Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (914)

Search Parameters:
Keywords = iron oxides reduction

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1363 KB  
Article
Assessment of Antioxidant Potential of Carbon-Based Nanomaterials from Different Sources
by Oladoyin Grace Famutimi, Sam Masha, Rodney Maluleke, Vuyelwa Ncapayi, Thabang Calvin Lebepe, Nande Mgedle, Cynthia Mutendu Kungwa, Olufunto Tolulope Fanoro, Isaac Olusanjo Adewale and Oluwatobi Samuel Oluwafemi
Antioxidants 2025, 14(10), 1227; https://doi.org/10.3390/antiox14101227 - 13 Oct 2025
Abstract
Antioxidants regulate oxidative reactions by impeding, delaying, or inhibiting the oxidation of biomolecules. Concerns regarding the toxicity of synthetic antioxidants have driven the search for safer alternatives. In this study, the antioxidant activities of three nontoxic carbon-based nanomaterials—carbon dots from citric acid precursor [...] Read more.
Antioxidants regulate oxidative reactions by impeding, delaying, or inhibiting the oxidation of biomolecules. Concerns regarding the toxicity of synthetic antioxidants have driven the search for safer alternatives. In this study, the antioxidant activities of three nontoxic carbon-based nanomaterials—carbon dots from citric acid precursor (CB-Ca), iron-doped carbon dots (CB-Fe) and carbon dots derived from Momordica charantia leaves (CB-Mc)—were investigated using 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging, hydrogen peroxide (H2O2) scavenging, ferric-reducing antioxidant power, and total antioxidant capacity (TAC) assays. Scavenging activity was carried out at varying concentrations, and half-maximal inhibitory concentration (IC50) was calculated using non-linear regression. Reductive ability and TAC were expressed as mg ascorbic acid equivalents/g nanomaterial. CB-Fe exhibited the most potent DPPH scavenging activity (IC50 = 254.2 ± 37.37 µg/mL), surpassing CB-Mc and CB-Ca by 2- to 3-fold. In contrast, CB-Ca had the highest H2O2 scavenging (IC50 = 84.2 ± 11.87 µg/mL), while CB-Mc had the highest TAC of 77.95 mg ascorbic acid Eq/g. CB-Fe also displayed superior ferric ion reducing capacity. The study concluded that each carbon dot type exhibits unique antioxidant profiles and may offer some special advantages in nanomedicine and other applications. Full article
(This article belongs to the Section Natural and Synthetic Antioxidants)
Show Figures

Figure 1

26 pages, 15886 KB  
Review
Coal-Based Direct Reduction for Dephosphorization of High-Phosphorus Iron Ore: A Critical Review
by Hongda Xu, Rui Li, Jue Kou, Xiaojin Wen, Jiawei Lin, Jiawen Yin, Chunbao Sun and Tichang Sun
Minerals 2025, 15(10), 1067; https://doi.org/10.3390/min15101067 (registering DOI) - 11 Oct 2025
Abstract
Conventional separation methods often prove ineffective for complex, refractory high-phosphorus iron ores. Recent advances propose a coal-based direct reduction dephosphorization-magnetic separation process, achieving significant dephosphorization efficiency. This review systematically analyzes phosphorus occurrence states in high-phosphorus oolitic iron ores across global deposits, particularly within [...] Read more.
Conventional separation methods often prove ineffective for complex, refractory high-phosphorus iron ores. Recent advances propose a coal-based direct reduction dephosphorization-magnetic separation process, achieving significant dephosphorization efficiency. This review systematically analyzes phosphorus occurrence states in high-phosphorus oolitic iron ores across global deposits, particularly within iron minerals. We categorize contemporary research and elucidate dephosphorization mechanisms during coal-based direct reduction. Key factors influencing iron mineral phase transformation, iron enrichment, and phosphorus removal are comprehensively evaluated. Phosphorus primarily exists as apatite and collophane gangue m horization agents function by: (1) inhibiting phosphorus-bearing mineral reactions or binding phosphorus into soluble salts to prevent incorporation into metallic iron; (2) enhancing iron oxide reduction and coal gasification; (3) disrupting oolitic structures, promoting metallic iron particle growth, and improving the intergrowth relationship between metallic iron and gangue. Iron mineral phase transformations follow the sequence: Fe2O3 → Fe3O4 → FeO (FeAl2O4, Fe2SiO4) → Fe. Critical parameters for effective dephosphorization under non-reductive phosphorus conditions include reduction temperature, duration, reductant/dephosphorization agent types/dosages. Future research should focus on: (1) investigating phosphorus forms in iron minerals for targeted ore utilization; (2) reducing dephosphorization agent consumption and developing sustainable alternatives; (3) refining models for metallic iron growth and improving energy efficiency; (4) optimizing reduction atmosphere control; (5) implementing low-carbon emission strategies. Full article
(This article belongs to the Section Mineral Processing and Extractive Metallurgy)
Show Figures

