitution is of increasing importance. In this study, various alloying elements that do not form strong carbides were systematically investigated as part of a binary Ni-based binder system for hardmetals. Solid and liquid phase sintering were compared by using field assisted sintering and a conventional SinterHIP furnace. The obtained hardmetals were analysed in terms of their microstructure, phases, sintering behaviour, and mechanical properties. The metals manganese, iron, and copper, as well as the metalloids silicon and germanium, were evaluated as additional binder constituents. Hardmetals with a binary Ni-based binder alloy were successfully prepared. The combination with Mn or Si showed the potential to significantly lower the necessary sintering temperature. In particular, Mn proved to be the most effective grain growth inhibitor among the investigated alloying elements. Full article
(This article belongs to the Special Issue Empowering Industry: Advancements in Cemented Carbides)
Show Figures

Figure 1

12 pages, 2864 KiB  
Article
Orthodontic Alloy Wires and Their Hypoallergenic Alternatives: Metal Ions Release in pH 6.6 and pH 5.5 Artificial Saliva
by Zana Jusufi Osmani, Petra Tariba Knežević, Davor Vučinić, Jetmire Alimani Jakupi, Arianit A. Reka, Mustafa Can, Koray Kara and Višnja Katić
Materials 2024, 17(21), 5254; https://doi.org/10.3390/ma17215254 - 29 Oct 2024
Cited by 1 | Viewed by 1331
Abstract
Legislative framework addresses the issues of alloy corrosion, demanding the restricted use of probable carcinogenic, mutagenic, and toxic-for-human-reproduction (CMG) metals like nickel, cobalt, and chromium and demanding the development of new biomaterials. The aim of this research was to evaluate and compare the [...] Read more.
Legislative framework addresses the issues of alloy corrosion, demanding the restricted use of probable carcinogenic, mutagenic, and toxic-for-human-reproduction (CMG) metals like nickel, cobalt, and chromium and demanding the development of new biomaterials. The aim of this research was to evaluate and compare the ion release of standard dental alloys and their hypoallergenic equivalents. Six types of orthodontic alloy wires (nickel–titanium (NiTi), coated NiTi, stainless steel (SS), Ni-free SS, and cobalt–chromium (CoCr) and titanium–molybdenum (TMA) were immersed into artificial saliva of pH 5.5 and 6.6. Release of metal ions was measured by inductively coupled plasma–mass spectrometry after 3, 7, 14 and 28 days. The data were analyzed using analysis of variance, and results with p < 0.05 were considered significant. NiTi released more Ti and Ni ions compared to the coated NiTi; SS released more iron, chromium, and nickel compared to the nickel-free SS. CoCr released cobalt in a high concentration and low amounts of chromium, nickel, and molybdenum compared to the molybdenum and titanium released by TMA. Release of metals from dental orthodontic alloys in vitro was overall lower at pH 6.6 and for the hypoallergenic equivalents when compared to standard dental alloys. Full article
(This article belongs to the Section Biomaterials)
Show Figures