Figure 1

17 pages, 2277 KB  
Article
Mitigating Microbiologically Influenced Corrosion of Iron Caused by Sulphate-Reducing Bacteria Using ZnO Nanoparticles
by Harith Ambepitiya, Supun Rathnayaka, Yashodha Perera, Chamindu Jayathilake, Himashi Ferdinandez, Ajith Herath, Udul Sanjula, Aishwarya Rathnayake, Charitha Basnayaka and Eustace Fernando
Processes 2025, 13(10), 3239; https://doi.org/10.3390/pr13103239 (registering DOI) - 11 Oct 2025
Viewed by 38
Abstract
Microbiologically Influenced Corrosion (MIC) significantly endangers steel infrastructure, particularly in marine and buried environments, causing considerable economic and environmental damage. Sulphate-reducing bacteria (SRB) are primary supporters of MIC, accelerating iron corrosion through hydrogen sulfide production. Conventional mitigation strategies, including protective coatings and cathodic [...] Read more.
Microbiologically Influenced Corrosion (MIC) significantly endangers steel infrastructure, particularly in marine and buried environments, causing considerable economic and environmental damage. Sulphate-reducing bacteria (SRB) are primary supporters of MIC, accelerating iron corrosion through hydrogen sulfide production. Conventional mitigation strategies, including protective coatings and cathodic protection, often face challenges such as limited effectiveness against SRB and the aggressiveness of saltwater corrosion. This study explores a novel approach by directly introducing zinc oxide (ZnO) nanoparticles into the microbial medium to inhibit SRB activity and reduce MIC. Iron metal coupons were immersed in seawater under three conditions: control (seawater only), seawater with SRB, and SRB with ZnO nanoparticles. These coupons were used as electrodes in microbial fuel cells to obtain real-time voltage readings. At the same time, corrosion was evaluated using cyclic voltammetry (CV), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), mass loss, and pH measurements. Results demonstrate that ZnO nanoparticles significantly inhibited SRB growth, as confirmed by the antibiotic susceptibility test (ABST). It was revealed that the corrosion rate increased by 21.3% in the presence of SRB compared to the control, whereas the ZnO-added electrode showed a 21.7% reduction in corrosion rate relative to the control. SEM showed prominent corrosive products on SRB-exposed coupons. ZnO-added coupons exhibited a protective layer with grass-like whisker structures, and EDX results confirmed reduced sulfur and iron sulfide deposits, indicating suppressed SRB metabolic activity. ABST confirmed ZnO’s antimicrobial properties by producing clear inhibition zones. ZnO nanoparticles offer the dual benefits of antimicrobial activity and corrosion resistance by forming protective self-coatings and inhibiting microbial growth, making them a scalable and eco-friendly alternative to traditional corrosion inhibitors. This application can significantly extend the lifespan of iron structures, particularly in environments prone to microbial corrosion, demonstrating the potential of nanomaterials in combating microbiologically influenced corrosion (MIC). Full article
Show Figures

Figure 1

19 pages, 20112 KB  
Article
A Comparison of High-Impulse and Direct-Current Magnetron Sputtering Processes for the Formation of Effective Bactericidal Oxide Coatings on Polymer Substrates
by Joanna Kacprzyńska-Gołacka, Piotr Wieciński, Bogusława Adamczyk-Cieślak, Sylwia Sowa, Wioletta Barszcz, Monika Łożyńska, Marek Kalbarczyk, Andrzej Krasiński, Halina Garbacz and Jerzy Smolik
Materials 2025, 18(19), 4591; https://doi.org/10.3390/ma18194591 (registering DOI) - 3 Oct 2025
Viewed by 362
Abstract
In this paper, silver oxide (AgO) and copper oxide (CuO) coatings are placed on a single sputtering target with the direct-current magnetron sputtering (DCMS) and high-power impulse magnetron sputtering (HIPIMS) methods. All the tested coatings are obtained in a reactive process using a [...] Read more.
In this paper, silver oxide (AgO) and copper oxide (CuO) coatings are placed on a single sputtering target with the direct-current magnetron sputtering (DCMS) and high-power impulse magnetron sputtering (HIPIMS) methods. All the tested coatings are obtained in a reactive process using a metallic target made by the Kurt Lesker company. The investigated coatings are deposited at room temperature on substrates made of pure iron (ARMCO) and polypropylene (PP) without substrate polarization. The deposition time for all the coatings is the same. The results of SEM and TEM investigations clearly show that using the HIPIMS method for the deposition of AgO and CuO coatings reduces their thickness and increases their structure density. Coatings produced with the HIPIMS method are characterized by a higher hardness and Young’s modulus. The value of hardness for AgO and CuO coatings deposited by the HIPIMS method is around 50% higher for AgO coatings and around 24% higher for CuO coatings compared to the coatings obtained by the DC method. This is also true of Young’s modulus values, which are around 30% higher for AgO coatings and 15% higher for CuO coatings produced by the HIPIMS method compared to those of coatings obtained with the DC method. AgO and CuO coatings deposited with both the methods (HIPIMS and DCMS) showed 100% reduction in the viability of two reference laboratory bacteria strains—Escherichia coli (Gram−) and Staphylococcus aureus (Gram+)—on both types of substrates. Additionally, these coatings are characterized by their hydrophobic properties, which means that they can create a protective barrier, making it difficult for bacteria to stick to the surface, limiting their development and preventing the phenomenon of biofouling. The HIPIMS technology allows for the deposition of coatings with better mechanical properties than those produced with the DCMS method, which means that they are more resistant to brittle fractures and wear and have very good antimicrobial properties. Full article
(This article belongs to the Special Issue Surface Modification of Materials for Multifunctional Applications)
Show Figures

Graphical abstract

22 pages, 3323 KB  
Review
Development and Application Prospects of Biomass-Based Organic Binders for Pellets Compared with Bentonite
by Yu Liu, Wenguo Liu, Zile Peng, Jingsong Wang, Qingguo Xue and Haibin Zuo
Materials 2025, 18(19), 4553; https://doi.org/10.3390/ma18194553 - 30 Sep 2025
Viewed by 306
Abstract
With the low-carbon transformation of the steel industry, using low-carbon raw materials is one of the important ways to achieve the “dual carbon” goals. Pellets have great physical and chemical properties as low-carbon furnace materials, which can significantly reduce blast furnace carbon emissions, [...] Read more.
With the low-carbon transformation of the steel industry, using low-carbon raw materials is one of the important ways to achieve the “dual carbon” goals. Pellets have great physical and chemical properties as low-carbon furnace materials, which can significantly reduce blast furnace carbon emissions, exhibiting favorable overall environmental benefits. Increasing their proportion in the furnace is one of the important measures the steel industry can take to reduce carbon emissions. Binders play a critical role in the pelletizing process, and their properties directly influence pellet quality, thereby affecting the subsequent blast furnace smelting process. Compared with traditional bentonite, organic binders have become a potential alternative material due to their environmental friendliness, renewability, and ability to significantly reduce silica and alumina impurities in pellets while improving the iron grade. This work systematically elucidates the mechanism of organic binders, which primarily rely on the chemical adsorption of carboxyl groups and the hydrogen bonding of hydroxyl groups to enhance pellet strength, and then provides three typical examples of organic binders: lignosulfonate, carboxymethyl cellulose (CMC), and carboxymethyl starch (CMS). The common characteristic of these organic binders is that they are derived from renewable biomass through chemical modification, which is a derivative of biomass with renewable and abundant resources. However, the main problem with organic binders is that they burn and decompose at high temperatures. Current research has achieved technological breakthroughs in pellet quality by combining LD sludge, low-iron oxides, and nano-CaCO3, including improved iron grade, reduced reduction swelling index (RSI), and enhanced preheating/roasting strength. Future studies should focus on optimizing the molecular structure of organic binders by increasing the degree of substitution of functional groups and the overall degree of polymerization. This approach aims to replace traditional bentonite while exploring applications of composite industrial solid wastes, effectively addressing the high-temperature strength loss issues in organic binders and providing strong support for the steel industry to achieve the green and low-carbon goals. Full article
(This article belongs to the Topic Biomass for Energy, Chemicals and Materials)
Show Figures

Figure 1

17 pages, 8683 KB  
Article
Activation of Persulfate by Sulfide-Modified Nanoscale Zero-Valent Iron Supported on Biochar for 2,4-Dichlorophenol Degradation: Efficiency, Sustainability, and Mechanism Investigation
by Mu Wang, Yan Zhao, Zongsheng An and Changming Dou
Sustainability 2025, 17(19), 8721; https://doi.org/10.3390/su17198721 - 28 Sep 2025
Viewed by 214
Abstract
The activation of persulfate (PS) to oxidize and degrade 2,4-dichlorophenol (2,4-DCP) in aqueous solution represents a prevalent advanced oxidation technology. This study established a PS activation system using sulfide-modified nanoscale zero-valent iron supported on biochar (S-nZVI@BC). The optimal conditions included a PS:2,4-DCP mass [...] Read more.
The activation of persulfate (PS) to oxidize and degrade 2,4-dichlorophenol (2,4-DCP) in aqueous solution represents a prevalent advanced oxidation technology. This study established a PS activation system using sulfide-modified nanoscale zero-valent iron supported on biochar (S-nZVI@BC). The optimal conditions included a PS:2,4-DCP mass ratio of 70:1 and S-nZVI@BC:PS of 1.5:1. The activator had excellent stability after being reused five times, which lead to high cost-effectiveness and sustainable usability. This system exhibited broad pH adaptability (3–11), with enhanced efficiency under acidic/neutral conditions. Chloride ion, nitrate, and carbonate had effects during the degradation. During the initial degradation phase, S-nZVI@BC played a primary role, with a greater contribution rate of adsorption than reduction. Fe0 played a dominant role in the PS activation process; reactive species—including HO•, SO4, and O2—were identified as key agents in subsequent degradation stages. The overall degradation processes comprised three distinct stages: dechlorination, ring-opening, and mineralization. Full article
(This article belongs to the Topic Advanced Oxidation Processes for Wastewater Purification)
Show Figures