Figure 1

15 pages, 8013 KiB  
Article
Efficient Design of Broadband and Low-Profile Multilayer Absorbing Materials on Cobalt–Iron Magnetic Alloy Doped with Rare Earth Element
by Sixing Liu, Yilin Zhang, Hao Wang, Fan Wu, Shifei Tao and Yujing Zhang
Nanomaterials 2024, 14(13), 1107; https://doi.org/10.3390/nano14131107 - 27 Jun 2024
Cited by 2 | Viewed by 1662
Abstract
Magnetic metal absorbing materials have exhibited excellent absorptance performance. However, their applications are still limited in terms of light weight, low thickness and wide absorption bandwidth. To address this challenge, we design a broadband and low-profile multilayer absorber using cobalt–iron (CoFe) alloys doped [...] Read more.
Magnetic metal absorbing materials have exhibited excellent absorptance performance. However, their applications are still limited in terms of light weight, low thickness and wide absorption bandwidth. To address this challenge, we design a broadband and low-profile multilayer absorber using cobalt–iron (CoFe) alloys doped with rare earth elements (REEs) lanthanum (La) and Neodymium (Nd). An improved estimation of distribution algorithm (IEDA) is employed in conjunction with a mathematical model of multilayer absorbing materials (MAMs) to optimize both the relative bandwidth with reflection loss (RL) below −10 dB and the thickness. Firstly, the absorption performance of CoFe alloys doped with La/Nd with different contents is analysed. Subsequently, IEDA is introduced based on a mathematical model to achieve an optimal MAM design that obtains a balance between absorption bandwidth and thickness. To validate the feasibility of our proposed method, a triple-layer MAM is designed and optimized to exhibit wide absorption bandwidth covering C, X, and Ku bands (6.16–12.82 GHz) and a total thickness of 2.39 mm. Then, the electromagnetic (EM) absorption mechanisms of the triple-layer MAMs are systematically investigated. Finally, the triple-layer sample is further fabricated and measured. The experimental result is in good agreement with the simulated result. This paper presents a rapid and efficient optimization method for designing MAMs, offering promising prospects in microwave applications, such as radar-stealth technology, EM shielding, and reduced EM pollution for electronic devices. Full article
(This article belongs to the Special Issue Recent Progress in Rare-Earth Functional Nanomaterials)
Show Figures

Figure 1

25 pages, 15804 KiB  
Article
Unlocking the Value of End-of-Life JÜLICH Solid Oxide Cell Stack Interconnect Assembly: A Combined Experimental and Thermodynamic Study on Metallic Resource Recyclability
by Jeraldine Lastam, Dmitry Sergeev, Daniel Grüner, Michael Müller and Ruth Schwaiger
Metals 2024, 14(4), 406; https://doi.org/10.3390/met14040406 - 29 Mar 2024
Cited by 3 | Viewed by 1928
Abstract
The present study provides fundamental information on the resource recyclability of the interconnect assembly, i.e., the steel interconnector and the nickel meshes, from an end-of-life JÜLICH Solid Oxide Cell Stack—F10 design. The interconnector is composed of iron, chromium, and less than 4 wt.% [...] Read more.
The present study provides fundamental information on the resource recyclability of the interconnect assembly, i.e., the steel interconnector and the nickel meshes, from an end-of-life JÜLICH Solid Oxide Cell Stack—F10 design. The interconnector is composed of iron, chromium, and less than 4 wt.% of other alloying elements, mainly cobalt and manganese. Calculated blended compositions with the nickel meshes revealed their potential as a raw material in the production of 4xx, 2xx, or 3xx stainless steels. The melting behavior of the interconnect assembly was investigated under different conditions, i.e., in inert and oxidizing atmospheres, with and without the addition of slag-forming fluxes. The results demonstrated preferential oxidation of chromium in a trivalent state within the stable cubic spinel phase. Finally, the experimental results were compared with the thermodynamic equilibrium calculations based on the available databases (FToxid, SGTE, and SGPS) in FactSage 8.1 software. The calculated tendency to oxidize is in the order of Cr > Mn > Fe > Co > Ni at P(O2) greater than 10−10 bar, validating the experimental results. Full article
Show Figures