Graphical abstract

28 pages, 60612 KB  
Article
Reduction in Brake Wear Emissions with Cr2O3 and WC-CoCr Coatings for Cast Iron Discs
by Marie Hoff, Christophe Bressot, Yan-Ming Chen, Laurent Meunier and Martin Morgeneyer
Environments 2025, 12(10), 341; https://doi.org/10.3390/environments12100341 - 24 Sep 2025
Viewed by 573
Abstract
The present contribution showcases the potential brake emission reduction with Cr2O3 (chromium oxide) and WC-CoCr (tungsten carbide–chromium–cobalt) rotor coatings, as realized in our joint public–private research consortium. Particulate matter (PM) emissions from automotive braking systems have been characterized using a [...] Read more.
The present contribution showcases the potential brake emission reduction with Cr2O3 (chromium oxide) and WC-CoCr (tungsten carbide–chromium–cobalt) rotor coatings, as realized in our joint public–private research consortium. Particulate matter (PM) emissions from automotive braking systems have been characterized using a pin-on-disc tribometer equipped with particle measurement devices: a CPC (Condensation Particle Counter), an APS (Aerodynamic Particle Sizer), an SMPS (Scanning Mobility Particle Sizer), and a PM2.5 sampling unit. Brake pad samples made from the same low-steel friction material were tested against a grey flake cast iron disc and two types of custom coated discs: a Cr2O3-coated disc and a WC-CoCr-coated disc. The friction pairs were investigated at a constant contact pressure of 1.2 MPa while the sliding velocity varied during the test, starting with 25 sequences at 3.6 m/s, followed by 19 sequences at 6.1 m/s, and finishing with 6 sequences at 11.2 m/s. The test results show encouraging 64% to 84% reductions in particle number (PN) emissions between 4 nm and 3 µm and 84% to 95% reductions in mass emissions (PM2.5) thanks to the respective coated discs. SEM-EDXS (Scanning Electron Microscopy and Energy Dispersive X-ray Spectroscopy) analyses show that the hardness and roughness of the discs, the chemical reactivity (oxidation), and the abrasiveness of the three friction pairs are parameters that might explain this reduction in emission. Full article
(This article belongs to the Special Issue Advances in Urban Air Pollution: 2nd Edition)
Show Figures

Figure 1

20 pages, 2059 KB  
Article
Comparative Influence of Dendron and Dicarboxylate Coatings on the Hyperthermia Performances of Cubic and Spherical Magnetic Nanoparticles
by Cristian Iacovita, Constantin Mihai Lucaciu, Barbara Freis, Céline Kiefer and Sylvie Bégin-Colin
Int. J. Mol. Sci. 2025, 26(19), 9324; https://doi.org/10.3390/ijms26199324 - 24 Sep 2025
Viewed by 224
Abstract
Surface functionalization of magnetic nanoparticles, commonly used for their biocompatibility in biomedical applications, plays a critical role in optimizing iron oxide nanoparticles (IONPs) for magnetic hyperthermia (MH), a promising modality in cancer therapy. In this study, we provide the first comprehensive comparison of [...] Read more.
Surface functionalization of magnetic nanoparticles, commonly used for their biocompatibility in biomedical applications, plays a critical role in optimizing iron oxide nanoparticles (IONPs) for magnetic hyperthermia (MH), a promising modality in cancer therapy. In this study, we provide the first comprehensive comparison of hyperbranched dendron coatings versus linear dicarboxylate ligands on IONPs, revealing their contrasting impacts on heating efficiency under varying magnetic field amplitudes (H). Dendron-coated IONPs outperform dicarboxylate-coated ones at low fields (H < 25 kA/m) due to reduced dipolar interactions and enhanced Brownian relaxation. Conversely, dicarboxylate coatings excel at high fields (H > 25 kA/m) by enabling magnetically aligned chains, which amplify hysteresis losses. Our work also introduces an approach to dynamically modulate the heating efficiency of IONPs by applying a static DC magnetic field (HDC) in conjunction with the alternating magnetic field (AMF). We observed a coating-dependent response to HDC in the parallel configuration (HDC aligned with AMF), the specific absorption rate (SAR) increased by ~620 W/gFe for cubes and ~370 W/gFe for spheres at high AMF amplitudes (H > 30 kA/m) for dicarboxylate-coated IONPs. This enhancement arises from magnetically aligned chains (visualized via Transmission Electron Microscopy), which amplify extrinsic anisotropy and hysteresis losses; in contrast, for dendron-coated IONPs, their SAR values decreased under HDC (up to ~665 W/gFe reduction for cubes in the perpendicular configuration), as the thick dendron shell prevents close interparticle contact, suppressing chain formation and fanning rotation modes. These findings underscore the significance of surface functionalization in enhancing the therapeutic efficacy of magnetic nanoparticles. Full article
(This article belongs to the Section Molecular Nanoscience)
Show Figures

Figure 1

26 pages, 7690 KB  
Article
Green Synthesis of Biochar-Supported Nanoscale Zero-Valent Iron Using Tea Polyphenol for Efficient Cadmium Immobilization in Soil
by Ziyong Jia, Huizi Wang, Shupei Yuan, Weifeng Zhang and Daijun Zhang
Nanomaterials 2025, 15(19), 1460; https://doi.org/10.3390/nano15191460 - 23 Sep 2025
Viewed by 355
Abstract
With the increasing severity of cadmium (Cd) contamination in soil and its persistent toxicity, developing efficient remediation methods has become a critical necessity. In this study, sodium borohydride (NaBH4) and tea polyphenols (TP) were employed as reducing agents to synthesize biochar [...] Read more.
With the increasing severity of cadmium (Cd) contamination in soil and its persistent toxicity, developing efficient remediation methods has become a critical necessity. In this study, sodium borohydride (NaBH4) and tea polyphenols (TP) were employed as reducing agents to synthesize biochar (BC)-supported nanoscale zero-valent iron (nZVI), denoted as BH4-nZVI/BC and TP-nZVI/BC, respectively. The effects of dosage, pH, and reaction time on Cd immobilization efficiency were systematically investigated. Both composites effectively stabilized Cd, significantly reducing its mobility and toxicity. Toxicity Characteristic Leaching Procedure (TCLP) results showed that Cd leaching concentrations decreased to 8.23 mg/L for BH4-nZVI/BC and 4.65 mg/L for TP-nZVI/BC, corresponding to performance improvements of 29.9% and 60.5%. The immobilization process was attributed to the reduction of Cd(II) into less toxic species, together with adsorption and complexation with oxygen-containing groups (-OH, -COOH, phenolic) on biochar. TP-nZVI/BC exhibited superior long-term stability, while maintaining slightly lower efficiency than BH4-nZVI/BC under certain conditions. Microbial community analysis revealed minimal ecological disturbance, and TP-nZVI/BC even promoted microbial diversity recovery. Mechanistic analyses further indicated that tea polyphenols formed a protective layer on nZVI, which inhibited particle agglomeration and oxidation, reduced the formation of iron oxides, preserved Fe0 activity, and enhanced microbial compatibility. In addition, the hydroxyl and phenolic groups of tea polyphenols contributed directly to Cd(II) complexation, reinforcing long-term immobilization. Therefore, TP-nZVI/BC is demonstrated to be an efficient, sustainable, and environmentally friendly amendment for Cd-contaminated soil remediation, combining effective immobilization with advantages in stability, ecological compatibility, and long-term effectiveness. Full article
Show Figures

Figure 1

13 pages, 2592 KB  
Article
Reduction Study of Carbon-Bearing Briquettes in the System of Multiple Reductants
by Xiaojun Ning, Zheng Ren, Nan Zhang, Guangwei Wang, Xueting Zhang, Junyi Wu, Jiangbin Liu, Andrey Karasev and Chuan Wang
Materials 2025, 18(18), 4408; https://doi.org/10.3390/ma18184408 (registering DOI) - 21 Sep 2025
Viewed by 331
Abstract
Against the backdrop of escalating global carbon emissions, the steel industry urgently requires a transition toward green and low-carbon practices. As a conditionally carbon-neutral renewable energy source, biochar holds potential for replacing traditional fossil-based reducing agents. This study aims to investigate the mechanism [...] Read more.
Against the backdrop of escalating global carbon emissions, the steel industry urgently requires a transition toward green and low-carbon practices. As a conditionally carbon-neutral renewable energy source, biochar holds potential for replacing traditional fossil-based reducing agents. This study aims to investigate the mechanism and performance differences between biochar (wood char, bamboo char) and conventional reducing agents (semi-coke, coke powder, anthracite) in the direct reduction process of carbon-bearing briquettes. Through reduction experiments simulating rotary kiln conditions, combined with analysis of reducing agent gasification characteristics, carbon-to-oxygen (C/O) molar ratio control, X-ray diffraction (XRD), and microstructural examination, the high-temperature behavior of different reducing agents was systematically evaluated. Results indicate that biochar exhibits superior gasification reactivity due to its high specific surface area and developed pore structure: wood char and bamboo char show significantly enhanced reaction rates above 1073 K, approaching complete conversion at 1173 K. In contrast, anthracite and coke powder, characterized by dense structures and low specific surface areas, failed to achieve complete gasification even at 1273 K. Pellets containing bamboo char achieved the highest metallization rate (90.16%) after calcination at 1373 K. The compressive strength of the pellets first decreased and then increased with rising temperature, consistent with the trend in metallization rate. The mechanism analysis indicates that the high reactivity and porous structure of biochar promote rapid CO diffusion and synergistic gas–solid reactions, significantly accelerating the reduction of iron oxides and the formation of metallic iron. Full article
(This article belongs to the Special Issue Advances in Process Metallurgy and Metal Recycling)
Show Figures