Figure 1

11 pages, 1536 KiB  
Article
Comparative Analysis of Metal Electrodeposition Rates towards Formation of High-Entropy WFeCoNiCu Alloy
by Tomasz Ratajczyk and Mikołaj Donten
Materials 2024, 17(7), 1513; https://doi.org/10.3390/ma17071513 - 27 Mar 2024
Cited by 1 | Viewed by 1528
Abstract
This study presents a calculation and comparison of Fe, Co, Ni and Cu deposition rates in the tungsten codeposition process based on the electrodeposition of numerous tungsten alloys. Eight different tungsten alloys containing from two to five metals were electrodeposited in constant conditions [...] Read more.
This study presents a calculation and comparison of Fe, Co, Ni and Cu deposition rates in the tungsten codeposition process based on the electrodeposition of numerous tungsten alloys. Eight different tungsten alloys containing from two to five metals were electrodeposited in constant conditions in order to compare the exact reduction rates. The calculated rates enabled control of the alloy composition precise enough to obtain a high-entropy WFeCoNiCu alloy with a well-balanced composition. The introduction of copper to form the quinternary alloy was found to catalyze the whole process, increasing the deposition rates of all the components of the high-entropy alloy. Full article
(This article belongs to the Special Issue Electrochemical Material Science and Electrode Processes)
Show Figures

Figure 1

32 pages, 3871 KiB  
Review
Surface Modification of 42CrMo Steels: A Review from Wear and Corrosion Resistance
by Zhendong Zhang, Di Wang, Guanglei Liu, Yiyi Qian, Yuquan Xu and Dingding Xiang
Coatings 2024, 14(3), 337; https://doi.org/10.3390/coatings14030337 - 12 Mar 2024
Cited by 15 | Viewed by 3879
Abstract
This work reviews surface modification techniques for improving the wear and corrosion resistance of 42CrMo steel. The advantages and disadvantages of various methods, including thermal spraying, deposition, hardfacing, laser cladding, nitriding, and laser surface treatment, are discussed. The review elaborates on the materials [...] Read more.
This work reviews surface modification techniques for improving the wear and corrosion resistance of 42CrMo steel. The advantages and disadvantages of various methods, including thermal spraying, deposition, hardfacing, laser cladding, nitriding, and laser surface treatment, are discussed. The review elaborates on the materials commonly employed in laser cladding technology, including iron-based, cobalt-based, nickel-based, and high-entropy alloys and reinforced composite coatings. Furthermore, the mechanisms and methods of improving the wear and corrosion resistance of 42CrMo steel are summarized. Finally, this review presents research shortcomings and future opportunities of surface modification techniques. This review also provides a theoretical guide for the application of 42CrMo steel. Full article
(This article belongs to the Special Issue Corrosion and Wear Resistant Alloy/Metal Coatings)
Show Figures

Figure 1

12 pages, 6442 KiB  
Article
Copper Alloy Design for Preventing Sulfur-Induced Embrittlement in Copper
by Minkyu Ahn, Jinwoo Park, Gyeongsik Yu, Sangeun Kim, Dong-Keun Cho, Hyung-Ha Jin and Chansun Shin
Materials 2024, 17(2), 350; https://doi.org/10.3390/ma17020350 - 10 Jan 2024
Cited by 2 | Viewed by 1981
Abstract
This study presents an experimental approach to address sulfur-induced embrittlement in copper alloys. Building on recent theoretical insights, we identified specific solute elements, such as silicon and silver, known for their strong binding affinity with vacancies. Through experimental validation, we demonstrated the effectiveness [...] Read more.
This study presents an experimental approach to address sulfur-induced embrittlement in copper alloys. Building on recent theoretical insights, we identified specific solute elements, such as silicon and silver, known for their strong binding affinity with vacancies. Through experimental validation, we demonstrated the effectiveness of Si and Ag in preventing sulfur-induced embrittlement in copper, even though they are not typical sulfide formers such as zirconium. Additionally, our findings highlight the advantages of these elements over traditional solutes, such as their high solubility and propensity to accumulate along grain boundaries. This approach may have the potential to be applied to other metals prone to sulfur-induced embrittlement, including nickel, iron, and cobalt, offering broader implications for materials engineering strategies and alloy development. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