Figure 1

26 pages, 7813 KB  
Article
Fe–Si–O Isotope Characteristics and Ore Formation Mechanisms of the Hugushan Area BIF-Type Iron Deposits in the Central North China Craton
by Ende Wang, Deqing Zhang, Jinpeng Luan, Yekai Men, Ran Wang, Jianming Xia and Suibo Zhang
Minerals 2025, 15(9), 996; https://doi.org/10.3390/min15090996 - 19 Sep 2025
Viewed by 372
Abstract
The Hugushan banded iron formation (BIF) is one of the most representative iron ore deposits in the central part of the North China Craton, and its ore formation mechanism remains highly controversial. This study presents whole-rock and Fe–Si–O isotope geochemical evidence, offering a [...] Read more.
The Hugushan banded iron formation (BIF) is one of the most representative iron ore deposits in the central part of the North China Craton, and its ore formation mechanism remains highly controversial. This study presents whole-rock and Fe–Si–O isotope geochemical evidence, offering a new perspective on the ore formation mechanism of the Hugushan BIFs. The samples from the upper and lower parts of the Hugushan BIFs are characterized by slight enrichment of heavy and light Fe isotopes, respectively. Additionally, the samples from the upper part of the Hugushan BIFs show characteristics of slightly positive Ce anomalies and negative La anomalies, suggesting that the shallow ancient seawater was in a partially oxidized state, whereas the deep seawater remained in a reductive environment during the depositional period. The low Al2O3 and TiO2 concentrations, as well as the depletion of Zr and Hf in the Hugushan BIFs, suggest that the contribution of terrestrial detrital materials to deposition is extremely limited. The BIFs all exhibit positive Eu anomalies, and the quartz in the BIFs is depleted in 30Si, a characteristic similar to that observed in siliceous rocks formed in hydrothermal vent environments and during hydrothermal plume activity. Additionally, the δ18O values of quartz in Hugushan BIFs are similar to the O isotope compositions of hydrothermal sedimentary siliceous rocks, further suggesting that the silicon in BIFs originates primarily from seafloor hydrothermal activity. The combination of Eu/Sm, Sm/Yb, and Y/Ho ratios indicates that the major components (iron and silica) of the Hugushan Iron Ore Deposit originated from the mixing of high-temperature hydrothermal fluids with seawater, with the hydrothermal fluid contributing slightly less than 0.1%. The magnetite and quartz bands in the BIFs exhibit inhomogeneous and covariant δ56Fe and δ30Si isotope characteristics, suggesting that the alternating siliceous and ferruginous layers are products of original chemical deposition in the ocean. Periodic hydrothermal activity and ocean transgression caused the recurring deposition of siliceous and ferruginous layers, resulting in the characteristic banded structure of the Hugushan Iron Ore Deposit. Full article
(This article belongs to the Special Issue Selected Papers from the 7th National Youth Geological Congress)
Show Figures

Figure 1

21 pages, 5523 KB  
Article
L-Cysteine Enhanced Degradation of Chlorobenzene in Water Using Nano Zero-Valent Iron/Persulfate System
by Fengcheng Jiang, Guangyi Zhu, He Huang, Xixi Feng, Zhi Feng, Qiao Han, Fayang Guo, Tianjun Chang and Mingshi Wang
Catalysts 2025, 15(9), 911; https://doi.org/10.3390/catal15090911 - 19 Sep 2025
Viewed by 507
Abstract
Nano zero-valent iron (nZVI) particles have received much attention in environmental science and technology due to their unique electronic and chemical properties. While sulfate radical-based advanced oxidation processes (SR-AOPs) activated by nZVI show promise for mono-chlorobenzene (MCB) degradation, their efficiency is severely limited [...] Read more.
Nano zero-valent iron (nZVI) particles have received much attention in environmental science and technology due to their unique electronic and chemical properties. While sulfate radical-based advanced oxidation processes (SR-AOPs) activated by nZVI show promise for mono-chlorobenzene (MCB) degradation, their efficiency is severely limited by surface oxidation of nZVI and Fe3+ accumulation. This study aims to enhance the nZVI/persulfate (PS) system using L-cysteine (Cys) to achieve effective MCB removal. The work involved synthesizing nZVI via borohydride reduction, followed by comprehensive characterization and batch experiments of the Cys/nZVI/PS degradation system of MCB were carried out to evaluate the key influencing factors and analyze the reaction mechanism of Cys-enhanced MCB degradation. Under optimal conditions (0.1 g/L nZVI, 3 mM PS, 0.1 mM Cys, pH 3), 92.6% of MCB was degraded within 90 min—an 18.7% improvement compared to the Cys-free system. Acidic pH promoted Fe2+ release and significantly enhanced degradation, while HCO3 strongly inhibited the process. Mechanistic studies revealed that sulfate radicals (SO4•−) played a dominant role, and Cys served as an electron shuttle that facilitated the Fe3+/Fe2+ cycle and enhanced Fe0 conversion, thereby sustaining PS activation. This study demonstrates that Cys effectively mitigates the limitations of nZVI/PS systems and provides valuable insights for implementing efficient SR-AOPs in treating chlorinated organic contaminants. Full article
Show Figures

Figure 1

17 pages, 723 KB  
Review
Rebuilding Mitochondrial Homeostasis and Inhibiting Ferroptosis: Therapeutic Mechanisms and Prospects for Spinal Cord Injury
by Qin Wang, Qingqing Qin, Wenqiang Liang, Haoran Guo, Yang Diao, Shengsheng Tian and Xin Wang
Biomedicines 2025, 13(9), 2290; https://doi.org/10.3390/biomedicines13092290 - 18 Sep 2025
Viewed by 506
Abstract
During the pathological process of spinal cord injury (SCI), ferroptosis is closely related to mitochondrial homeostasis. Following the occurrence of SCI, the interruption of local blood supply leads to mitochondrial damage within cells and a reduction in Adenosine triphosphate (ATP) production. This results [...] Read more.
During the pathological process of spinal cord injury (SCI), ferroptosis is closely related to mitochondrial homeostasis. Following the occurrence of SCI, the interruption of local blood supply leads to mitochondrial damage within cells and a reduction in Adenosine triphosphate (ATP) production. This results in the loss of transmembrane ion gradients, causing an influx of Ca2+ into the cells, which in turn generates a significant amount of Reactive oxygen species (ROS) and reactive nitrogen species. This leads to severe mitochondrial dysfunction and an imbalance in mitochondrial homeostasis. Ferroptosis is a form of programmed cell death that differs from other types of apoptosis, as it is dependent on the accumulation of iron and lipid peroxides, along with their byproducts. The double bond structures in intracellular polyunsaturated fatty acids (PUFA) are particularly susceptible to attack by ROS, leading to the formation of lipid alkyl free radicals. This accumulation of lipid peroxides within the cells triggers ferroptosis. After SCI, the triggering of ferroptosis is closely associated with the “death triangle”—a core network that catalyzes cell death through the interaction of three factors: local iron overload, collapse of antioxidant defenses, and dysregulation of PUFA metabolism (where PUFA are susceptible to attack by reactive ROS leading to lipid peroxidation). These three elements interact to form a central network driving cell death. In the pathological cascade of SCI, mitochondria serve as both a major source of ROS and a primary target of their attack, playing a crucial role in the initiation and execution of cellular ferroptosis. Mitochondrial homeostasis imbalance is not only a key inducer of the “death triangle” (such as the intensification of lipid peroxidation by mitochondrial ROS), but is also reverse-regulated by the “death triangle” (such as the destruction of mitochondrial structure by lipid peroxidation products). Through the cascade reaction of this triangular network, mitochondrial homeostasis imbalance and the “death triangle” jointly drive the progression of secondary damage. This study aims to synthesize the mechanisms by which various therapeutic approaches mitigate SCI through targeted regulation of mitochondrial homeostasis and inhibition of ferroptosis. Unlike previous research, we integrate the bidirectional regulatory relationship between “mitochondrial homeostasis disruption” and “ferroptosis” in SCI, and emphasize their importance as a synergistic therapeutic target. We not only elaborate in detail how mitochondrial homeostasis—including biogenesis, dynamics, and mitophagy—modulates the initiation and execution of ferroptosis, but also summarize recent strategies that simultaneously target both processes to achieve neuroprotection and functional recovery. Furthermore, this review highlights the translational potential of various treatments in blocking the pathological cascade driven by oxidative stress and lipid peroxidation. These insights provide a novel theoretical framework and propose combinatory therapeutic approaches, thereby laying the groundwork for designing precise and effective comprehensive treatment strategies for SCI in clinical settings. Full article
(This article belongs to the Special Issue Traumatic CNS Injury: From Bench to Bedside (2nd Edition))
Show Figures