15 pages, 8783 KiB  
Article
Comprehensive Analysis of Dual-Rotor Yokeless Axial-Flux Motor with Surface-Mounted and Halbach Permanent Magnet Array for Urban Air Mobility
by Do-Kwan Hong, Jang-Hyun Park and Yeon-Ho Jeong
Energies 2024, 17(1), 30; https://doi.org/10.3390/en17010030 - 20 Dec 2023
Cited by 6 | Viewed by 4591
Abstract
A dual-rotor yokeless and segmented armature (YASA)-type axial-flux permanent magnet (AFPM) motor with a surface-mounted permanent magnet (SPM) array type was developed for urban air mobility (UAM) aircraft in this work. The proposed AFPM motor had rated and peak output powers of 75.5 [...] Read more.
A dual-rotor yokeless and segmented armature (YASA)-type axial-flux permanent magnet (AFPM) motor with a surface-mounted permanent magnet (SPM) array type was developed for urban air mobility (UAM) aircraft in this work. The proposed AFPM motor had rated and peak output powers of 75.5 and 104 kW, respectively, with rated and peak rotational speeds of 1800 rpm. To achieve a high torque, a cobalt–iron alloy core material was used for the stator core. The prototype AFPM motor, developed by KSEP in the Republic of Korea, was successfully manufactured and verified through experimentation. Additionally, the thermal stability of the winding and permanent magnets (PMs) was confirmed with a water-cooling system. A structure analysis of the proposed AFPM motor was conducted due to the detachment of an uneven air-gap length in the prototype AFPM motor. An output performance comparison based on core materials for the stator and rotor was carried out to explore the material cost reduction. Subsequently, the design for performance improvement by applying a Halbach permanent magnet (HPM) array type was investigated for further research. Full article
(This article belongs to the Section F: Electrical Engineering)
Show Figures

Figure 1

14 pages, 3152 KiB  
Article
High Isolation, Double-Clamped, Magnetoelectric Microelectromechanical Resonator Magnetometer
by Thomas Mion, Michael J. D’Agati, Sydney Sofronici, Konrad Bussmann, Margo Staruch, Jason L. Kost, Kevin Co, Roy H. Olsson and Peter Finkel
Sensors 2023, 23(20), 8626; https://doi.org/10.3390/s23208626 - 21 Oct 2023
Cited by 5 | Viewed by 2124
Abstract
Magnetoelectric (ME)-based magnetometers have garnered much attention as they boast ultra-low-power systems with a small form factor and limit of detection in the tens of picotesla. The highly sensitive and low-power electric readout from the ME sensor makes them attractive for near DC [...] Read more.
Magnetoelectric (ME)-based magnetometers have garnered much attention as they boast ultra-low-power systems with a small form factor and limit of detection in the tens of picotesla. The highly sensitive and low-power electric readout from the ME sensor makes them attractive for near DC and low-frequency AC magnetic fields as platforms for continuous magnetic signature monitoring. Among multiple configurations of the current ME magnetic sensors, most rely on exploiting the mechanically resonant characteristics of a released ME microelectromechanical system (MEMS) in a heterostructure device. Through optimizing the resonant device configuration, we design and fabricate a fixed–fixed resonant beam structure with high isolation compared to previous designs operating at ~800 nW of power comprised of piezoelectric aluminum nitride (AlN) and magnetostrictive (Co1-xFex)-based thin films that are less susceptible to vibration while providing similar characteristics to ME-MEMS cantilever devices. In this new design of double-clamped magnetoelectric MEMS resonators, we have also utilized thin films of a new iron–cobalt–hafnium alloy (Fe0.5Co0.5)0.92Hf0.08 that provides a low-stress, high magnetostrictive material with an amorphous crystalline structure and ultra-low magnetocrystalline anisotropy. Together, the improvements of this sensor design yield a magnetic field sensitivity of 125 Hz/mT when released in a compressive state. The overall detection limit of these sensors using an electric field drive and readout are presented, and noise sources are discussed. Based on these results, design parameters for future ME MEMS field sensors are discussed. Full article
Show Figures

Figure 1

Back to TopTop