Graphical abstract

25 pages, 4236 KB  
Article
Green Synthesis of Iron Oxide Nanoparticles for Use in Pickering Emulsions: In Vitro UV-Absorbing and Antimicrobial Properties
by Ahmet Doğan Ergin, Zeynep Betül Erbay, Müberra Karaca, Suzan Ökten, Gülcan Kuyucuklu, Camillo Benetti and Ayça Altay Benetti
Cosmetics 2025, 12(5), 208; https://doi.org/10.3390/cosmetics12050208 - 17 Sep 2025
Viewed by 574
Abstract
The integration of nanotechnology with green chemistry presents sustainable strategies for developing multifunctional cosmeceutical formulations. In this study, iron oxide nanoparticles (IONPs) were successfully synthesized using antioxidant-rich green tea extract via an eco-friendly method. The nanoparticles were incorporated into a novel Pickering emulsion [...] Read more.
The integration of nanotechnology with green chemistry presents sustainable strategies for developing multifunctional cosmeceutical formulations. In this study, iron oxide nanoparticles (IONPs) were successfully synthesized using antioxidant-rich green tea extract via an eco-friendly method. The nanoparticles were incorporated into a novel Pickering emulsion comprising coconut oil and green tea extract, targeting UV protection and antimicrobial performance. The green-synthesized IONPs displayed strong UV absorption properties, achieving an SPF of 6.20 at 1.0 M concentration, outperforming standard TiO2 nanoparticles (SPF 3.98). The optimized Pickering emulsion formulation showed stability and skin-friendly pH. Antimicrobial studies revealed significant inhibition of Cutibacterium acnes and Staphylococcus aureus, with over 97% microbial reduction observed within 2 h of exposure. This dual-functional system, combining UV protection and antimicrobial effects, demonstrates the potential of green nanomaterials for developing safe, effective, and sustainable skincare formulations. The study provides new insight into the application of iron-based green nanotechnology in surfactant-free emulsions, supporting further innovation in the field of natural photoprotective cosmeceuticals. Full article
(This article belongs to the Special Issue Feature Papers in Cosmetics in 2025)
Show Figures

Figure 1

20 pages, 2946 KB  
Article
Iron Recovery from Turkish and Romanian Bauxite Residues Through Magnetic Separation: Effect of Hydrothermal Processing and Separation Conditions
by Panagiotis Angelopoulos, Paschalis Oustadakis, Nikolaos Kountouris, Michail Samouhos, Georgios Anastassakis and Maria Taxiarchou
Separations 2025, 12(9), 252; https://doi.org/10.3390/separations12090252 - 17 Sep 2025
Viewed by 320
Abstract
This study investigates the potential of two low-iron-grade bauxite residue (BR) samples, containing up to 27.4 wt.% Fe and originating from alumina plants in Romania and Turkey, for the recovery of iron concentrate via wet magnetic separation. The methodology involved the hydrothermal reduction [...] Read more.
This study investigates the potential of two low-iron-grade bauxite residue (BR) samples, containing up to 27.4 wt.% Fe and originating from alumina plants in Romania and Turkey, for the recovery of iron concentrate via wet magnetic separation. The methodology involved the hydrothermal reduction of the residues, aiming to transform the hematite/goethite (Fe3+) phases into magnetite (Fe2+/Fe3+) and enhance their magnetic susceptibility. The effect of hydrothermal treatment, magnetic induction value (up to 1600 Gs), and slurry dispersion on iron recovery and iron grade were investigated. An optimum magnetic fraction was obtained, containing 44.4 wt.% elemental iron (Feelem) and achieving 98% iron recovery. These results demonstrate a significant improvement compared to the magnetic fraction derived from the respective non-reduced sample, which showed a maximum of 29.7 wt.% Fe grade and 59.7% recovery. Furthermore, silicon and sodium are primarily distributed in the non-ferrous fraction. The application of sonication to enhance slurry dispersion during magnetic separation did not have a positive impact on the process. In addition to iron recovery, an aspect of considerable potential is the reutilization of the Al-rich liquor generated during hydrothermal treatment of the BR. Its reintroduction into the Bayer process circuit could contribute to improved material utilization and enhanced overall process efficiency. Full article
(This article belongs to the Special Issue Solid Waste Recycling and Strategic Metal Extraction)
Show Figures

Figure 1

Back to TopTop